請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96146完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟 | zh_TW |
| dc.contributor.advisor | Guo-Dung J. Su | en |
| dc.contributor.author | 謝宇翔 | zh_TW |
| dc.contributor.author | Yu-Hsiang Hsieh | en |
| dc.date.accessioned | 2024-11-15T16:09:58Z | - |
| dc.date.available | 2024-11-16 | - |
| dc.date.copyright | 2024-11-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-25 | - |
| dc.identifier.citation | [1] J. Xiong, E.-L. Hsiang, Z. He, T. Zhan, and S.-T. Wu, "Augmented reality and virtual reality displays: emerging technologies and future perspectives," Light: Science & Applications, vol. 10, 2021, Art no. 216, doi: 10.1038/s41377-021-00658-8.
[2] B. C. Kress, Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets. Bellingham, WA, USA: SPIE, 2020. [3] D. Cheng, Q. Wang, Y. Liu, H. Chen, D. Ni, X. Wang, C. Yao, Q. Hou, W. Hou, G. Luo, and Y. Wang, "Design and manufacture AR head-mounted displays: A review and outlook," Light: Advanced Manufacturing, vol. 2, 2021, Art no. 24, doi: 10.37188/lam.2021.024. [4] G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richardt, "Near-Eye Display and Tracking Technologies for Virtual and Augmented Reality," Computer Graphics Forum, vol. 38, no. 2, pp. 493-519, 2019, doi: 10.1111/cgf.13654. [5] Y. Li, X. Huang, S. Liu, H. Liang, Y. Ling, and Y. Su, "Metasurfaces for near-eye display applications," Opto-Electronic Science, vol. 2, no. 8, p. 230025, 2023, doi: 10.29026/oes.2023.230025. [6] T. Zhan, K. Yin, J. Xiong, Z. He, and S.-T. Wu, "Augmented Reality and Virtual Reality Displays: Perspectives and Challenges," iScience, vol. 23, no. 8, p. 101397, 2020, doi: 10.1016/j.isci.2020.101397. [7] D. Cheng, Y. Wang, H. Hua, and M. M. Talha, "Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism," Applied Optics, vol. 48, no. 14, pp. 2655-2668, 2009, doi: 10.1364/AO.48.002655. [8] G. Westheimer, "The maxwellian view," Vision Research, vol. 6, no. 11, pp. 669-682, 1966, doi: 10.1016/0042-6989(66)90078-2. [9] A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, "Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources," ACM Transactions on Graphics, vol. 33, no. 4, 2014, Art no. 89, doi: 10.1145/2601097.2601141. [10] Y. Ding, Q. Yang, Y. Li, Z. Yang, Z. Wang, H. Liang, and S.-T. Wu, "Waveguide-based augmented reality displays: perspectives and challenges," eLight, vol. 3, 2023, Art no. 24, doi: 10.1186/s43593-023-00057-z. [11] T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. Huang Chen, W. Guo, H.-C. Kuo, and Z. Chen, "Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology," Applied Sciences, vol. 8, no. 9, p. 1557, 2018, doi: 10.3390/app8091557. [12] Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives," Light: Science & Applications, vol. 9, 2020, Art no. 105, doi: 10.1038/s41377-020-0341-9. [13] E.-L. Hsiang, Q. Yang, Z. He, J. Zou, and S.-T. Wu, "Halo effect in high-dynamic-range mini-LED backlit LCDs," Optics Express, vol. 28, no. 24, pp. 36822-36837, 2020, doi: 10.1364/OE.413133. [14] C.-C. An, M.-H. Wu, Y.-W. Huang, T.-H. Chen, C.-H. Chao, and W.-Y. Yeh, "Study on flip chip assembly of high density micro-LED array," in 2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2011, pp. 336-338, doi: 10.1109/IMPACT.2011.6117235. [15] A. R. Anwar, M. T. Sajjad, M. A. Johar, C. A. Hernández-Gutiérrez, M. Usman, and S. P. Łepkowski, "Recent Progress in Micro-LED-Based Display Technologies," Laser & Photonics Reviews, vol. 16, no. 6, p. 2100427, 2022, doi: 10.1002/lpor.202100427. [16] Y. Wu, J. Ma, P. Su, L. Zhang, and B. Xia, "Full-Color Realization of Micro-LED Displays," Nanomaterials, vol. 10, no. 12, p. 2482, 2020, doi: 10.3390/nano10122482. [17] M. Pan, Y. Fu, M. Zheng, H. Chen, Y. Zang, H. Duan, Q. Li, M. Qiu, and Y. Hu, "Dielectric metalens for miniaturized imaging systems: progress and challenges," Light: Science & Applications, vol. 11, 2022, Art no. 195, doi: 10.1038/s41377-022-00885-7. [18] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces," Nano Letters, vol. 12, no. 12, pp. 6223-6229, 2012, doi: 10.1021/nl3032668. [19] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, vol. 334, no. 6054, pp. 333-337, 2011, doi: 10.1126/science.1210713. [20] M. K. Chen, Y. Wu, L. Feng, Q. Fan, M. Lu, T. Xu, and D. P. Tsai, "Principles, Functions, and Applications of Optical Meta-Lens," Advanced Optical Materials, vol. 9, no. 4, p. 2001414, 2021, doi: 10.1002/adom.202001414. [21] M.-H. Chen, C.-W. Yen, C.-C. Guo, V.-C. Su, C.-H. Kuan, and H. Y. Lin, "Polarization-insensitive GaN metalenses at visible wavelengths," Scientific Reports, vol. 11, 2021, Art no. 14541, doi: 10.1038/s41598-021-94176-7. [22] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, vol. 352, no. 6290, pp. 1190-1194, 2016, doi: 10.1126/science.aaf6644. [23] M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, "Polarization-Insensitive Metalenses at Visible Wavelengths," Nano Letters, vol. 16, no. 11, pp. 7229-7234, 2016, doi: 10.1021/acs.nanolett.6b03626. [24] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Boston, MA, USA: Artech House, 2005. [25] D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, 2nd ed. New York, NY, USA: Wiley-IEEE Press, 2013. [26] J. B. Schneider, Understanding the Finite-Difference Time-Domain Method. 2023. [27] "Understanding Mesh Refinement and Conformal Mesh in FDTD." https://optics.ansys.com/hc/en-us/articles/360034382594-Understanding-Mesh-Refinement-and-Conformal-Mesh-in-FDTD (accessed Jul. 4, 2024). [28] "Far field projections in FDTD overview." https://optics.ansys.com/hc/en-us/articles/360034914713-Far-field-projections-in-FDTD-overview (accessed Jul. 8, 2024). [29] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. New York, NY, USA: McGraw-Hill, 1996. [30] E. Hecht, Optics, 5th ed. Boston, MA, USA: Pearson, 2015. [31] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities," Nano Letters, vol. 12, no. 3, pp. 1702-1706, 2012, doi: 10.1021/nl300204s. [32] N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, "Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 3, 2013, Art no. 4700423, doi: 10.1109/JSTQE.2013.2241399. [33] S.-H. Li, C. Sun, P.-Y. Tang, J.-H. Liao, Y.-H. Hsieh, B.-H. Fung, Y.-H. Fang, W.-H. Kuo, M.-H. Wu, H.-C. Chang, and G.-D. J.Su, "Augmented reality system based on the integration of polarization-independent metalens and micro-LEDs," Optics Express, vol. 32, no. 7, pp. 11463-11473, 2024, doi: 10.1364/OE.517356. [34] R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd ed. New York, NY, USA: McGraw-Hill, 2008. [35] R. Pestourie, C. Pérez-Arancibia, Z. Lin, W. Shin, F. Capasso, and S. G. Johnson, "Inverse design of large-area metasurfaces," Optics Express, vol. 26, no. 26, pp. 33732-33747, 2018, doi: 10.1364/OE.26.033732. [36] C.-Y. Fan, "Metalenses for imaging system applications in visible wavelengths," National Taiwan University, 2020. [37] Y.-K. Wang, "Designing Metasurfaces to Improve Resolution Under Diffraction Environment," National Taiwan University, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96146 | - |
| dc.description.abstract | 近眼顯示器為現今顯示器技術發展之一大趨勢,其在虛擬實境或擴增實境的系統框架下提供了傳統平面顯示器所無法實現之沉浸式觀看體驗。然而,目前所開發出的近眼顯示器存在許多限制,且其龐大的體積影響了使用者的穿戴體驗。本研究首先整理並分析現有的近眼顯示器技術,並提出將微發光二極體顯示器與光束偏折式超穎透鏡陣列結合之近眼顯示器。受益於現今奈微米製程技術之發展,兩元件的結合將使該系統擁有非常薄的厚度。本研究分析並實現了此種陣列式成像系統,同時展示了以超穎透鏡進行影像接合、像素穿插與重疊之可能性。透過此種技術可有效地實現全彩顯示並大幅提高影像之像素密度。本研究透過時域有限差分法及近遠場轉換設計並模擬超穎透鏡,透過光束追跡法所優化出之相位分布將使其能正確並有效地成像並偏折光線至使用者之瞳孔中。實際應用所提出之薄型近眼顯示模組之虛擬實境系統及擴增實境系統擁有極薄的厚度,在實驗上驗證了對陣列式成像原理的理解以及各個成像方案的可行性。本研究亦基於光束追跡法模擬所提出之系統在應用不同的成像方案時,最終所投射出的虛像,並以此進行陣列成像視野分析。模擬結果與實驗結果相符,相互驗證了兩者的正確性。透過未來的改良及實現更完整的系統架構有望使其提供更完善之成像品質。 | zh_TW |
| dc.description.abstract | Near-eye displays (NEDs) have become a major trend in modern display technology, providing an immersive viewing experience in virtual reality (VR) and augmented reality (AR) systems that traditional flat-panel displays (FPDs) cannot achieve. However, current NEDs face many limitations, with their bulky size affecting the user's wearing experience. This research first reviews and analyzes existing NED technologies and proposes an NED that integrates a micro-light-emitting diode (micro-LED) display with a beam-deflecting metalens array. Benefiting from advancements in nanometer-scale fabrication technologies, the combination of these two components allows the system to achieve an ultra-thin form factor. This research analyzes and implements such a multi-channel imaging system, demonstrating the potential of using metalenses for image stitching, pixel interlacing, and pixel overlapping. These imaging schemes effectively achieve full-color displays and significantly enhance image pixel density. The metalens was designed and simulated using the finite-difference time-domain (FDTD) method and near-field to far-field transformation, and the optimized phase distribution through ray tracing enables it to accurately and efficiently form images and deflect light into the user's pupils. When realized experimentally in VR and AR systems, the proposed thin NED module indeed features an excellent form factor, and experimental validation confirms the understanding of multi-channel imaging principles and the feasibility of various imaging schemes. Additionally, based on ray tracing simulations, this research analyzes the field of view (FoV) for multi-channel imaging by simulating the virtual image projected by the system under different imaging schemes. The consistency between simulation and experimental results mutually validates their accuracy. With further improvements and the realization of a more complete system architecture, this technology is expected to provide enhanced image quality. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-15T16:09:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-15T16:09:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌................................................................................................................................... i
摘要.................................................................................................................................. ii ABSTRACT ................................................................................................................... iii CONTENTS .....................................................................................................................v LIST OF FIGURES..................................................................................................... viii LIST OF TABLES.........................................................................................................xx Chapter 1 Introduction..............................................................................................1 1.1 Near-Eye Displays (NEDs).............................................................................1 1.1.1 Representative Optical System Designs of VR and AR Displays ........8 1.2 Micro-LEDs..................................................................................................11 1.3 Metalenses ....................................................................................................17 1.4 Motivation.....................................................................................................21 Chapter 2 Simulation Methods...............................................................................24 2.1 FDTD Method ..............................................................................................25 2.2 Near-Field to Far-Field Transformation .......................................................29 2.3 Ray Tracing Method.....................................................................................34 2.3.1 Generalized Three-Dimensional Snell's Law......................................35 2.3.2 Ray Tracing Scheme of General Phase Masks in Free Space.............40 Chapter 3 Component Design.................................................................................52 3.1 Light Engine: Microdisplays........................................................................52 3.1.1 Microdisplay for VR Device...............................................................53 3.1.2 Microdisplay for AR Device...............................................................54 3.2 Imaging Optics: Metalenses .........................................................................59 3.2.1 Optical Mechanism .............................................................................59 3.2.2 Design Workflow Overview ...............................................................66 3.2.3 Meta-atom Library Construction.........................................................68 3.2.4 Phase Profile Optimization .................................................................75 3.2.5 Full Lens Construction and Simulation...............................................78 3.2.6 Metalenses for RGB Displays.............................................................88 3.2.7 Beam-Deflecting Metalenses ..............................................................94 3.2.8 Fabrication.........................................................................................105 Chapter 4 System Design and Analysis................................................................107 4.1 System Design ............................................................................................108 4.1.1 Multi-channel Imaging......................................................................108 4.1.2 Assembling the Metalens Array........................................................112 4.1.3 Imaging Simulation...........................................................................117 4.1.4 Array Grouping .................................................................................120 4.2 Experiments and Analyses..........................................................................124 4.2.1 FoV and Eyebox................................................................................125 4.2.2 PPD ...................................................................................................139 4.2.3 See-Through Performance ................................................................141 4.2.4 Image Stitching and Pixel Overlapping in VR Display ....................142 4.2.5 Pixel Interlacing in VR and AR Displays.........................................147 Chapter 5 Future Work.........................................................................................163 Chapter 6 Conclusion ............................................................................................164 REFERENCES ............................................................................................................166 | - |
| dc.language.iso | en | - |
| dc.subject | 超穎透鏡陣列 | zh_TW |
| dc.subject | 陣列式成像 | zh_TW |
| dc.subject | 影像接合 | zh_TW |
| dc.subject | 像素穿插 | zh_TW |
| dc.subject | 像素重疊 | zh_TW |
| dc.subject | 微發光二極體 | zh_TW |
| dc.subject | 近眼顯示器 | zh_TW |
| dc.subject | pixel overlapping | en |
| dc.subject | near-eye display | en |
| dc.subject | micro-light-emitting diode | en |
| dc.subject | metalens array | en |
| dc.subject | multi-channel imaging | en |
| dc.subject | image stitching | en |
| dc.subject | pixel interlacing | en |
| dc.title | 利用超穎透鏡陣列實現像素穿插之薄型近眼顯示器 | zh_TW |
| dc.title | Compact Near-Eye Displays Employing Pixel Interlacing by Metalens Arrays | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 樊俊遠;丁健芳 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Yuan Fan;Chien-Fang Ding | en |
| dc.subject.keyword | 近眼顯示器,微發光二極體,超穎透鏡陣列,陣列式成像,影像接合,像素穿插,像素重疊, | zh_TW |
| dc.subject.keyword | near-eye display,micro-light-emitting diode,metalens array,multi-channel imaging,image stitching,pixel interlacing,pixel overlapping, | en |
| dc.relation.page | 170 | - |
| dc.identifier.doi | 10.6342/NTU202404508 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-10-25 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 8.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
