Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96115
標題: 數據驅動的高擬真度自動駕駛系統測試情境生成
Data-Driven High-Fidelity Testing Scenario Generation for Automated Driving System
作者: 鄭閔
Min Cheng
指導教授: 李綱
Kang Li
關鍵字: 自動駕駛系統,生成情境,車輛行為篩選,OpenSCENARIO 格式,數據驅動,
Automated Driving System,Scenario Generation,Vehicle Maneuver Filtering,OpenSCENARIO Format,Data-Driven,
出版年 : 2024
學位: 碩士
摘要: 本研究針對自動駕駛系統(Automated Driving System, ADS)的測試,提出了一套從真實世界資料中提取有用資訊,轉化為測試情境,並建立模擬平臺的方法。流程包括數據預處理、車輛行為篩選、車輛行為資料分析和情境模擬呈現等步驟。這種方法不僅能彌補文獻中使用速度定值產生測試情境的限制,而且具有通用性,可適用於不同地區。考慮到車輛行為的複雜程度,本研究以車輛跟隨和車道變換作為示範,分別使用簡單篩選和深度學習的方式提取資料集中特定的車輛行為。在資料分析階段,能獲取不同地區的參數範圍,有助於生成具覆蓋性或專注於單一速度區間的測試情境。這些分析結果有助於更全面地瞭解並針對不同地區進行更準確的情境生成。情境模擬則結合OpenSCENARIO 格式,實現在不同測試軟體間的兼容性並提高情境測試的效率。總的來說,本研究結合數據驅動,提供了一個完整的情境生成流程,有望朝著高擬真度測試情境的方向發展,透過測試情境找出ADS 的缺陷和潛在風險。
This study proposes a methodology for testing Automated Driving Systems (ADS) by extracting useful information from real-world data, converting it into test scenarios, and applying it to a simulation platform. The process includes data preprocessing, vehicle maneuver filtering, vehicle maneuver data analysis, and scenario simulation presentation.This approach not only addresses the limitations of regulatory testing scenarios generated with constant speeds but also offers general applicability to different regions. Considering the complexity of vehicle maneuvers, this study demonstrates vehicle following and lane changing maneuvers by using simple filtering and deep learning methods to extract specific vehicle maneuvers from the dataset. During the data analysis phase, obtaining parameter ranges from different regions helps in generating test scenarios that are either comprehensive or focused on a single speed range. These analytical results contribute to a more thorough understanding and accurate scenario generation for different regions.The scenario simulation integrates the OpenSCENARIO format, ensuring compatibility across different testing software and enhancing the efficiency of scenario testing. Overall, this study combines data-driven approaches to provide a complete scenario generation process, aiming towards high fidelity testing scenario.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96115
DOI: 10.6342/NTU202403720
全文授權: 同意授權(全球公開)
電子全文公開日期: 2029-08-06
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-06
6.28 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved