請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96102
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳瑞北 | zh_TW |
dc.contributor.advisor | Ruey-Beei Wu | en |
dc.contributor.author | 林冠佑 | zh_TW |
dc.contributor.author | Guan-Yo Lin | en |
dc.date.accessioned | 2024-10-15T16:04:46Z | - |
dc.date.available | 2024-11-20 | - |
dc.date.copyright | 2024-10-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-10-01 | - |
dc.identifier.citation | [1] S. Shahparnia and O. M. Ramahi, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Trans.Electromagn. Compat, vol. 46, no. 4, pp. 580-587, 2004.
[2] M. Kaur, S. Kakar, and D. Mandal, "Electromagnetic interference," in 2011 3rd IEEE Int. Conf. Electron. Computer Technol.vol. 4:, pp. 1-5.2011. [3] M. I Montrose, "Printed Circuit Board Design Techniques for EMC Compliance Handbook for Designers.,"Wiley,2000.Chapter 1. [4] D. Ahn, J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 86-93, 2001. [5] T.-L. Wu, Y.-H. Lin, T.-K. Wang, C.-C. Wang, and S.-T. Chen, "Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits," IEEE Trans. Microw.Theory Tech., vol. 53, no. 9, pp. 2935-2942, 2005. [6] C.-H. Huang and T.-L. Wu, "Analytical design of via lattice for ground planes noise suppression and application on embedded planar EBG structures," IEEE Trans.Compon.,Packag.anuf.Technol., vol. 3, no. 1, pp. 21-30, 2012. [7] T.-L. Wu, C.-C. Wang, Y.-H. Lin, T.-K. Wang, and G. Chang, "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits," IEEE Microw. Wireless Compon. Lett., vol. 15, no. 3, pp. 174-176, 2005. [8] C.-C. Tsai, Y.-S. Cheng, T.-Y. Huang, Y. A. Hsu, and R.-B. Wu, "Design of microstrip-to-microstrip via transition in multilayered LTCC for frequencies up to 67 GHz," IEEE Trans.Compon., Packag. Manuf. Technol., vol. 1, no. 4, pp. 595-601, 2011. [9] Y.-J. Kim, H.-S. Yoon, S. Lee, G. Moon, J. Kim, and J.-K. Wee, "An efficient path-based equivalent circuit model for design, synthesis, and optimization of power distribution networks in multilayer printed circuit boards," IEEE Trans. Adv. Packag., vol. 27, no. 1, pp. 97-106, 2004. [10] J. Choi, S. Chun, N. Na, M. Swaminathan, and L. Smith, "A methodology for the placement and optimization of decoupling capacitors for gigahertz systems [CMOS VLSI]," in IEEE VLSI Design 2000. Wireless Digital Imaging Millennium. Proc. 13th Int. Conf. VLSI Design, pp. 156-161, 2000 [11] C.-T. Wu and R.-B. Wu, "Two-dimensional finite-difference time-domain method combined with open boundary for signal integrity issues between isolation islands," in 2002 IEEE 11th Topical Meeting Electr. Perform.Electron. Packaging, pp. 283-286, 2002 [12] M. Xu and T. H. Hubing, "Estimating the power bus impedance of printed circuit boards with embedded capacitance," IEEE Trans. Adv.Packag., vol. 25, no. 3, pp. 424-432, 2002. [13] J. M. Hobbs et al., "Simultaneous switching noise suppression for high speed systems using embedded decoupling," in 2001 IEEE 51st Electron.Compon. Technol.Conf. (Cat. No. 01CH37220), pp. 339-343, 2001. [14] R. B. Marks, "A multiline method of network analyzer calibration," IEEE Trans. Microw.Theory Tech., vol. 39, no. 7, pp. 1205-1215, 1991. [15] D.M.Pozar, Microwave Engineering. Massachusetts,USA: Wiley. [16] 王鈺光,對稱單位元電磁能隙理論與連通柱菊花鍊之應用,國立台灣大學碩士論文,2022年10月 [17] C.-L. Wang, G.-H. Shiue, and R.-B. Wu, "EBG-enhanced split power planes for wideband noise suppression," in IEEE 14th Topical Meet. Electr. Perform. Electr. Packag, pp. 61-64, 2005. [18] 黃建彰,中華民國專利之公報公告編號: I747750,「雙面探針量測校正結構與校正方法」,2021年11月 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96102 | - |
dc.description.abstract | 將傳統雷達板的IC晶片和天線放置於印刷電路板(PCB)的不同側,並利用同軸過孔進行連接,可以減少兩者之間的耦合干擾,然而50歐姆同軸過孔在毫米波雷達應用上間距過大。為減少間距,本文研發低阻抗同軸過孔來改善,並在不連續性處做設計來補償阻抗不匹配的問題。設計後同軸過孔的間距降低了23%,從原先的1.3毫米降至1毫米,降低了一倍不連續區域之厚度,約為天線操作頻率62 GHz對應之1/10波長。同時,在不連續區域採用了蕈狀電磁能隙設計,可解決天線發射端和接收端之間的隔離問題。止帶出現在50-90 GHz,頻寬約57%。
在量測同軸過孔時,受到探針物理尺寸的限制,需要在同軸過孔旁引入一段傳輸線,並透過校正的方式去扣除傳輸線效應。然而校正方式如TRL,需要大量的校正件來計算傳輸線的效應並進行扣除。本論文提出了一種基於多重反射概念的校正方式,只需要一個校正件就可以計算出同軸過孔的電氣特性。模擬結果顯示在待測物後方接上一段約14.5mm的傳輸線,並利用此種校正方式推估之待測物特性與直接模擬待測物獲得之電氣特性一致。此外在量測結果對於反射大於 -20 dB的頻段,該方法與 UTRL 校正後之結果趨勢一致,可有效計算出同軸過孔的電氣特性,驗證該方法的有效性。 | zh_TW |
dc.description.abstract | Placing IC chips and antennas on separate sides of a PCB and connecting them with coaxial vias reduces interference. In millimeter-wave radar applications, however, the spacing between 50-ohm coaxial vias can become problematic. To address this, we developed low-impedance coaxial vias and incorporated discontinuities to handle impedance mismatches. These adjustments reduced via spacing by 23%, from 1.3 mm to 1 mm, and halved the thickness of the discontinuity region, roughly 1/10 wavelength at 62 GHz. Additionally, a mushroom-shaped electromagnetic bandgap in the discontinuity improved isolation between transmit and receive ends of the antenna, creating a stopband from 50 to 90 GHz with a 57% bandwidth.
During measurements, physical probe size limitations required a transmission line segment next to the coaxial via, with corrections made for its effects using calibration methods like TRL. We propose a new calibration method based on multiple reflections, using just one standard to determine coaxial via characteristics. Simulation showed this method accurately estimates characteristics with a 14.5 mm transmission line segment, consistent with direct electrical simulations. For bands where reflections exceeded -20 dB, results aligned with those corrected by UTRL, confirming the coaxial via's electrical properties and validating our approach. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-15T16:04:46Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-10-15T16:04:46Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 vii 表次 x Chapter 1 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 重要貢獻 4 1.4 章節概述 5 Chapter 2 同軸過孔間距縮小化設計 6 2.1 天線雷達板電路佈局 6 2.2 天線雷達板疊構 6 2.3 製程能力極限及縮小化策略 7 2.4 電氣參數與頻寬的關係 9 2.5 等效電路實現化 13 2.6 低阻抗同軸過孔設計 20 Chapter 3 應用於同軸過孔間之電磁能隙 27 3.1 尺寸限制 27 3.2 色散圖 28 3.3 螺旋狀電磁能隙結構 31 3.4 弗洛凱理論 (Floquet Theorem) 32 3.5 L、C共振頻率對頻寬的影響 34 3.6 蕈狀電磁能隙結構 40 Chapter 4 利用S11極值求待測物電氣特性 49 4.1 量測校正 49 4.2 等效模型 49 4.3 S11極值法求同軸過孔電氣特性 50 4.4 實驗架構 53 4.5 量測結果 55 Chapter 5 結論 60 參考文獻 61 | - |
dc.language.iso | zh_TW | - |
dc.title | 同軸過孔間距縮小化及隔離度優化於毫米波雷達板之應用 | zh_TW |
dc.title | Optimized Design for Coaxial-Via Pitch Reduction and Isolation in Millimeter-Wave Radar-Board Applications | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃俊瑞;黃銘崇;吳宗霖;林建民 | zh_TW |
dc.contributor.oralexamcommittee | Jiun-Ruei Huang;Ming-Chung Huang;Tzung-Lin Wu;Chien-Min Lin | en |
dc.subject.keyword | 天線,同軸過孔,縮小化設計,隔離度,電磁能隙,校正方法, | zh_TW |
dc.subject.keyword | antenna,coaxial via,compact design,isolation,EBG structure,calibration method, | en |
dc.relation.page | 62 | - |
dc.identifier.doi | 10.6342/NTU202404435 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-10-02 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 此日期後於網路公開 2029-09-30 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。