Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96148
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君zh_TW
dc.contributor.advisorI-Chun Chengen
dc.contributor.author陳芝伃zh_TW
dc.contributor.authorChih-Yu Chenen
dc.date.accessioned2024-11-15T16:10:35Z-
dc.date.available2024-11-16-
dc.date.copyright2024-11-15-
dc.date.issued2024-
dc.date.submitted2024-10-24-
dc.identifier.citation[1] S. Nakaharai, M. Yamamoto, K. Ueno, Y.-F. Lin, S.-L. Li, and K. Tsukagoshi, "Electrostatically reversible polarity of ambipolar α-MoTe2 transistors," ACS Nano, vol. 9, no. 6, pp. 5976-5983, 2015, doi: 10.1021/acsnano.5b00736.
[2] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004, doi: 10.1126/science.1102896.
[3] R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, "Carbon nanotubes--the route toward applications," science, vol. 297, no. 5582, pp. 787-792, 2002, doi: 10.1126/science.1060928.
[4] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature nanotechnology, vol. 6, no. 3, pp. 147-150, 2011, doi: 10.1038/NNANO.2010.279.
[5] H.-J. Chuang et al., "Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors," Nano letters, vol. 16, no. 3, pp. 1896-1902, 2016, doi: 10.1021/acs.nanolett.5b05066.
[6] M. C. Lemme, L.-J. Li, T. Palacios, and F. Schwierz, "Two-dimensional materials for electronic applications," Mrs Bulletin, vol. 39, no. 8, pp. 711-718, 2014, doi: 10.1557/mrs.2014.138.
[7] P. V. Shinde, M. Hussain, E. Moretti, and A. Vomiero, "Advances in two‐dimensional molybdenum ditelluride (MoTe2): A comprehensive review of properties, preparation methods, and applications," SusMat, p. e236, 2024, doi: 10.1002/sus2.236.
[8] J. Fan and M. Sun, "Transition metal dichalcogenides (tmdcs) heterostructures: synthesis, excitons and photoelectric properties," The Chemical Record, vol. 22, no. 6, p. e202100313, 2022, doi: 10.1002/tcr.202100313.
[9] G. Abbas, Y. Li, H. Wang, W. X. Zhang, C. Wang, and H. Zhang, "Recent advances in twisted structures of flatland materials and crafting moiré superlattices," Advanced Functional Materials, vol. 30, no. 36, p. 2000878, 2020, doi: 10.1002/adfm.202000878.
[10] K. L. Seyler et al., "Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers," Nature, vol. 567, no. 7746, pp. 66-70, 2019, doi: 10.1038/s41586-019-0957-1.
[11] W. Wang and X. Ma, "Strain-induced trapping of indirect excitons in MoSe2/WSe2 heterostructures," ACS Photonics, vol. 7, no. 9, pp. 2460-2467, 2020, doi: 10.1021/acsphotonics.0c00567.
[12] Y. F. Lin et al., "Ambipolar MoTe2 transistors and their applications in logic circuits," Advanced Materials, vol. 26, no. 20, pp. 3263-3269, 2014, doi: 10.1002/adma.201305845.
[13] K. Du et al., "Controllable Modulation of the Electronic Properties of a Two-Dimensional Ambipolar Semiconductor by Interface Ferroelectric Polarization," ACS Applied Materials & Interfaces, vol. 16, no. 3, pp. 4181-4188, 2024.
[14] D. Braga, I. Gutiérrez Lezama, H. Berger, and A. F. Morpurgo, "Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors," Nano letters, vol. 12, no. 10, pp. 5218-5223, 2012, doi: 10.1021/nl302389d.
[15] M. M. Perera et al., "Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating," ACS Nano, vol. 7, no. 5, pp. 4449-4458, 2013, doi: 10.1021/nn401053g.
[16] P. Bampoulis, R. van Bremen, Q. Yao, B. Poelsema, H. J. Zandvliet, and K. Sotthewes, "Defect dominated charge transport and fermi level pinning in MoS2/metal contacts," ACS applied materials & interfaces, vol. 9, no. 22, pp. 19278-19286, 2017, doi: 10.1021/acsami.7b02739.
[17] Y. Guo, D. Liu, and J. Robertson, "3D behavior of Schottky barriers of 2D transition-metal dichalcogenides," ACS applied materials & interfaces, vol. 7, no. 46, pp. 25709-25715, 2015, doi: 10.1021/acsami.5b06897.
[18] C. Kim et al., "Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides," ACS Nano, vol. 11, no. 2, pp. 1588-1596, 2017, doi: 10.1021/acsnano.6b07159.
[19] A.-S. Chou et al., "Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021: IEEE, pp. 7.2. 1-7.2. 4, doi: 10.1109/IEDM19574.2021.9720608.
[20] W. Li et al., "Approaching the quantum limit in two-dimensional semiconductor contacts," Nature, vol. 613, no. 7943, pp. 274-279, 2023, doi: 10.1038/s41586-022-05431-4.
[21] P.-C. Shen et al., "Ultralow contact resistance between semimetal and monolayer semiconductors," Nature, vol. 593, no. 7858, pp. 211-217, 2021, doi: 10.1038/s41586-021-03472-9.
[22] X. Wen et al., "ZrTe2 compound dirac semimetal contacts for high-performance MoS2 transistors," Nano Letters, vol. 23, no. 18, pp. 8419-8425, 2023, doi: 10.1021/acs.nanolett.3c01554.
[23] X. Zhang et al., "All‐van‐der‐Waals barrier‐free contacts for high‐mobility transistors," Advanced Materials, vol. 34, no. 34, p. 2109521, 2022, doi: 10.1002/adma.202109521.
[24] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, "Superconductivity and strong correlations in moiré flat bands," Nature Physics, vol. 16, no. 7, pp. 725-733, 2020, doi: 10.1038/s41567-020-0906-9.
[25] L. Wang et al., "Correlated electronic phases in twisted bilayer transition metal dichalcogenides," Nature materials, vol. 19, no. 8, pp. 861-866, 2020, doi: 10.1038/s41563-020-0708-6.
[26] J. Gao, B. C. Li, J. W. Tan, P. Chow, T. M. Lu, and N. Koratkar, "Aging of Transition Metal Dichalcogenide Monolayers," (in English), ACS Nano, Article vol. 10, no. 2, pp. 2628-2635, Feb 2016, doi: 10.1021/acsnano.5b07677.
[27] M. Zhao et al., "Growth of atomically thin MoS 2 flakes on high-κ substrates by chemical vapor deposition," Journal of materials science, vol. 53, pp. 4262-4273, 2018, doi: 10.1007/s10853-017-1820-0.
[28] D. Lembke and A. Kis, "Breakdown of high-performance monolayer MoS2 transistors," ACS Nano, vol. 6, no. 11, pp. 10070-10075, 2012, doi: 10.1021/nn303772b.
[29] F. Schwierz, J. Pezoldt, and R. Granzner, "Two-dimensional materials and their prospects in transistor electronics," (in English), Nanoscale, Article vol. 7, no. 18, pp. 8261-8283, 2015, doi: 10.1039/c5nr01052g.
[30] J. Yao, "Working principle and characteristic analysis of SiC MOSFET," in Journal of Physics: Conference Series, 2023, vol. 2435, no. 1: IOP Publishing, p. 012022, doi: 10.1088/1742-6596/2435/1/012022.
[31] M. McDowell, I. Hill, J. McDermott, S. Bernasek, and J. Schwartz, "Improved organic thin-film transistor performance using novel self-assembled monolayers," Applied physics letters, vol. 88, no. 7, 2006, doi: doi.org/10.1063/1.2173711.
[32] C. H. Naylor et al., "Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect," Nano letters, vol. 16, no. 7, pp. 4297-4304, 2016, doi: 10.1021/acs.nanolett.6b01342.
[33] S. Yuan et al., "Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit," Nature communications, vol. 10, no. 1, p. 1775, 2019, doi: 10.1038/s41467-019-09669-x.
[34] F. Chen et al., "Extremely large magnetoresistance in the type-II Weyl semimetal Mo Te 2," Physical Review B, vol. 94, no. 23, p. 235154, 2016.
[35] Z. Guguchia et al., "Signatures of the topological s+− superconducting order parameter in the type-II Weyl semimetal T d-MoTe2," Nature communications, vol. 8, no. 1, p. 1082, 2017, doi: 10.1038/s41467-017-01066-6.
[36] Y. Deng et al., "MoTe2: semiconductor or semimetal?," ACS Nano, vol. 15, no. 8, pp. 12465-12474, 2021, doi: 10.1021/acsnano.1c01816.
[37] R. Yang, J. Fan, and M. Sun, "Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties," Frontiers of Physics, vol. 17, no. 4, p. 43202, 2022, doi: 10.1007/s11467-022-1176-z.
[38] J. C. Park et al., "Phase-engineered synthesis of centimeter-scale 1T′-and 2H-molybdenum ditelluride thin films," ACS Nano, vol. 9, no. 6, pp. 6548-6554, 2015, doi: 10.1021/acsnano.5b02511.
[39] L. Yang, W. Zhang, J. Li, S. Cheng, Z. Xie, and H. Chang, "Tellurization velocity-dependent metallic–semiconducting–metallic phase evolution in chemical vapor deposition growth of large-area, few-layer MoTe2," ACS Nano, vol. 11, no. 2, pp. 1964-1972, 2017, doi: 10.1021/acsnano.6b08109.
[40] L. Zhou et al., "Synthesis of high‐quality large‐area homogenous 1T′ MoTe2 from chemical vapor deposition," Advanced materials, vol. 28, no. 43, pp. 9526-9531, 2016, doi: 10.1002/adma.201602687.
[41] X. Xu et al., "Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation," Journal of the American Chemical Society, vol. 141, no. 5, pp. 2128-2134, 2019, doi: 10.1021/jacs.8b12230.
[42] D. H. Keum et al., "Bandgap opening in few-layered monoclinic MoTe 2," Nature Physics, vol. 11, no. 6, pp. 482-486, 2015, doi: 10.1038/NPHYS3314.
[43] R. Sankar et al., "Polymorphic layered MoTe2 from semiconductor, topological insulator, to Weyl semimetal," Chemistry of Materials, vol. 29, no. 2, pp. 699-707, 2017, doi: 10.1021/acs.chemmater.6b04363.
[44] C. Ruppert, B. Aslan, and T. F. Heinz, "Optical properties and band gap of single-and few-layer MoTe2 crystals," Nano letters, vol. 14, no. 11, pp. 6231-6236, 2014, doi: 10.1021/nl502557g.
[45] Y. Sun, D. Wang, and Z. Shuai, "Indirect-to-direct band gap crossover in few-layer transition metal dichalcogenides: a theoretical prediction," The Journal of Physical Chemistry C, vol. 120, no. 38, pp. 21866-21870, 2016, doi: 10.1021/acs.jpcc.6b08748.
[46] Q. Cheng et al., "WSe2 2D p‐type semiconductor‐based electronic devices for information technology: design, preparation, and applications," InfoMat, vol. 2, no. 4, pp. 656-697, 2020, doi: 10.1002/inf2.12093.
[47] M. J. Molaei, M. Younas, and M. Rezakazemi, "A comprehensive review on recent advances in two-dimensional (2D) hexagonal boron nitride," ACS Applied Electronic Materials, vol. 3, no. 12, pp. 5165-5187, 2021, doi: 10.1021/acsaelm.1c00720.
[48] K. K. Kim, S. M. Kim, and Y. H. Lee, "A new horizon for hexagonal boron nitride film," Journal of the Korean physical society, vol. 64, pp. 1605-1616, 2014, doi: 10.3938/jkps.64.1605.
[49] S. Liu et al., "Hysteresis‐free hexagonal boron nitride encapsulated 2D semiconductor transistors, NMOS and CMOS inverters," Advanced Electronic Materials, vol. 5, no. 2, p. 1800419, 2019, doi: 10.1002/aelm.201800419.
[50] W. Li et al., "Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices," Nature Electronics, vol. 2, no. 12, pp. 563-571, 2019, doi: 10.1038/s41928-019-0334-y.
[51] Y. Li, "Two-Dimensional Field Effect Transistor," 2023, doi: 10.7936/2nbv-ap67.
[52] I. A. Rahman and A. Purqon, "First principles study of molybdenum disulfide electronic structure," in Journal of Physics: Conference Series, 2017, vol. 877, no. 1: IOP Publishing, p. 012026.
[53] N. R. Pradhan et al., "Field-effect transistors based on few-layered α-MoTe2," ACS Nano, vol. 8, no. 6, pp. 5911-5920, 2014, doi: 10.1021/nn501013c.
[54] N. Haratipour and S. J. Koester, "Multi-layer MoTe 2 p-channel MOSFETs with high drive current," in 72nd Device Research Conference, 2014: IEEE, pp. 171-172, doi: 10.1109/DRC.2014.6872352.
[55] J. Liu et al., "Conversion of multi-layered MoTe 2 transistor between P-type and N-type and their use in inverter," Nanoscale Research Letters, vol. 13, pp. 1-9, 2018, doi: 10.1186/s11671-018-2721-0.
[56] W. Chen, R. Liang, and J. Xu, "Low-temperature electrical characterization of p-and n-type MoTe 2 transistors," in 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019: IEEE, pp. 1-2, doi: 10.1109/EDSSC.2019.8753960.
[57] X. Liu, A. Islam, J. Guo, and P. X.-L. Feng, "Controlling polarity of MoTe2 transistors for monolithic complementary logic via Schottky contact engineering," ACS Nano, vol. 14, no. 2, pp. 1457-1467, 2020, doi: 10.1021/acsnano.9b05502.
[58] X. Liu et al., "Atomic layer MoTe2 field-effect transistors and monolithic logic circuits configured by scanning laser annealing," ACS Nano, vol. 15, no. 12, pp. 19733-19742, 2021, doi: 10.1021/acsnano.1c07169.
[59] D. Qi et al., "Graphene‐Enhanced Metal Transfer Printing for Strong van der Waals Contacts between 3D Metals and 2D Semiconductors," Advanced Functional Materials, vol. 33, no. 27, p. 2301704, 2023, doi: 10.1002/adfm.202301704.
[60] S. Song et al., "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, vol. 14, no. 1, p. 4747, 2023.
[61] B. Di et al., "Thickness-dependent carrier polarity of MoTe2 transistors with NiTe2 semimetal contacts," Applied Physics Letters, vol. 123, no. 19, 2023, doi: 10.1063/5.0176937.
[62] Z. Yang et al., "Lowering the Schottky Barrier Height by Quasi-van der Waals Contacts for High-Performance p-Type MoTe2 Field-Effect Transistors," ACS Applied Materials & Interfaces, 2024, doi: 10.1021/acsami.4c02106.
[63] S. Nakaharai, M. Yamamoto, K. Ueno, and K. Tsukagoshi, "Carrier polarity control in α-MoTe2 Schottky junctions based on weak Fermi-level pinning," ACS applied materials & interfaces, vol. 8, no. 23, pp. 14732-14739, 2016, doi: 10.1021/acsami.6b02036.
[64] J. Y. Lim et al., "Homogeneous 2D MoTe2 p–n junctions and CMOS inverters formed by atomic‐layer‐deposition‐induced doping," Advanced Materials, vol. 29, no. 30, p. 1701798, 2017, doi: 10.1002/adma.201701798.
[65] F. Wang et al., "Configuration‐dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2," Advanced Functional Materials, vol. 26, no. 30, pp. 5499-5506, 2016, doi: 10.1002/adfm.201601349.
[66] K. Tran et al., "Evidence for moiré excitons in van der Waals heterostructures," Nature, vol. 567, no. 7746, pp. 71-75, 2019, doi: 10.1038/s41586-019-0975-z.
[67] Y. Gong et al., "Two-step growth of two-dimensional WSe2/MoSe2 heterostructures," Nano letters, vol. 15, no. 9, pp. 6135-6141, 2015, doi: 10.1021/acs.nanolett.5b02423.
[68] Y. Cao et al., "Unconventional superconductivity in magic-angle graphene superlattices," Nature, vol. 556, no. 7699, pp. 43-50, 2018, doi: 10.1038/nature26160.
[69] Y. Wang, J. Xiao, S. Yang, Y. Wang, and X. Zhang, "Second harmonic generation spectroscopy on two-dimensional materials," Optical Materials Express, vol. 9, no. 3, pp. 1136-1149, 2019, doi: 10.1364/OME.9.001136.
[70] T. Li et al., "Continuous Mott transition in semiconductor moiré superlattices," Nature, vol. 597, no. 7876, pp. 350-354, 2021, doi: 10.1038/s41586-021-03853-0.
[71] K. F. Mak and J. Shan, "Semiconductor moiré materials," Nature Nanotechnology, vol. 17, no. 7, pp. 686-695, 2022, doi: 10.1038/s41565-022-01165-6.
[72] X. Huang et al., "Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice," Nature Physics, vol. 17, no. 6, pp. 715-719, 2021, doi: 10.1038/s41567-021-01171-w.
[73] M. Zhang et al., "Tuning Quantum Phase Transitions at Half Filling in 3 L-MoTe 2/WSe 2 Moiré Superlattices," Physical Review X, vol. 12, no. 4, p. 041015, 2022.
[74] T. Li et al., "Quantum anomalous Hall effect from intertwined moiré bands," Nature, vol. 600, no. 7890, pp. 641-646, 2021, doi: 10.1038/s41586-021-04171-1.
[75] Y. Tang et al., "Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices," Nature, vol. 579, no. 7799, pp. 353-358, 2020, doi: 10.1038/s41586-020-2085-3.
[76] E. C. Regan et al., "Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices," Nature, vol. 579, no. 7799, pp. 359-363, 2020, doi: 10.1038/s41586-020-2092-4.
[77] M. Li et al., "Proximity-driven enhanced magnetic order at ferromagnetic-insulator–magnetic-topological-insulator interface," Physical review letters, vol. 115, no. 8, p. 087201, 2015, doi: 10.1103/PhysRevLett.115.087201.
[78] Y. Li, G. Kuang, Z. Jiao, L. Yao, and R. Duan, "Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides," Materials Research Express, vol. 9, no. 12, p. 122001, 2022, doi: 10.1088/2053-1591/aca6c6.
[79] A. Jawaid et al., "Mechanism for liquid phase exfoliation of MoS2," Chemistry of Materials, vol. 28, no. 1, pp. 337-348, 2016, doi: 10.1021/acs.chemmater.5b04224.
[80] H. Liu et al., "Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy," 2D Materials, vol. 2, no. 3, p. 034004, 2015, doi: 10.1088/2053-1583/2/3/034004.
[81] Y.-H. Lee et al., "Synthesis of large-area MoS2 atomic layers with chemical vapor deposition," arXiv preprint arXiv:1202.5458, 2012, doi: 10.1002/adma.201104798.
[82] D. G. Purdie, N. Pugno, T. Taniguchi, K. Watanabe, A. Ferrari, and A. Lombardo, "Cleaning interfaces in layered materials heterostructures," Nature communications, vol. 9, no. 1, p. 5387, 2018, doi: 10.1038/s41467-018-07558-3.
[83] 中央研究院物理研究所. "Scanning ElectronMicroscope (SEM/E-beam writer) 日本ELIONIX ERA-8800." https://www.phys.sinica.edu.tw/~qmsf.
[84] C. Charpentier, "Investigation of deposition conditions and annealing treatments on sputtered ZnO: Al thin films: Material properties and application to microcristalline silicon solar cells," Ecole Polytechnique X, 2012.
[85] A. Bashir, T. I. Awan, A. Tehseen, M. B. Tahir, and M. Ijaz, "Interfaces and surfaces," Chemistry of Nanomaterials, vol. 51, p. 87, 2020.
[86] C. J.-I. Mcgill. "The Basics of Wire Bonding." https://ssd-rd.web.cern.ch/bondlab/wirebonding/Bonding_basics.htm.
[87] "HB10 Wire Bonder." TPT. https://www.tpt-wirebonder.com/hb10/.
[88] S. Liu and Y. Wang, "Application of AFM in microbiology: a review," Scanning, vol. 32, no. 2, pp. 61-73, 2010, doi: 10.1002/sca.20173.
[89] Y. K. Koh, M.-H. Bae, D. G. Cahill, and E. Pop, "Reliably counting atomic planes of few-layer graphene (n> 4)," ACS Nano, vol. 5, no. 1, pp. 269-274, 2011, doi: 10.1021/nn102658a.
[90] A. C. Ferrari et al., "Raman spectrum of graphene and graphene layers," Physical review letters, vol. 97, no. 18, p. 187401, 2006, doi: 10.1103/PhysRevLett.97.187401.
[91] H. Li et al., "Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy," ACS Nano, vol. 7, no. 11, pp. 10344-10353, 2013, doi: 10.1021/nn4047474.
[92] 蔡侑廷, "二維二硫化鎢電晶體之研究," 國立臺灣大學, 碩士論文, 2022.
[93] K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, "Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications," Journal of Materials Chemistry C, vol. 5, no. 46, pp. 11992-12022, 2017, doi: 10.1039/c7tc04300g.
[94] M. K. Man et al., "Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer," Scientific reports, vol. 6, no. 1, p. 20890, 2016, doi: 10.1038/srep20890.
[95] T. Iwasaki et al., "Bubble-free transfer technique for high-quality graphene/hexagonal boron nitride van der Waals heterostructures," ACS applied materials & interfaces, vol. 12, no. 7, pp. 8533-8538, 2020, doi: 10.1021/acsami.9b19191.
[96] S. Fathipour et al., "Exfoliated multilayer MoTe2 field-effect transistors," Applied Physics Letters, vol. 105, no. 19, 2014.
[97] A. Pezeshki et al., "Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors," ACS Nano, vol. 10, no. 1, pp. 1118-1125, 2016.
[98] F. Wang et al., "Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices," Applied Physics Letters, vol. 109, no. 19, 2016, doi: 10.1063/1.4967232.
[99] S. Zhang et al., "Dependence of channel thickness on MoTe2 transistor performance with Pt contact on a HfO2 dielectric," Applied Physics Express, vol. 12, no. 12, p. 124001, 2019, doi: 10.7567/1882-0786/ab4e42.
[100] V. K. Sangwan and M. C. Hersam, "Electronic transport in two-dimensional materials," Annual review of physical chemistry, vol. 69, no. 1, pp. 299-325, 2018, doi: 10.1146/annurevphyschem-050317-021353.
[101] B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, "Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2," Nano letters, vol. 13, no. 9, pp. 4212-4216, 2013, doi: 10.1021/nl401916s.
[102] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, "Electrical transport properties of single-layer WS2," ACS Nano, vol. 8, no. 8, pp. 8174-8181, 2014, doi: 10.1021/nn502362b.
[103] B. Radisavljevic and A. Kis, "Mobility engineering and a metal–insulator transition in monolayer MoS2," Nature materials, vol. 12, no. 9, pp. 815-820, 2013, doi: 10.1038/nmat3687.
[104] S. Ghatak, A. N. Pal, and A. Ghosh, "Nature of electronic states in atomically thin MoS2 field-effect transistors," ACS Nano, vol. 5, no. 10, pp. 7707-7712, 2011, doi: 10.1021/nn202852j.
[105] G. He et al., "Conduction mechanisms in CVD-grown monolayer MoS2 transistors: from variable-range hopping to velocity saturation," Nano letters, vol. 15, no. 8, pp. 5052-5058, 2015, doi: 10.1021/nl500666m.
[106] V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, and E. Bucher, "High-mobility field-effect transistors based on transition metal dichalcogenides," Applied Physics Letters, vol. 84, no. 17, pp. 3301-3303, 2004, doi: 10.1063/1.1723695.
[107] H. Qiu et al., "Hopping transport through defect-induced localized states in molybdenum disulphide," Nature communications, vol. 4, no. 1, p. 2642, 2013, doi: 10.1038/ncomms3642.
[108] H. S. Lee et al., "Impact of H‐Doping on n‐Type TMD Channels for Low‐Temperature Band‐Like Transport," Small, vol. 15, no. 38, p. 1901793, 2019, doi: 10.1002/smll.201901793.
[109] M. Y. Han, J. C. Brant, and P. Kim, "Electron transport in disordered graphene nanoribbons," Physical review letters, vol. 104, no. 5, p. 056801, 2010, doi: 10.1103/PhysRevLett.104.056801.
[110] Z. Yu and X. Song, "Variable range hopping and electrical conductivity along the DNA double helix," Physical Review Letters, vol. 86, no. 26, p. 6018, 2001, doi: 10.1103/PhysRevLett.86.6018.
[111] H.-J. Chuang et al., "High mobility WSe2 p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts," Nano letters, vol. 14, no. 6, pp. 3594-3601, 2014, doi: 10.1021/nl501275p.
[112] M. M. Manjula and R. Ramesh, "Performance Analysis of MoTe2/MoSe2 and MoTe2/WSe2 Heterostructure Double-Gate MOSFET," Journal of Electronic Materials, vol. 52, no. 11, pp. 7694-7707, 2023.
[113] H. Park et al., "Observation of fractionally quantized anomalous Hall effect," Nature, vol. 622, no. 7981, pp. 74-79, 2023, doi: 10.1038/s41586-023-06536-0.
[114] K. Kang et al., "Evidence of the fractional quantum spin Hall effect in moiré MoTe2," Nature, vol. 628, no. 8008, pp. 522-526, 2024, doi: 10.1038/s41586-024-07214-5.
[115] G. Murastov et al., "Multi-Layer Palladium Diselenide as a Contact Material for Two-Dimensional Tungsten Diselenide Field-Effect Transistors," Nanomaterials, vol. 14, no. 5, p. 481, 2024, doi: 10.3390/nano14050481.
[116] J. Zheng et al., "Chemical Synthesis and Integration of Highly Conductive PdTe2 with Low‐Dimensional Semiconductors for p‐Type Transistors with Low Contact Barriers," Advanced Materials, vol. 33, no. 27, p. 2101150, 2021, doi: 10.1002/adma.202101150.
[117] R. Beams et al., "Characterization of few-layer 1T′ MoTe2 by polarization-resolved second harmonic generation and Raman scattering," ACS Nano, vol. 10, no. 10, pp. 9626-9636, 2016, doi: 10.1021/acsnano.6b05127.
[118] Y. Cao et al., "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices," Nature, vol. 556, no. 7699, pp. 80-84, 2018, doi: 10.1038/nature26154.
[119] M. H. Naik and M. Jain, "Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides," Physical review letters, vol. 121, no. 26, p. 266401, 2018.
[120] Z. Zhang et al., "Flat bands in twisted bilayer transition metal dichalcogenides," Nature Physics, vol. 16, no. 11, pp. 1093-1096, 2020, doi: 10.1038/s41567-020-0958-x.
[121] T. Li et al., "Charge-order-enhanced capacitance in semiconductor moiré superlattices," Nature Nanotechnology, vol. 16, no. 10, pp. 1068-1072, 2021, doi: 10.1038/s41586-020-2092-4.
[122] Y. Shimazaki, I. Schwartz, K. Watanabe, T. Taniguchi, M. Kroner, and A. Imamoğlu, "Strongly correlated electrons and hybrid excitons in a moiré heterostructure," Nature, vol. 580, no. 7804, pp. 472-477, 2020, doi: 10.1038/s41586-020-2191-2.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96148-
dc.description.abstract過渡金屬二硫族化物 ( transition metal dichalcogenides, TMDCs) 層與層之間透過弱凡得瓦力堆疊在一起,使得塊狀晶體可以沿著每個三層結構剝離成單獨的二維薄片,這些TMD薄片沒有懸鍵,因此具有化學穩定性和低載子散射等特性。在TMDCs 中,二碲化鉬 (Molybdenum Ditelluride, MoTe2) 有最小的能隙,有助於增強電子和電洞的載子注入。
本研究透過膠帶層離法 ( tape exfoliation ) 製備二碲化鉬、二硒化鎢 ( tungsten diselenide, WSe2 )、六方晶氮化硼 ( hexagonal boron nitride, hBN ) 及石墨 ( graphite )晶體,以石墨作為接觸電極,製作雙閘極單層結構之二碲化鉬電晶體和雙層結構之二碲化鉬/二硒化鎢電晶體。室溫下,單層結構之二碲化鉬電晶體呈現雙極特性,p型與n型開關電流比分別為 〖7.68×10〗^5 和 〖3.11×10〗^5 ;次臨界擺幅為0.82 V/dec和2.03 V/dec。於5 K的低溫下,p型與n型開關電流比分別提高至 〖9.94×10〗^6 和 〖9.61×10〗^5;次臨界擺幅下降為0.42 V/dec和1.66 V/dec,此元件於低溫下有較好的特性,其電晶體載子傳輸機制為band-like transport。而雙層結構之二碲化鉬/二硒化鎢電晶體室溫下p型與n型開關電流比分別為 〖6.28×10〗^5 和 〖1.77×10〗^6 ;次臨界擺幅為0.84 V/dec和2.21 V/dec。於5 K的低溫下,p型與n型開關電流比分別為 〖1.52×10〗^4 和 〖4.95×10〗^4;次臨界擺幅為1.74 V/dec和1.02 V/dec,此元件載子傳輸屬變程跳躍,於室溫下電性表現較佳。
相同材料會因為原本晶體品質狀況不同,或是製作元件過程中造成缺陷程度的差異,使主導的機制不同。石墨導電性佳,與二碲化鉬皆屬二維材料,相對於直接與三維金屬接觸,更能減少金屬誘導間隙態的產生,本研究以石墨作為接觸電極製作二碲化鉬之電晶體電子及電洞皆能注入,不須化學摻雜的情況下,透過調控閘極區域,就能在導電通道中選擇性地傳輸電子和電洞,可以減少電路中需要的電晶體數量,從而簡化電路設計。雙極性電晶體能夠在不同極性下工作,使得電路設計具有更高的靈活性和穩定性[1]。
zh_TW
dc.description.abstractTransition metal dichalcogenides (TMDCs) are layered materials held together via weak van der Waals forces. The Bulk crystal can be exfoliated to two-dimensional sheet. The TMDCs material is notable for smooth and no dangling bonds, chemical stability and low carrier scattering. Among TMDCs, molybdenum ditelluride (MoTe2) has the smallest bandgap, enhancing carrier injection for both electrons and holes.
In this study, MoTe2, tungsten diselenide (WSe2), hexagonal boron nitride (hBN), and graphite crystals were prepared through the mechanical exfoliation method by the blue tape. The dual-gate MoTe2 transistor and MoTe2/WSe2 transistor were fabricated with graphite contact electrodes. At room temperature, the MoTe2 transistor exhibited ambipolar behavior. The on/off current ratios of p-channel and n-channel were 7.68×10⁵ and 3.11×10⁵, and the subthreshold swings were 0.82 V/dec and 2.03 V/dec, respectively. At 5 K, the on/off current ratios of p-channel and n-channel increased to 9.94×10⁶ and 9.61×10⁵, and the subthreshold swing decreased to 0.42 V/dec and 1.66 V/dec. This device showed better performance at low temperature, indicating the carrier transport mechanism is phonon scattering-dominated band-like transport.
For the MoTe2/ WSe2 transistor, the on/off current ratio of p-channel and n-channel were 6.28×10⁵ and 1.77×10⁶, and the subthreshold swing were 0.84 V/dec and 2.21 V/dec, respectively at room temperature. At 5 K, the on/off current ratios of p-channel and n-channel are 1.52×104 and 4.95×104, and the subthreshold swings were 1.74 V/dec and 1.02 V/dec. In this device, the carrier transport mechanism is dominated by variable range hopping, which shows better electrical performance at room temperature.
The dominant mechanism in similar materials may be different due to the quality of crystals and defects caused during the fabrication process. Graphite contacts have excellent conductivity and easily to exfoliate, which can reduce the formation of metal-induced gap states compared to three-dimensional metal contacts. In this study, MoTe2 transistors with graphite contacts allowed both electron and hole injection without chemical doping. By controlling the gate region, selective transport of electrons and holes in the channel could be achieved, decreasing the number of transistors in the circuit and simplifying circuit design. Ambipolar transistors can operate under different polarities, offering flexibility and stability in circuit design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-15T16:10:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-15T16:10:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目次 VI
圖次 IX
表次 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 論文架構 5
第二章 理論基礎與文獻回顧 6
2.1 場效電晶體簡介 6
2.1.1 二維場效電晶體之結構 6
2.1.2 二維場效電晶體之特徵參數 8
2.1.3 二維場效電晶體之工作原理 13
2.2 二維材料簡介 14
2.2.1 二碲化鉬 ( Molybdenum ditelluride, MoTe2 ) 14
2.2.2 二硒化鎢 (tungsten diselenide, WSe2 ) 18
2.2.3 石墨 ( graphite ) 19
2.2.4 六方晶氮化硼 (hexagonal boron nitride, hBN ) 20
2.3 二維場效電晶體之文獻探討 22
2.3.1 場效電晶體發展背景 22
2.3.2 二碲化鉬電晶體之雙極性 26
2.3.3 二碲化鉬電晶體之接觸材料選擇 29
2.3.4 二維凡得瓦異質結構 33
第三章 實驗方法與步驟 39
3.1 二維晶體製備 39
3.1.1 乾式轉移 41
3.2 黃光微影製程 43
3.2.1 光學微影 43
3.2.2 電子束微影 45
3.3 薄膜沉積製程 48
3.3.1 射頻磁控濺鍍 48
3.3.2 電子束蒸鍍 50
3.4 打線接合 52
3.4.1 楔型接合 52
3.4.2 球型接合 53
3.4.3 打線接合機 54
3.4.4 銀膠接合 56
3.5 二維電晶體製程 57
3.6 量測與鑑定分析方法 61
3.6.1 電晶體之電性曲線量測 61
3.6.2 溫控系統 64
3.6.3 原子力顯微鏡 65
第四章 結果與討論 67
4.1 二維材料厚度鑑定 67
4.1.1 光學對比度 67
4.1.2 二碲化鉬單層結構電晶體 70
4.1.3 二碲化鉬/二硒化鎢結構電晶體 73
4.2 二碲化鉬之電特性分析 76
4.2.1 二碲化鉬單層結構之電特性分析 76
4.2.2 二碲化鉬/二硒化鎢雙層結構之電特性分析 82
4.3 二碲化鉬電晶體電特性之變溫分析 87
4.3.1 二碲化鉬單層結構電特性之變溫分析 87
4.3.2 二碲化鉬/二硒化鎢雙層結構電特性之變溫分析 92
4.3.3 不同結構之二碲化鉬電晶體特性比較 98
第五章 結論與未來展望 102
5.1 結論 102
5.2 未來展望 104
附錄 106
參考文獻 116
-
dc.language.isozh_TW-
dc.title以石墨為接觸之二維二碲化鉬電晶體研究zh_TW
dc.titleThe Study of 2D Molybdenum Ditelluride Field-Effect Transistors with Graphite Contactsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建彰;李偉立zh_TW
dc.contributor.oralexamcommitteeJian-Zhang Chen;Wei-Lee Lien
dc.subject.keyword過渡金屬硫化物,二碲化鉬,六方晶氮化硼,石墨接觸,場效電晶體,雙極性,zh_TW
dc.subject.keywordTransition metal dichalcogenides (TMDCs),molybdenum ditelluride (MoTe2),hexagonal boron nitride (hBN),graphite contact,field-effect transistor,ambipolar,en
dc.relation.page126-
dc.identifier.doi10.6342/NTU202404498-
dc.rights.note未授權-
dc.date.accepted2024-10-24-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
3.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved