請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞益 | zh_TW |
| dc.contributor.advisor | Ray-I Chang | en |
| dc.contributor.author | 蔡智勇 | zh_TW |
| dc.contributor.author | Chih-Yung Tsai | en |
| dc.date.accessioned | 2024-11-14T16:09:55Z | - |
| dc.date.available | 2024-11-15 | - |
| dc.date.copyright | 2024-11-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-02 | - |
| dc.identifier.citation | 日經中文網。(2023)。全球英語能力排名:日本87名創新低、中國82。Nikkei Chinese News。擷取日期:2024/5/1,from https://zh.cn.nikkei.com/politicsaeconomy/politicsasociety/54082-2023-11-20-11-42-10.html。
李金玲、蘇綉惠(2009)。英語分級教學成效分析-以中區某科技大學為例。新竹教育大學人文社會學報,2,233-254。 陳美伶、楊芝澐(2007)。餐旅專業英語:餐飲篇。台北:華都文化。 鄒靜珊、王康柏、李恆恬(2010)。餐旅專業英語:旅館篇。台北:華都文化。 蔡裕美、鄧琇介、陳奕君、蔡長書、修子恒、楊翼風(2011)。技術學院英文補救教學成效之研究。慈濟大學教育研究學刊,7,47-68。 蔣志楡(2012)。我的第一本餐旅英語課本。台北:我識出版。 薛詩怡(2015)。六星級餐旅英文:餐旅職人必備英語。台北:師德文教出版。 國發會綜合規劃處(2021)。2030雙語國家政策。台灣經濟論衡,19(3),4-13。 自由時報。(2021)。2021英語能力程度揭曉荷蘭衛冕台北輸給北京、河內。Liberty Times。擷取日期:2024/5/1,from https://news.ltn.com.tw/news/world/breakingnews/3743170。 Aldhaheri, T. A., Kulkarni, S. B., & Bhise, P. R. (2024, January). Electroencephalography Reveals Distinct Brain Patterns During Second Language Acquisition in Arabic and Hindi Speakers. In 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI) (pp. 59-66). IEEE. Alkhuraiji, S., Cheetham, B., & Bamasak, O. (2011, July). Dynamic adaptive mechanism in learning management system based on learning styles. In 2011 IEEE 11th International Conference on Advanced Learning Technologies (pp. 215-217). IEEE. Allen, S., Swidler, M., & Keiser, J. (2013). Aligning pedagogy of American business language with marketing students’ preferred learning styles. Procedia-Social and Behavioral Sciences, 70, 1254-1264. Alomoush, O. I. S., & Al-Na’imat, G. K. (2018). English as the lingua franca in visual touristic Jordan: The case of Petra. International Journal of Applied Linguistics and English Literature, 7(4), 1-13. Austin S. (2017). How hard is it to learn English? Retrieved from https://www.mimicmethod.com/hard-learn-english/. Babiloni, F., Mattia, D., Babiloni, C., Astolfi, L., Salinari, S., Basilisco, A., & Cincotti, F. (2004). Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. Magnetic resonance imaging, 22(10), 1471-1476. Bandler, R. & Grinder, J. (1979). Frogs into princes: Neuro-linguisticprogramming. Moab, UT: Real People Press. Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A., & Rushby, J. A. (2007). EEG differences between eyes-closed and eyes-open resting conditions. Clinical neurophysiology, 118(12), 2765-2773. bin Abdul Rashid, N., bin Taib, M. N., bin Lias, S., bin Sulaiman, N., binti Murat, Z., & Samsudin, K. (2013). Summative EEG-based assessment of the relations between learning styles and personality traits of openness. Procedia-Social and Behavioral Sciences, 97, 98-104. Black, M. P., Katsamanis, A., Baucom, B. R., Lee, C. C., Lammert, A. C., Christensen, A., ... & Narayanan, S. S. (2013). Toward automating a human behavioral coding system for married couples’ interactions using speech acoustic features. Speech communication, 55(1), 1-21. Blei, D. M., & Smyth, P. (2017). Science and data science. Proceedings of the National Academy of Sciences, 114(33), 8689-8692. Botes, E., Gottschling, J., Stadler, M., & Greiff, S. (2020). A systematic narrative review of International Posture: What is known and what still needs to be uncovered. System, 90, 102232. Buch, K., & Bartley, S. (2002). Learning style and training delivery mode preference. Journal of workplace learning, 14(1), 5-10. Camacho, J. A., Laverde, A. C., & de Mesa, C. L. (2012). Blended learning and learning styles in university students of the health areas. Revista Cubana de Educación Médica Superior, 26(1), 27-44. Cao, L. (2017). Data science: a comprehensive overview. ACM Computing Surveys (CSUR), 50(3), 1-42. Carvalho, J. C., Pimenta, T. C., Silverio, A. C., Carvalho, M. A., & Carvalho, J. P. C. (2024). A New Data Science Model with Supervised Learning and Its Application on Pesticide Poisoning Diagnosis in Rural Workers. IEEE Access. Cassidy, S. (2006). Learning style and student self‐assessment skill. Education+ Training, 48(2/3), 170-177. Chan, A. M., Halgren, E., Marinkovic, K., & Cash, S. S. (2011). Decoding word and category-specific spatiotemporal representations from MEG and EEG. Neuroimage, 54(4), 3028-3039. Chatzimparmpas, A., Martins, R. M., Kucher, K., & Kerren, A. (2022). Featureenvi: Visual analytics for feature engineering using stepwise selection and semi-automatic extraction approaches. IEEE Transactions on Visualization and Computer Graphics, 28(4), 1773-1791. Chiarello, C., Senehi, J., & Nuding, S. (1987). Semantic priming with abstract and concrete words: Differential asymmetry may be postlexical. Brain and Language, 31(1), 43-60. Clark, J.M. & Paivio, A., (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149-210. https://doi.org/10.1007/BF01320076. Coffield, F., Moseley, D., Hall, E., Ecclestone, K., Coffield, F., Moseley, D., ... & Ecclestone, K. (2004). Learning styles and pedagogy in post-16 learning: A systematic and critical review. Concina, E. (2023). Effective Music Teachers and Effective Music Teaching Today: A Systematic Review. Education Sciences, 13(2), 107. Constantinidou, F., & Baker, S. (2002). Stimulus modality and verbal learning performance in normal aging. Brain and language, 82(3), 296-311. Córdova, F. M., Díaz, M. H., Cifuentes, F., Cañete, L., & Palominos, F. (2015). Identifying problem solving strategies for learning styles in engineering students subjected to intelligence test and EEG monitoring. Procedia Computer Science, 55, 18-27. Cremin, C. J., Dash, S., & Huang, X. (2022). Big data: historic advances and emerging trends in biomedical research. Current Research in Biotechnology, 4, 138-151. Crisan, A., Fiore-Gartland, B., & Tory, M. (2020). Passing the data baton: A retrospective analysis on data science work and workers. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1860-1870. Dallaqua, F. B. J. R., Faria, F. A., & Fazenda, Á. L. (2022). Building data sets for rainforest deforestation detection through a citizen science project. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. https://doi.org/10.1109/LGRS.2020.3032098. De Bruin, L., & Merrick, B. (2023). Creative Pedagogies with Technology: Future proofing teaching training in Music. In Creative provocations: Speculations on the future of creativity, technology & learning (pp. 143-157). Cham: Springer International Publishing. de Diego-Balaguer, R., Fuentemilla, L., & Rodriguez-Fornells, A. (2011). Brain dynamics sustaining rapid rule extraction from speech. Journal of Cognitive Neuroscience, 23(10), 3105-3120. Dekker, S., Lee, N. C., Howard-Jones, P., & Jolles, J. (2012). Neuromyths in education: Prevalence and predictors of misconceptions among teachers. Frontiers in psychology, 3, 33784. DeYoung, C. G., & Gray, J. R. (2009). Personality neuroscience: Explaining individual differences in affect, behaviour and cognition. The Cambridge handbook of personality psychology, 323-346. Dhond, R. P., Witzel, T., Dale, A. M., & Halgren, E. (2007). Spatiotemporal cortical dynamics underlying abstract and concrete word reading. Human brain mapping, 28(4), 355-362. Ding, H., Chen, L., Dong, L., Fu, Z., & Cui, X. (2022). Imbalanced data classification: A KNN and generative adversarial networks-based hybrid approach for intrusion detection. Future Generation Computer Systems, 131, 240-254. Ding, H., Sun, Y., Huang, N., Shen, Z., & Cui, X. (2023a). TMG-GAN: Generative adversarial networks-based imbalanced learning for network intrusion detection. IEEE Transactions on Information Forensics and Security, 19, 1156-1167. Ding, H., Sun, Y., Wang, Z., Huang, N., Shen, Z., & Cui, X. (2023b). RGAN-EL: A GAN and ensemble learning-based hybrid approach for imbalanced data classification. Information Processing & Management, 60(2), 103235. Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics, 26(4), 745-766. Dörnyei, Z. (2014). The psychology of the language learner: Individual differences in second language acquisition. Routledge. Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on ‘sensory-specific’brain regions, neural responses, and judgments. Neuron, 57(1), 11-23. Dunn, R. S., & Dunn, K. J. (1979). Learning Styles/Teaching Styles: Should They.. Can They.. Be Matched?. Educational leadership, 36(4), 238-44. Dunn, R., Beaudry, J. S., & Klavas, A. (1989). Survey of research on learning styles. Educational leadership, 46(6), 50-58. El-Hmoudova, D., & Milkova, E. (2015). Variations and frequencies in learning styles in a group of Czech English as foreign language learners. Procedia-Social and Behavioral Sciences, 182, 60-66. Felder, R. M., & Henriques, E. R. (1995). Learning and teaching styles in foreign and second language education. Foreign language annals, 28(1), 21-31. Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674-681. Feraco, T., Resnati, D., Fregonese, D., Spoto, A., & Meneghetti, C. (2023). An integrated model of school students’ academic achievement and life satisfaction. Linking soft skills, extracurricular activities, self-regulated learning, motivation, and emotions. European Journal of Psychology of Education, 38(1), 109-130. Feyyad, U. M. (1996). Data mining and knowledge discovery: Making sense out of data. IEEE expert, 11(5), 20-25. Fleming, N. D. (2001). Teaching and learning styles: VARK strategies. Neil Fleming. Ford, N., & Chen, S. Y. (2001). Matching/mismatching revisited: An empirical study of learning and teaching styles. British Journal of Educational Technology, 32(1), 5-22. Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological reviews, 91(4), 1357-1392. Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2018). Cognitive Neuroscience: The Biology of the Mind (5th ed.). W.W. Norton & Company. Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in cognitive sciences, 10(6), 278-285. Gualberto, E. S., De Sousa, R. T., Thiago, P. D. B., Da Costa, J. P. C., & Duque, C. G. (2020). From feature engineering and topics models to enhanced prediction rates in phishing detection. Ieee Access, 8, 76368-76385. Habbash, M., Mnasri, S., Alghamdi, M., Alrashidi, M., Tarawneh, A. S., Gumair, A., & Hassanat, A. B. (2024). Recognition of Arabic accents from English spoken speech using deep learning approach. IEEE Access. Hafeez, G., Alimgeer, K. S., Qazi, A. B., Khan, I., Usman, M., Khan, F. A., & Wadud, Z. (2020). A hybrid approach for energy consumption forecasting with a new feature engineering and optimization framework in smart grid. IEEE Access, 8, 96210-96226. Hamel, E., & Kani, N. (2023). Factors That Influence Automatic Recognition of African-American Vernacular English in Machine-Learning Models. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 32, 509-516. Hayes, J., & Allinson, C. W. (1996). The implications of learning styles for training and development: A discussion of the matching hypothesis. British journal of Management, 7(1), 63-73. Hayikaleng, N. (2019). The effects of using dual-coding theory in teaching English reading comprehension among vocational students at Narathiwat Technical College. International Journal of Arts Humanities and Social Sciences Studies, 4(6), 7-12. He, B., & Liu, Z.(2008). Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE reviews in biomedical engineering, 1, 23-40. He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263-1284. Herff, C., de Pesters, A., Heger, D., Brunner, P., Schalk, G., & Schultz, T. (2017). Towards continuous speech recognition for BCI. Brain-Computer Interface Research: A State-of-the-Art Summary 5, 21-29. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature reviews neuroscience, 8(5), 393-402. Höffler, T. N., Prechtl, H., & Nerdel, C. (2010). The influence of visual cognitive style when learning from instructional animations and static pictures. Learning and Individual Differences, 20(5), 479-483. Hung, S. Y., Lee, C. Y., & Lin, Y. L. (2019). Data science for delamination prognosis and online batch learning in semiconductor assembly process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(2), 314-324. Hussain, A., Zahid, A., Ahmed, U., Nazeer, S., Zafar, K., & Baig, A. R. (2024). Time-Series Data to Refined Insights: A Feature Engineering-driven Approach to Gym Exercise Recognition. IEEE Access. Isemonger, I., & Sheppard, C. (2003). Learning styles. Relc Journal, 34(2), 195-222. Jarrett, D., & van der Schaar, M. (2020). Target-embedding autoencoders for supervised representation learning. arXiv preprint arXiv:2001.08345. Jonassen, D. H., & Grabowski, B. L. (1993). Cognitive Controls. Handbook of Individual Differences. Learning, and Instruction, London: Lawrence Erlbaum Associates. Joy, S., & Kolb, D. A. (2009). Are there cultural differences in learning style?. International Journal of intercultural relations, 33(1), 69-85. Kandel, E. R., Koester, J. D., Mack, S. H., Siegelbaum, S. A. (2021). Principles of Neural Science (6th ed.). McGraw-Hill Education. Kanellopoulou, C., Kermanidis, K. L., & Giannakoulopoulos, A. (2019). The dual-coding and multimedia learning theories: Film subtitles as a vocabulary teaching tool. Education Sciences, 9(3), 210. Kang, S., & Ramamohanarao, K. (2014). A robust classifier for imbalanced datasets. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 212-223). Cham: Springer International Publishing. Katai, Z., & Toth, L. (2010). Technologically and artistically enhanced multi-sensory computer-programming education. Teaching and teacher education, 26(2), 244-251. Keefe, J. W. (1979). Learning style: An overview. Student learning styles: Diagnosing and prescribing programs, 1(1), 1-17. Keefe, J., & Jenkins, J. (1996). Instruction and the learning environment (1st ed.). Routledge. Kelleher, J. D., & Tierney, B. (2018). Data science. MIT press. Kepinska, O., Pereda, E., Caspers, J., & Schiller, N. O. (2017). Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities. Brain and Language, 175, 99-110. Khan, P. W., & Byun, Y. C. (2020). Genetic algorithm based optimized feature engineering and hybrid machine learning for effective energy consumption prediction. Ieee Access, 8, 196274-196286. Khateb, A., Pegna, A. J., Michel, C. M., Mouthon, M., & Annoni, J. M. (2016). Semantic relatedness and first-second language effects in the bilingual brain: a brain mapping study. Bilingualism: Language and Cognition, 19(2), 311-330. Kim, M., & Sankey, D. (2018). Philosophy, neuroscience and pre-service teachers’ beliefs in neuromyths: A call for remedial action. Educational philosophy and theory, 50(13), 1214-1227. Kim, R. S., Seitz, A. R., & Shams, L. (2008). Benefits of stimulus congruency for multisensory facilitation of visual learning. PLoS One, 3(1), e1532. Kinsella, K. (1995). Perceptual learning preferences survey. Learning styles in the ESL/EFL classroom, 221-238. Kirik, S., Dogan, S., Baygin, M., Barua, P. D., Demir, C. F., Keles, T., & Acharya, U. R. (2023). FGPat18: Feynman graph pattern-based language detection model using EEG signals. Biomedical Signal Processing and Control, 85, 104927. Kirschner, P. A., & van Merriënboer, J. J. G. (2013). Do learners really know best? Urban legends in education. Educational Psychologist, 48(3), 169-183. Kolb, D. A. (1976). Learning style technical manual. Boston: Mcber andCompany. Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall. Kounios, J., & Holcomb, P. J. (1994). Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(4), 804. Kozhevnikov, M., Hegarty, M., & Mayer, R. E. (2002). Revising the visualizer/verbalizer dimension: evidence for two types of visualizers. Cognition & instruction, 20, 47-77. Lee, C. S., Wang, M. H., Tsai, Y. L., Ko, L. W., Tsai, B. Y., Hung, P. H., ... & Kubota, N. (2020). Intelligent agent for real-world applications on robotic edutainment and humanized co-learning. Journal of Ambient Intelligence and Humanized Computing, 11, 3121-3139. Lei, L., & Wang, H. (2023). A Multilabel Learning-based Automatic Annotation Method for Semantic Roles in English Text. IEEE Access. Leisman, G., & Ashkenazi, M. (1980). Aetiological factors in dyslexia: IV. Cerebral hemispheres are functionally equivalent. International Journal of Neuroscience, 11(3), 157-164. Li, D., Li, W., Zhao, Y., & Liu, X. (2024). The Analysis of Deep Learning Recurrent Neural Network in English Grading Under the Internet of Things. IEEE Access. Li, F. W., Lau, R. W., & Dharmendran, P. (2010). An adaptive course generation framework. International Journal of Distance Education Technologies (IJDET), 8(3), 47-64. Li, G., Hu, Y., Liu, J., Fang, X., & Kang, J. (2020). Review on fault detection and diagnosis feature engineering in building heating, ventilation, air conditioning and refrigeration systems. IEEE Access, 9, 2153-2187. Li, W., Fan, L., Wang, Z., Ma, C., & Cui, X. (2021). Tackling mode collapse in multi-generator GANs with orthogonal vectors. Pattern Recognition, 110, 107646. Lin, C. T., King, J. T., John, A. R., Huang, K. C., Cao, Z., & Wang, Y. K. (2021). The impact of vigorous cycling exercise on visual attention: a study with the BR8 wireless dry EEG system. Frontiers in neuroscience, 15, 621365. Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A data mining perspective (Vol. 453). Springer Science & Business Media. Liu, Y. T., & Todd, A. G. (2014). Dual‐modality input in repeated reading for foreign language learners with different learning styles. Foreign Language Annals, 47(4), 684-706. Liu, Y., Wang, J., Zhao, P., Qin, D., & Chen, Z. (2019). Research on classification and recognition of driving styles based on feature engineering. IEEE Access, 7, 89245-89255. Liu, Z., Ding, L., & He, B.(2006). Integration of EEG/MEG with MRI and fMRI in functional neuroimaging. IEEE Engineering in Medicine and Biology Magazine, 25(4), 46-53. https://doi.org/10.1109/memb.2006.1657787 Lovelace, M. K. (2005). Meta-analysis of experimental research based on the Dunn and Dunn model. The Journal of Educational Research, 98(3), 176-183. Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press. Marosi, E., Harmony, T., Becker, J., Reyes, A., Bernal, J., Fernández, T., & Guerrero, V. (1995). Electroencephalographic coherences discriminate between children with different pedagogical evaluation. International Journal of Psychophysiology, 19(1), 23-32. Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., .. & Flach, P. (2019). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE transactions on knowledge and data engineering, 33(8), 3048-3061. Massa, L. J., & Mayer, R. E. (2006). Testing the ATI hypothesis: Should multimedia instruction accommodate verbalizer-visualizer cognitive style? Learning and Individual Differences, 16(4), 321-335. Mayer, R. E., Heiser, J., & Lonn, S. (2001). Cognitive constraints on multimedia learning: When presenting more material results in less understanding. Journal of educational psychology, 93(1), 187-198. McMurray, B., Sarrett, M. E., Chiu, S., Black, A. K., Wang, A., Canale, R., & Aslin, R. N. (2022). Decoding the temporal dynamics of spoken word and nonword processing from EEG. NeuroImage, 260, 119457. Mehigan, T. J., Barry, M., Kehoe, A., & Pitt, I. (2011). Using eye tracking technology to identify visual and verbal learners. Paper presented at the In Proceedings of the 2011 IEEE international conference on multimedia and expo (ICME). Miller, P. (2001). Learning Styles: The Multimedia of the Mind. Research Report. Montgomery, S. M. (1995, November). Addressing diverse learning styles through the use of multimedia. In Proceedings Frontiers in Education 1995 25th Annual Conference. Engineering Education for the 21st Century (Vol. 1, pp. 3a2-13). IEEE. Mulatu, E., & Regassa, T. (2022). Teaching reading skills in EFL classes: Practice and procedures teachers use to help learners with low reading skills. Cogent Education, 9(1), 2093493. Naserieh, F., & Sarab, M. R. A. (2013). Perceptual learning style preferences among Iranian graduate students. System, 41(1), 122-133. Nation, I. S. P. (2008). Teaching ESL/EFL reading and writing. Routledge. Newton, P. M., & Salvi, A. (2020). How common is belief in the learning styles neuromyth, and does it matter? A pragmatic systematic review. Frontiers in Education, 5, 602451. Frontiers. Oxford, R. L. (1993). Style Analysis Survey (SAS). Retrieved October 1, 2022, from http://gordonintensive2012-13.yolasite.com/resources/Oxford%20Style%20Analysis.pdf Oxford, R. L., & Anderson, N. J. (1995). A crosscultural view of learning styles. Language teaching, 28(4), 201-215. Ozsert Yigit, G., & Baransel, C. (2023). A Novel Autoencoder-Based Feature Selection Method for Drug-Target Interaction Prediction with Human-Interpretable Feature Weights. Symmetry, 15(1), 192. Paivio, A. (1971). Imagery and verbal processes. Holt, Rinehart and Winston. https://doi.org/10.4324/9781315798868. Paivio, A. (1986). Mental representations: A dual‐coding approach. New York: Oxford University Press. Paivio, A. (2014). Mind and its evolution: A dual coding theoretical approach. Psychology press. Paivio, A., & Lambert, W. E. (1981). Dual coding and bilingual memory. Journal of Verbal Learning and Verbal Behavior, 20, 532–539. http://dx.doi.org/10.1016/S0022-5371(81)90156-0 Paivio, A., Clark, J., & Lambert, W. (1988). Bilingual dual-coding theory and semantic repetition effects on recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 163–172. Peacock, M. (2001). Match or mismatch? Learning styles and teaching styles in EFL. International journal of applied linguistics, 11(1), 1-20. Plass, J. L., Chun, D. M., Mayer, R. E., & Leutner, D. (1998). Supporting visual and verbal learning preferences in a second-language multimedia learning environment. Journal of educational psychology, 90(1), 25. Polat, K., & Koc, K. O. (2020). Detection of skin diseases from dermoscopy image using the combination of convolutional neural network and one-versus-all. Journal of Artificial Intelligence and Systems, 2(1), 80-97. Prat, C. S., Yamasaki, B. L., Kluender, R. A., & Stocco, A. (2016). Resting-state qEEG predicts rate of second language learning in adults. Brain and language, 157, 44-50. Punmiya, R., & Choe, S. (2019). Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Transactions on Smart Grid, 10(2), 2326-2329. Rashid, N. A., Taib, M. N., Lias, S., Sulaiman, N., Murat, Z. H., & Kadir, R. S. S. A. (2011). Learners’ Learning Style Classification related to IQ and Stress based on EEG. Procedia-Social and Behavioral Sciences, 29, 1061-1070. Reid, J. M. (1984). Perceptual learning style preference questionnaire. Learning styles in the ESL/EFL classroom, 202-204. Reid, J. M. (1987). The learning style preferences of ESL students. TESOL quarterly, 21(1), 87-111. Reiterer, S., Pereda, E., & Bhattacharya, J. (2009). Measuring second language proficiency with EEG synchronization: how functional cortical networks and hemispheric involvement differ as a function of proficiency level in second language speakers. Second Language Research, 25(1), 77-106. Reiterer, S., Pereda, E., & Bhattacharya, J. (2011). On a possible relationship between linguistic expertise and EEG gamma band phase synchrony. Frontiers in psychology, 2, 334. Riazi, A., & Mansoorian, M. A. (2008). Learning style preferences among Iranian male and female EFL students. The Iranian EFL Journal, 2, 88-100. Riding, R. J., & Cheema, I. (1991). Cognitive styles—An overview and integration. Educational Psychology, 11(3), 193-215. Riding, R., & Douglas, G. (1993). The effect of cognitive style and mode of presentation on learning performance. British Journal of Educational Psychology, 63(2), 297-307. Rizzolatti, G., Umiltà, C., & Berlucchi, G. (1971). Opposite superiorities of the right and left cerbral hemispheres in discriminative reaction time to physiognomical and alphabetical material. Brain: A Journal of Neurology. Rogowsky, B. A., Calhoun, B. M., & Tallal, P. (2015). Matching learning style to instructional method: Effects on comprehension. Journal of educational psychology, 107(1), 64. Rohrer, D., & Pashler, H. (2012). Learning Styles: Where's the Evidence?. Online Submission, 46(7), 634-635. Rossi-Le, L. A. (1989). Perceptual learning style preferences and their relationship to language learning strategies in adult students of English as a second language. Drake University. Sadler-Smith, E., & Riding, R. (1999). Cognitive style and instructional preferences. Instructional science, 27(5), 355-371. Saltz, J. S., & Krasteva, I. (2022). Current approaches for executing big data science projects—a systematic literature review. PeerJ Computer Science, 8, e862. Sarmiento, L. C., Villamizar, S., López, O., Collazos, A. C., Sarmiento, J., & Rodríguez, J. B. (2021). Recognition of EEG signals from imagined vowels using deep learning methods. Sensors, 21(19), 6503. Schuyten, G., & Dekeyser, H. M. (2007). Preference for textual information and acting on support devices in multiple representations in a computer based learning environment for statistics. Computers in Human Behavior, 23(5), 2285-2301. Shang, W., Men, H., & Du, X. (2023). Machine Learning Models: A Study of English Essay Text Content Feature Extraction and Automatic Scoring. Journal of ICT Standardization, 11(4), 379-390. Sharbrough, F. C. G. E.(1991). American Electroencephalographic Society guidelines for standard electrode position nomenclature. Clin Neurophysiol, 8, 200-202. Shiota, M., Koeda, T., & Takeshita, K. (2000). Cognitive and neurophysiological evaluation of Japanese dyslexia. Brain and Development, 22(7), 421-426. Silva, C., Saraee, M., & Saraee, M. (2019, June). Data science in public mental health: a new analytic framework. In 2019 IEEE Symposium on Computers and Communications (ISCC)(pp. 1123-1128). IEEE. Sklar, B., Hanley, J., & Simmons, W. W. (1972). An EEG experiment aimed toward identifying dyslexic children. Nature, 240(5381), 414-416. Soman, A., Madhavan, C. R., Sarkar, K., & Ganapathy, S. (2019). An EEG study on the brain representations in language learning. Biomedical Physics & Engineering Express, 5(2), 025041. Springer, S. L., & Deutsch, G. (2000). Left brain, right brain: Perspectives from cognitive neuroscience. JOP, 14, 1. Srijongjai, A. (2011). Learning styles of language learners in an EFL writing class. Procedia-Social and Behavioral Sciences, 29, 1555-1560. Stebbins, C. (1993). Culture specific perceptual learning style preferences of postsecondary students of English as a second language. University of Wyoming. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. MIT Press. Sudaryat, Y., Nurhadı, J., & Rahma, R. (2019). Spectral topographic brain mapping in EEG recording for detecting reading attention in various science books. Journal of Turkish Science Education, 16(3), 440-450. Teplan, M. (2002). Fundamentals of EEG measurement. Measurement science review, 2(2), 1-11. Thomas, P. R., & McKay, J. B. (2010). Cognitive styles and instructional design in university learning. Learning and Individual Differences, 20(3), 197-202. Tsianos, N., Germanakos, P., Lekkas, Z., Mourlas, C., & Samaras, G. (2009). Eye-tracking users' behavior in relation to cognitive style within an e-learning environment. Paper presented at the In Proceedings of the ninth IEEE international conference onadvanced learning technologies (icalt 2009). Wang, C. M. (1992). A study of English major students’ learning styles in China. The Psychology of Chinese Learners of English. Hunan Education Press, Changsha, pp. 72e89 (Chinese version). Wang, L., Huynh, D. Q., & Mansour, M. R. (2019, September). Loss switching fusion with similarity search for video classification. In 2019 IEEE international conference on image processing (ICIP) (pp. 974-978). IEEE. Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological reviews, 90(3), 1195-1268. Weiss, S., & Mueller, H. M. (2003). The contribution of EEG coherence to the investigation of language. Brain and language, 85(2), 325-343. West, W. C., & Holcomb, P. J. (2000). Imaginal, semantic, and surface-level processing of concrete and abstract words: an electrophysiological investigation. Journal of Cognitive Neuroscience, 12(6), 1024-1037. Whiteley, S. (2004). Memletics Accelerated Learning Manual. Advanogy Publishing. Wintergerst, A. C., & DeCapua, A. (1998). Exploring learning styles of Russian ESL students. In 32nd Annual TESOL Convention, Seattle, WA. Wintergerst, A., & DeCapua, A. N. D. R. E. A. (2001). Exploring the learning styles of Russian-speaking students of English as a second language. The CATESOL Journal, 13(1), 23-46. Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining (Vol. 1, pp. 29-39). Wong, B., Yin, B., & O’Brien, B. (2016). Neurolinguistics: Structure, function, and connectivity in the bilingual brain. BioMed research international, 2016(1), 7069274. Wong, H. M., Chen, X., Tam, H. H., Lin, J., Zhang, S., Yan, S., & Wong, K. C. (2021). Feature selection and feature extraction: highlights. In Proceedings of the 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence (pp. 49-53). Wu, S., Liu, D., & Li, Z. (2022). Consolidating EFL content and vocabulary learning via interactive reading. International Review of Applied Linguistics in Language Teaching, (0). Yamao, S., & Sekiguchi, T. (2015). Employee commitment to corporate globalization: The role of English language proficiency and human resource practices. Journal of World Business, 50(1), 168-179. Yang, Y. T. C., Chen, Y. C., & Hung, H. T. (2022). Digital storytelling as an interdisciplinary project to improve students’ English speaking and creative thinking. Computer Assisted Language Learning, 35(4), 840-862. Yoshimura, N., Nishimoto, A., Belkacem, A. N., Shin, D., Kambara, H., Hanakawa, T., & Koike, Y. (2016). Decoding of covert vowel articulation using electroencephalography cortical currents. Frontiers in neuroscience, 10, 175. Yotta, E. G. (2023). Accommodating students' learning styles differences in English language classroom. Heliyon, 9(6). Zare, M., Rezvani, Z., & Benasich, A. A. (2016). Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine. Clinical Neurophysiology, 127(7), 2695-2703. Zdravevski, E., Lameski, P., Trajkovik, V., Kulakov, A., Chorbev, I., Goleva, R., ... & Garcia, N. (2017). Improving activity recognition accuracy in ambient-assisted living systems by automated feature engineering. Ieee Access, 5, 5262-5280. Zhang, B., Chai, C., Yin, Z., & Shi, Y. (2021a). Design and implementation of an EEG-based learning-style recognition mechanism. Brain Sciences, 11(5), 613. Zhang, B., Shi, Y., Hou, L., Yin, Z., & Chai, C. (2021b). TSMG: a deep learning framework for recognizing human learning style using EEG signals. Brain Sciences, 11(11), 1397. Zhang, W., Dong, X., Li, H., Xu, J., & Wang, D. (2020). Unsupervised detection of abnormal electricity consumption behavior based on feature engineering. Ieee Access, 8, 55483-55500. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96131 | - |
| dc.description.abstract | 由於腦波儀設備的科技進步,採用腦電波方式探討語言學習的研究逐漸增加,但對於英語(第二語言)不同的學習教材刺激,採用腦電波訊號作為學習歷程,並進一步採用機器學習預測學習狀態研究甚少。為此,本研究建置特徵導向資料科學模式(Feature-oriented data science model,FDSM),其主要將特徵工程技術嵌入資料科學,將腦電波的特徵訊號與英文學習表現進行分析。
FDSM包括四個階段:第一,資料選擇階段:本研究設計實驗蒐集資料,一共有徵求100位(男女各半)受試者。每位受試者進行教材(閱讀、聽力、視聽)*四個單元,一共是12次實驗。過程中進行腦電波蒐集。第二,資料預處理階段:刪除15位受試者腦電波雜訊,採用過抽樣與生成網路模擬解決學習表現不平衡資料。第三,特徵學習階段:資料直接進行機器學習或者先進行特徵篩選,接著特徵創建,最後進行特徵萃取。第四,解釋評估階段:根據結果提出相關建議。 本研究總共有五項結果:第一,英文整體學習歷程偏向聽覺與動覺感官學習風格;在英文研讀當下則是偏向視覺與動覺感官學習風格;對於英文訊息在接收與處理則又偏向視覺/非語言感官學習風格;第二,感官學習風格與學習成效關係:閱讀教材學習表現與團隊、視覺/觸覺-正向的影響。聽力教材學習表現與動覺、聽覺正向的影響。視聽教材學習表現與聽覺、視覺正向的影響。第三,腦電波與學習表現相關:三種教材刺激下,高分群與低分群,在額葉、中央區、頂葉、枕葉區,產生不同的結果。這些結果作為感官接收與處理的狀態的差異比較。第四,腦電波預測學習成效:閱讀教材正確率76%、聽力教材正確率63%、視聽教材正確率62%,特徵萃取後降至59%。第五,腦電波或感知學習風格量表分別預測七種合適教材,量表正確率70%,腦電波正確率100%。 根據上述結果,本研究針對英語學習提出相關學習策略建議外,FDSM系統作為腦電波作為預測學生學習狀態與教材合適度將不失為一套實用工具。 | zh_TW |
| dc.description.abstract | With advances in EEG technology, research using EEG to study language learning has steadily increased. However, few studies have leveraged EEG signals to analyze the learning process in response to stimuli from different English (second language) learning materials and applied machine learning to predict learning outcomes. This study established a Feature-oriented Data Science Model (FDSM), which primarily embeds feature engineering techniques into data science to analyze EEG signals and English learning performance.
The FDSM includes four stages: (1) Data Selection Stage: This study designed an experiment to collect data, recruiting a total of 100 subjects (50 males and 50 females). Each subject participated in four units of teaching materials (reading, listening, and audio-visual), conducting a total of 12 experiments. EEG data were collected throughout the process. (2) Data Preprocessing Stage: EEG noise from 15 subjects was removed, and SMOTE oversampling and GAN simulation were used to address the imbalanced learning performance data. (3) Feature Learning Stage: The data were either directly subjected to machine learning or first underwent feature screening, followed by feature creation and feature extraction. (4) Interpretation and Evaluation Stage: Based on the results, relevant recommendations were made. This study produced five key findings: (1) The overall English learning process is more inclined towards auditory and kinesthetic learning styles. However, when studying English, it shifts towards visual and kinesthetic learning styles. For receiving and processing English information, there is a preference for a visual/non-verbal learning style. (2) Relationship Between Sensory Learning Style and Learning Effectiveness: Learning performance in reading textbooks is positively impacted by visual and tactile learning styles. Listening materials positively impact learning performance in kinesthetic and auditory learners, while audio-visual materials positively impact performance related to both auditory and visual senses. (3) EEG are linked to learning performance: under stimulation from the three types of learning materials, the high-scoring and low-scoring groups exhibited different brainwave activity in the frontal lobe, central region, parietal lobe, and occipital lobe. These results highlight the differences in sensory reception and processing states between the two groups. (4) EEG Prediction of Learning Outcomes: The accuracy of predicting learning outcomes was 76% for reading textbooks, 63% for listening-based textbooks, and 62% for audiovisual textbooks. After feature extraction, the accuracy dropped to 59%. (5) Predicting suitable teaching materials using EEG or perceptual learning style scales: the sensory learning style scale achieved a 70% accuracy rate, while EEG data reached 100% accuracy in predicting suitable teaching materials. Based on these findings, this study provides relevant learning strategy recommendations for English learning. The FDSM system, integrating EEG analysis, will be a practical tool for predicting students' learning status and the suitability of teaching materials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-14T16:09:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-14T16:09:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 第一章 前言 1 第一節 研究背景與動機 1 第二節 研究目的 8 第二章 文獻探討 9 第一節 雙重編碼理論 9 第二節 感知學習風格 12 第三節 語言學習感官訊號 14 第四節 資料科學模型 18 第五節 特徵工程 24 第三章 研究設計 28 第一節 系統架構 28 第二節 英語學習實驗設計 30 第三節 學習成效預測設計 37 第四節 教材適合度設計 44 第四章 資料分析 46 第一節 敘述統計分析- 46 第二節 感知學習風格與學習成效 49 第二節 腦電波與學習表現 51 第三節 學習表現預測 61 第四節 教材適合度預測 69 第五章 結論 74 第一節 結果與實務建議 74 第二節 後續研究建議 80 參考文獻 83 附件 100 附件一:PERCEPTUAL LEARNING STYLE PREFERENCE QUESTIONNAIRE 100 附件二:STYLE ANALYSIS SURVEY 101 附件三:PERCEPTUAL LEARNING PREFERENCE 102 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 使用腦電波訊號預測英文學習狀態 | zh_TW |
| dc.title | Using Electroencephalography (EEG)to predict English learning outcomes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 張恆華;尹邦嚴;張信宏;魏廉臻 | zh_TW |
| dc.contributor.oralexamcommittee | Herng-Hua Chang;Peng-Yeng Yin;Shin-Hung Chang;Tsao-Ta Wei | en |
| dc.subject.keyword | 感知學習風格,英文教材,腦電波,非母語英語教學, | zh_TW |
| dc.subject.keyword | Perceptual learning style,English teaching materials,EEG,EFL, | en |
| dc.relation.page | 102 | - |
| dc.identifier.doi | 10.6342/NTU202404437 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-10-03 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2029-10-01 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 3.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
