Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇志杰
dc.contributor.authorI-Ying Chenen
dc.contributor.author陳以瑛zh_TW
dc.date.accessioned2021-05-20T20:31:15Z-
dc.date.available2008-08-04
dc.date.available2021-05-20T20:31:15Z-
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation中文部分
王明光、王敏昭(2003)實用儀器分析。國立編譯館,692頁。
王碧、王正雄、鄭資英、簡宗昌、許元正、米文慧、李平泉、郭季華、徐美榕、董子棟、楊禮源、蕭美琪(2003)台灣地區酸沉降物質現況調查(第二年)。環境檢驗所環境調查研究年報,27頁。
王證權(2001)亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性。國立中央大學環境工程研究所碩士,295頁。
林能暉、王聖翔、蔡邦國、劉啟文、曾偉迪(2003)宜蘭酸沉降現況分析與管制策略初探。宜蘭縣政府環保局研究報告及計畫成果報告,17頁。
林煜棋(2006)大氣酸性氣體與氣膠的特性和其影響因子分析。國立中興大學環境工程學研究所博士論文,170頁。
吳德源(1995)高雄都會區酸性沉降之調查研究。國立中山大學環境工程研究所碩士論文,107頁。
陳正平、黃伯瑞(1996)酸雨調查及國際合作研究-東亞空氣污染與酸雨之長期演變暨酸雨國際研討會:(4)未來空氣污染與酸雨物質長程輸送對我國的影響研究。行政院環境保護署EPA-85-100309-15,43頁。
陳雄文、王正雄、鄭資英、簡宗昌、許元正、米文慧、胡雅容、李平泉、郭季華、
徐美榕、董子棟、楊禮源(2002)台灣地區酸沉降物質現況調查。環境檢驗
所環境調查研究年報9:1-22。
黃柏誠(2002)桃園地區降水化學特性分析。國立中央大學大氣物理研究所碩士,149頁。
黃譯樘(2002)台北都會區大氣懸浮微粒的化學特性研究。國立台灣大學海洋研究所碩士論文,87頁。
程萬里(1996)酸雨調查及國際合作研究-東亞空氣污染與酸雨之長期演變暨酸雨國際研討會:(3)東亞空氣污染與酸雨現況和未來趨勢。行政院環境保護署EPA-85-1003-09-15,19-94。
曾韋迪(2005)桃園地區降水化學與硫化物清除係數探討。國立中央大學大氣物理研究所碩士,104頁。
曾德民(2006)台灣北部海域濕沉降中化學組成之主成份分析研究。國立臺灣海
洋大學海洋環境資訊系碩士學位論文,74頁。
彭啟明、林能暉、張艮輝(2003)宜蘭地區酸沉降受長程輸送影響之研究。宜蘭縣政府環保局研究報告及計畫成果報告,14頁。
張仲德(2002)彰化市2001年大氣沉降特性分析。國立彰化師範大學地理學系碩士論文,112頁。
張雅萍(1998)台北市酸沉降特性分析(1981-1997)。國立東華大學自然資源管理
研究所碩士論文,103頁。
劉啟文(2005)亞洲沙塵好發期間雲水化學特性分析。國立中央大學大氣物理研究所碩士,101頁。
蔡世源(2004)沙塵暴對台灣地區酸性乾濕沉降之影響。國立台灣大學環境工程學研究所碩士論文,152頁。
薛美莉(2000)台灣中部山區降雨水質及酸性沈降。行政院農委會特有生物研究保育中心,12頁。
蕭泓泯、林登秋、黃正良、黃志堅、林能暉(2007)蓮華池試驗林雨水化學特性之探討。台灣林業科學22(1): 1-13。


英文部分
Agrawal, M., and R. K. Singh (2001), Effect of industrial emission on atmospheric wet deposition. Water, Air, and Soil Pollution, 130, 481-486.
Aiuppa, A., P. Bonfantl, and W. D’alessandro (2003), Rainwater chemistry at Mt. Etna (Italy): Natural and anthropogenic sources of major ions. Journal of Atmospheric Chemistry, 46, 89–102.
Al-Momani, I. F., K. A. Momani, and Q. M. Jaradat (1999), Chemical Composition of Wet Precipitation in Irbid, Jordan. Journal of Atmospheric Chemistry, 35, 47–57.
Alagha, O., and G. Tuncle (2002), Evaluation of air quality over the Black Sea: Major ionic composition of rainwater. Water, Air, and Soil Pollution, 3, 87-96.
Alabdula’aly, A. I., and M. A. Khan (1999), Chemistry of Rain Water in Riyadh, Saudi Arabia. Arch. Environ. Contam. Toxicol, 39, 66–73.
Balachandran, S., and P. S. Khillare (2000), Occurrence of acid rain over Delhi. Environmental Monitoring and Assessment, 71, 165–176.
Chang, S.-Y., and G.-C. Fang (2007), Springtime soluble particles in a suburban area of Taichung in central Taiwan. Atmospheric Research, 86, 30–41.
Demirak, A. (2006), The Influence of a Coal-Fired Power Plant in Turkey on the Chemical Composition of Rain Water in a Certain Region. Environmental Monitoring and Assessment, 129, 189–196.
Demirak, A., A. Balci, H. Karaog˘lu, and B. Tosmur (2006), Chemical characteristics of rain water at an urban site of south western Turkey. Environmental Monitoring and Assessment, 123, 271–283.
Huang, Y., Y. Wang, and L. Zhang (2007), Long-term trend of chemical composition of wet atmospheric precipitation during 1986–2006 at Shenzhen City, China. Atmospheric Environment, 42, 3740–3750.
Jain, M., U. C. Kulshrestha, A. K. Sarkar, and D. C. Parashar (2000), Influence of crustal aerosols on wet deposition at urban and rural sites in India. Atmospheric Environment, 34, 5129-5137.
Kim, M.-G., M.-H. Kang, K.-J. Park, B.-K. Lee, and D.-S. Lee (2001), Evaluation of precipitation composition at an urban and a rural area for the central Korean peninsula. Water, Air, and Soil Pollution, 130, 439–444.
Koshy, K., G. Ayers, R. Gillett, and P. Selleck (1997), Wet deposition chemistry studies at Suva, Fiji, a remote tropical island site in the south Pacific. Environmental Geochemistry and Health, 19, 39-44.
Lee, B. K., S. H. Hong, and D. S. Lee (1999), Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula. Atmospheric Environment, 34, 563-575.
Lin, N.-H., H.-M. Lee, and M.-B. Chang (1999), Evaluation of the characteristics of acid precipitation in Taipei, Taiwan using cluster analysis. Water, Air, and Soil Pollution, 113, 241–260.
Millet, M., H. Wortham, P. Mirabel, J.-P. Flori, D. Lakkis, and M. Leroy (2000), Chemical composition of rainwater near two historical monuments: The thann Collegiate (Alsace, France) and the tours cathedral (Indre et loire, France),. Water, Air, and Soil Pollution., 132, 105–126.
Mouli, P. C., S. V. Mohan, and S. J. Reddy (2004), Rainwater chemistry at a regional representative urban site: influence of terrestrial sources on ionic composition. Atmospheric Environment, 39, 999–1008.
Mphepya, J. N., C. Galy-Lacaux, J. P. Lacaux, G. Held, and J. J. Pienaar (2006), Precipitation chemistry and wet deposition in Kruger National Park, South Africa. Journal of Atmospheric Chemistry, 53, 169–183.
Mphepya, J. N., J. J. Pienaar, C. Galy-Lacaux, G. Held, and C. R. Turner (2003), Precipitation Chemistry in Semi-Arid Areas of Southern Africa: A Case Study of a Rural and an Industrial Site. Journal of Atmospheric Chemistry, 47, 1–24.
Nam, J.-C., S.-N. Oh, J.-C. Choi, J. Kim, and Y. Chun (2001), Monitoring of acid rain over Korean peninsula. Water, Air, and Soil Pollution, 130, 433–438.
Osthoff, H. D., J. M. Roberts, A. R. Ravishankara, E. J. Williams, B. M. Lerner, R. Sommariva, T. S. Bates, D. Coffman, P. K. Quinn, J. E. Dibb, H. Stark, J. B. Burkholder, R. Talukdar, J. Meagher, F. C. Fehsenfeld, and S. S. Brown (2008), High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature geoscience, 1, 324–328.
Örnektekin, S., and S. Cakmakli (2003), Chemical composition and acidity of rain at the gulf of iskenderun, North-East mediterranean. Water, Air, and Soil Pollution, 3, 151–166.
Ohta, S., and T. Okita (1990), A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment, 24, 815-822.
Santos, M. A. d., C. F. Illanes, A. Fornaro, and J. J. Pedrotti (2007), Acid Rain in Downtown São Paulo City, Brazil. Water, Air, and Soil Pollution, 7, 85-92.
Safai, P. D., P. S. P. Rao, G. A. Momin, K. Ali, D. M. Chate, and P. S. Praveen (2004), Chemical composition of precipitation during 1984–2002 at Pune, India. Atmospheric Environment, 38, 1705–1714.
Seinfeld, J. H., and S. N. Pandis (1997), Atmospheric chemistry and physics. Wiley-Interscience, 1326p.p.
Sequeira, R., and C. C. Lai (1997), An analysis of the representative composition of rainwater at six locations in Hong Kong. Water, Air, and Soil Pollution, 107, 289–301.
Singh, Abhay Kr., G. C. Mondal, Suresh Kumar, K. K. Singh, K. P. Kamal, and A. Sinha (2006), Precipitation chemistry and occurrence of acid rain over Dhanbad, coal city of India. Environmental Monitoring and Assessment, 125, 99–110.
Singh, S. P., P. Khare, G. S. Satsangi, A. Lakhani, K. M. Kumari, and S. S. Srivastava (2000), Rainwater composition at a regional representative site of a semi-arid region of India. Water, Air, and Soil Pollution, 127, 93–108.
Su, C.-C., and C.-A. Huh (2006), Measurements of 7Be and 210Pb in cloudwaters: Toward a better understanding of aerosol transport and scavenging. Geophysical Research Letters, 33, L04807, doi:10.1029/2005GL025042.
Tu, J., H. Wang, Z. Zhang, X. Jin, W. Li (2004), Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003. Atmospheric Research, 73, 283–298.
Ueda, H., and G. R. Carmichael (1995), Formation of Secondary Pollutants during Long-Range Transport and Its Contribution to Air Quality in East Asia. Terrestrial, Atmospheric and Oceanic Sciences, (3), 487-500.
Von-Glasow, R. (2008), Pollution meets sea salt. Nature geoscience, 1, 292-293.
Wei, H., and J. L. Wang (2005), Characteristics of acid rain in Jinyun Moutain, Chongoing, China. Applied Ecology and Environmental Research, 3(1), 29-37.
Zhang, J., C.-Q. Liu (2004), Major and rare earth elements in rainwaters from Japan and East China Sea: Natural and anthropogenic sources. Chemical Geology, 209, 315– 326.
Zhang, M., S. Wang, F. Wu, X. Yuan, and Y. Zhang (2006), Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmospheric Research, 84, 311–322.


參考網站
台灣酸雨資訊網 http://www.acidrain.org.tw/
沙塵暴資料庫http://www.atmos.pccu.edu.tw/duststorm/index1.htm
颱風資料庫http://rdc28.cwb.gov.tw/data.php
行政院環保署 http://www.epa.gov.tw/
中央氣象局全球資訊網http://www.cwb.gov.tw/
環境技術資訊網 http://www.e-environment.com.tw
美國太空總署之全球變遷中心http://gcmd.gsfc.nasa.gov/index.html
美國環境保護署 http://www.epa.gov/
國際大氣監測網http://nadp.sws.uiuc.edu/
NOAA http://www.arl.noaa.gov/ready/open/hysplit4.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9609-
dc.description.abstract本研究在台北陽明山區與嘉義民雄鄉同步收集雨水標本,採樣時間自2006年1月至2007年12月為期兩年,共計307個雨水標本。分析項目包括pH值(酸鹼計)、導電度(導電度計)及主要離子成分(離子層析儀),並探討酸沉降之化學特性。
水化學之時空特性顯示,陽明山降雨之酸鹼值加權平均為4.38,水質偏酸,酸雨發生率為94%,呈全面性酸化現象。酸化原因為當地既有物質及火山背景所提供的致酸離子之外,尚有來自中國大陸之長程傳輸貢獻,尤其東北季風盛行時,pH值更低。季節性差異以夏、冬兩季最為明顯,夏季雨水pH值較高,各項離子濃度較低,冬季反之。離子濃度貢獻比依次為Na+>SO42->Cl->Ca2+>Mg2+>NH4+>NO3->K+。硫酸根與硝酸根為主要致酸物質。嘉義地區降雨酸鹼值之加權平均為5.11,水質較北部山區為鹼,酸沉降發生率為41%。高酸鹼度由農產活動及天然鹼性塵土所提供,當地降水品質受自然來源影響多過於人為活動。夏、秋兩季雨水pH值較低,冬季較高。離子濃度貢獻比依次為NH4+>Cl->K+>SO42->Ca2+>Na+>Mg2+>NO3-。海水氯鈉比值分析結果顯示,陽明山樣區降水有氯虧損現象,約佔47%。
降水離子來源,陽明山降水普遍受海鹽影響,其次為當地火山背景、人為活動及境外傳輸;嘉義降水主要受農耕活動影響,其次是塵土或海鹽等。此外,SO42-在各因子間呈中度相關,顯示長程輸送雖在其他強勢因子中並不突顯,但仍相當重要。在沈降量變化方面,陽明山之酸沉降高於嘉義2-6倍,且硫酸根比硝酸根沉降量多,主要是受離子濃度影響,其次為雨量。天氣類型方面,發生酸沉降多屬東北季風、沙塵暴或鋒面系統,降水受境外傳輸影響遠大於當地。
比較其他地區降水,SO42-、NO3-與人為污染相關;Na+、Cl-、Mg2+與海鹽相關;NH4+、K+與農業活動有關;Ca2+、K+、Mg2+則與當地塵土相關;Cl-、SO42-與火山作用相關。
zh_TW
dc.description.abstractWet-only rainwater samples (N = 307) were collected from January 2006 to December 2007 in the last two years at the Yangmingshan site in Taipei and the rural site in Chiayi. The chemical composition of the rainwater was analyzed for pH, conductivity, and major ions by using the pH meter, conductivity meter and Ion Chromatography, respectively. The analysis results will be used to discuss the chemical characteristics of the acid precipitation at these two experiment sites.
The pH value from Yangmingshan experiment site revealed the rainwater is acidic with a volume-weighted mean pH of 4.38. The incidence of acidic deposition is 94% and reveals comprehensively acidification phenomenon. The acidification was caused by the input from local materials and volcanic activities at Tatun volcanoes or the long-range transmissions from the Mainland China. During the northeast monsoon prevailed period, the pH values were lower than other seasons. The seasonal variability of chemical characteristics shows a distinct difference between summer and winter. Despite the higher pH values in the summer, most of the ions were higher in the winter. The concentration of ions follows a general pattern as Na+> SO42-> Cl-> Ca2+> Mg2+> NH4+> NO3-> K+. The SO42- and NO3- are the major acidification factors. Corresponsively, the rainwater samples collected from Chiayi were more alkaline with a volume-weighted mean pH of 5.11. The incidence of acidic deposition is 41%. The higher values of pH were attributed to the neutralization by agricultural activities and natural alkaline local dusts. The quality of rainwater was largely affected by the natural sources than the anthropogenic activities. The seasonal variability of pH values was lower in the summer and autumn, but higher in the winter. The equivalent concentration of components followed the order: NH4+> Cl-> K+> SO42-> Ca2+> Na+> Mg2+> NO3-. Furthermore, the Cl-/Na+ ratios point to the chlorine loss was a universal phenomenon at Yangmingshan experiment sites, about 47%.
As for the sources of ions, Yangmingshan is largely influenced by the oceanic source; the local volcanic activities, anthropogenic sources and the long-range transmissions are also playing important roles as ion providers. By contrast, the agricultural activities, natural local dust and sea salt may be more important for Chiayi experiment site. Additionally, the long-range transmissions are the most important source for SO42- at both experiment sites. The deposition fluxes of SO42- and NO3- at Yangmingshan site were 6 and 2-fold higher than Chiayi site, respectively. The concentration of the ions is the major factor affects the deposition fluxes of SO42- and NO3-, and the rainfall plays less important role. According to the weather pattern, most of the acidic deposition occurred during the northeast monsoon and Asian dust storm prevailed season or when the frontal systems paced around Taiwan. It implies that the quality of rainwater is deeply affected by the long-range transmissions than the local inputs.
Several source-types of ions have been identified through comparing the results with the observations from other regions. It appears the SO42- and NO3- are related to the anthropogenic pollution; Na+, Cl- and Mg2+ have good correlation with sea salt spray source; NH4+ and K+ are originated from the agricultural activities; Ca2+, K+ and Mg2+ are associated with the local natural dust; and the volcanic degassing process may influence the flux of Cl- and SO42- at Yangmingshan experiment site.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:31:15Z (GMT). No. of bitstreams: 1
ntu-97-R95241315-1.pdf: 4118037 bytes, checksum: df0fd8f0d264b719a94cdedc03b228d3 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 酸沉降的定義與組成 3
2-2 酸沉降之形成與來源 4
2-3 降水水質特性 6
2-4 世界酸沉降之研究 7
2-5 台灣酸沉降之研究 13
第三章 研究方法 23
3-1 採樣區域與方法 23
3-2 分析項目與方法 24
3-3 儀器分析 24
3-4 水質分析之品保品管 26
3-4-1 檢量線之配置及確認 26
3-4-2 方法偵測極限及品質分析 27
3-4-3 陰陽離子之平衡關係 28
第四章 結果與討論 44
4-1 雨水化學特性探討 44
4-2 氯損失現象 45
4-3 時間趨勢變化 47
4-4 降水離子來源與天氣類型 48
4-5 酸沉降量 51
4-6 與各地降水化學比較 54
第五章 結論 79
參考文獻 81
附錄 88




圖 目 錄
圖2-1 前驅物質在大氣中形成酸沉降之循環過程 21
圖2-2 全球降水pH值之空間分佈 21
圖2-3 美國地區酸雨概況 22
圖3-3 陽明山採樣站之雨水收集桶及自動氣象站 34
圖3-4 本研究水樣分析流程 34
圖3-5 離子層析儀(DIONEX DX-120)主機外型結構 35
圖3-6 離子層析儀主機內部結構 36
圖3-7 雨水標本的圖譜 37
圖3-8 離子層析儀之系統示意圖 37
圖3-9 陰離子標準品Std 1~5分析圖譜 38
圖3-10 陰離子標準品檢量線 39
圖3-11 陽離子標準品Std 1~5分析圖譜 40
圖3-12 陽離子標準品檢量線 41
圖3-13 氯離子重覆樣品分析品管圖 42
圖3-14 硝酸根離子重覆樣品分析品管圖 42
圖3-15 硫酸根離子重覆樣品分析品管圖 42
圖3-16 銨根離子重覆樣品分析品管圖 43
圖3-17 鈣離子重覆樣品分析品管圖 43
圖3-18 鈉離子重覆樣品分析品管圖 43
圖4-1 陽明山雨水pH值之頻率分布 59
圖4-2 嘉義雨水pH值之頻率分布 59
圖4-3 陰、陽離子之當量濃度總和比 60
圖4-4 降水中離子濃度貢獻比 61
圖4-5 氯離子於受污染的海岸邊界之晝夜變化 62
圖4-6 陽明山降水之酸鹼值與雨量之時間序列分布 63
圖4-7 陽明山降水pH值與雨量相關圖 63
圖4-8 嘉義降水之酸鹼值與雨量之時間序列分布 64
圖4-9 嘉義降水pH值與雨量相關圖 64
圖4-10 陽明山和嘉義之每月降雨量分布 65
圖4-11 陽明山和嘉義之月平均pH值(雨量加權) 65
圖4-12 陽明山雨水酸鹼值及離子當量濃度之月平均 66
圖4-13 嘉義雨水酸鹼值及離子當量濃度之月平均 67
圖4-14 陽明山與嘉義雨水酸鹼值之季變化 68
圖4-15 陽明山雨水酸鹼值與降水量之季變化 68
圖4-16 嘉義雨水酸鹼值與降水量之季變化 68
圖4-17 陽明山雨水離子濃度之季變化 69
圖4-18 嘉義雨水離子濃度之季變化 70
圖4-19 95.2.12 陽明山測站氣流模擬軌跡圖 71
圖4-20 95.2.12 地面天氣圖 71
圖4-21 95.3.19 陽明山測站氣流模擬軌跡圖 72
圖4-22 95.3.19 地面天氣圖 72
圖4-23 95.8.10 嘉義測站氣流模擬軌跡圖 73
圖4-24 95.8.10 天氣地面圖 73
圖4-25 95.7.8嘉義測站氣流模擬軌跡圖 74
圖4-26 95.7.8 天氣地面圖 74
圖4-27 95.8.10 全台累積雨量圖 75
圖4-28 95.7.8 全台累積雨量圖 75
圖4-29 硫酸根沉降量於兩個樣區之比較 76
圖4-30 硝酸根沉降量於兩個樣區之比較 76
圖4-31 陽明山酸沉降之月變化 77
圖4-33 陽明山酸沉降與離子濃度變化 77
圖4-35 陽明山酸沉降和降雨量之月變化 78
圖4-36 嘉義酸沉降和降雨量之月變化 78

表 目 錄
表2-1 歐洲地區酸沉降概況 16
表2-2 亞洲地區酸沉降概況 17
表2-3 台灣地區酸沉降概況 20
表3-1 不同陰離子標準樣品 30
表3-2 不同陽離子標準樣品 30
表3-3 各陰陽離子重覆分析品管之結果 31
表4-1 所有樣品pH值最低前十名 55
表4-2 研究期間侵台颱風資訊 55
表4-3 雨水中陰陽離子比率 56
表4-4 陽明山雨水化學成分之相關矩陣 56
表4-5 嘉義雨水化學成分之相關矩陣 57
表4-6 陽明山與嘉義降水之總雨量、離子濃度、沉降通量 57
表4-7 本研究區與各地降水化學性質之比較 58



附 錄
附錄1 台北陽明山區降水化學成分 88
附錄2 嘉義鄉間降水化學成分 91
附錄3 時事新聞 97
附錄4 陽明山區每週降水中各離子之沈降通量之計算結果 99
附錄5 嘉義鄉間各降水事件中各離子沈降通量之計算結果 104
dc.language.isozh-TW
dc.title台北陽明山區與嘉義鄉間酸沉降之化學特性探討zh_TW
dc.titleChemical characteristics of acid precipitation
at Yangmingshan in Taipei and the rural site in Chiayi
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林斐然,鄭偉力,陳宏瑜
dc.subject.keyword酸沉降,陽明山,嘉義,離子成分,zh_TW
dc.subject.keywordacid precipitation,Yangmingshan,Chiayi,ion components,en
dc.relation.page111
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf4.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved