Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96091
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾于恒zh_TW
dc.contributor.advisorYu-Heng Tsengen
dc.contributor.author王怡雯zh_TW
dc.contributor.authorYi-Wen Wangen
dc.date.accessioned2024-10-14T16:09:19Z-
dc.date.available2024-10-15-
dc.date.copyright2024-10-14-
dc.date.issued2024-
dc.date.submitted2024-09-24-
dc.identifier.citationBaehr, J., Haak, H., Alderson, S., Cunningham, S. A., Jungclaus, J. H., and Marotzke, J. (2007). Timely detection of changes in the meridional overturning circulation at 26 n in the atlantic. Journal of Climate, 20(23):5827–5841.
Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., et al. (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of laurentide lakes. Nature, 400(6742):344–348.
Born, A., Nisancioglu, K. H., and Braconnot, P. (2010). Sea ice induced changes in ocean circulation during the eemian. Climate dynamics, 35:1361–1371.
Collins, M., Sutherland, M., Bouwer, L., Cheong, S., Frölicher, T., Des Combes, H. J., Roxy, M., Losada, I., McInnes, K., Ratter, B., et al. (2019). Ipcc special report on the ocean and cryosphere in a changing climate. H.-O. Pörtner, DC Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, NM Weyer, Eds, pages 589–655.
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D., DuVivier, A., Edwards, J., Emmons, L., Fasullo, J., Garcia, R., Gettelman, A., et al. (2020). The community earth system model version 2 (cesm2). Journal of Advances in Modeling Earth Systems, 12(2):e2019MS001916
Danabasoglu, G., Large, W. G., and Briegleb, B. P. (2010). Climate impacts of parameterized nordic sea overflows. Journal of Geophysical Research: Oceans, 115(C11).
Danabasoglu, G., Large, W. G., Tribbia, J. J., Gent, P. R., Briegleb, B. P., and McWilliams, J. C. (2006). Diurnal coupling in the tropical oceans of ccsm3. Journal of climate, 19(11):2347–2365.
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., et al. (2014). North atlantic simulations in coordinated ocean-ice reference experiments phase ii (core-ii). part i: mean states. Ocean Modelling, 73:76–107.
Danabasoglu, G., Yeager, S. G., Kwon, Y.-O., Tribbia, J. J., Phillips, A. S., and Hurrell, J. W. (2012). Variability of the atlantic meridional overturning circulation in ccsm4. Journal of climate, 25(15):5153–5172.
de Lavergne, C., Madec, G., Roquet, F., Holmes, R., and Mcdougall, T. J. (2017). Abyssal ocean overturning shaped by seafloor distribution. Nature, 551(7679):181–186.
Delworth, T. L. and Mann, M. E. (2000). Observed and simulated multidecadal variability in the northern hemisphere. Climate Dynamics, 16:661–676.
Desbruyères, D. G., Mercier, H., Maze, G., and Daniault, N. (2019). Surface predictor of overturning circulation and heat content change in the subpolar north atlantic. Ocean Science, 15(3):809–817.
Drijfhout, S., Van Oldenborgh, G. J., and Cimatoribus, A. (2012). Is a decline of amoc causing the warming hole above the north atlantic in observed and modeled warming patterns? Journal of Climate, 25(24):8373–8379.
Enfield, D. B., Mestas-Nuñez, A. M., and Trimble, P. J. (2001). The atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental us. Geophysical research letters, 28(10):2077–2080.
Ferrari, R., McWilliams, J. C., Canuto, V. M., and Dubovikov, M. (2008). Parameterization of eddy fluxes near oceanic boundaries. Journal of Climate, 21(12):2770–2789.
Frajka-Williams, E., Ansorge, I. J., Baehr, J., Bryden, H. L., Chidichimo, M. P., Cunningham, S. A., Danabasoglu, G., Dong, S., Donohue, K. A., Elipot, S., et al. (2019). Atlantic meridional overturning circulation: Observed transport and variability. Frontiers in Marine Science, 6:260.
Gent, P. R. and Mcwilliams, J. C. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1):150–155.
Gregory, J., Dixon, K., Stouffer, R., Weaver, A., Driesschaert, E., Eby, M., Fichefet, T., Hasumi, H., Hu, A., Jungclaus, J., et al. (2005). A model intercomparison of changes in the atlantic thermohaline circulation in response to increasing atmospheric co2 concentration. Geophysical Research Letters, 32(12).
Gregory, J. M. and Tailleux, R. (2011). Kinetic energy analysis of the response of the atlantic meridional overturning circulation to co 2-forced climate change. Climate dynamics, 37:893–914.
Griffies, S. M. (1998). The gent–mcwilliams skew flux. Journal of Physical Oceanography, 28(5):831–841.
Haarsma, R. J., Selten, F. M., and Drijfhout, S. S. (2015). Decelerating atlantic meridional overturning circulation main cause of future west european summer atmospheric circulation changes. Environmental Research Letters, 10(9):094007.
Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., and De Cuevas, B. (2011). Bistability of the atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters,38(10).
Hawkins, E. and Sutton, R. (2008). Potential predictability of rapid changes in the atlantic meridional overturning circulation. Geophysical research letters, 35(11).
Hirschi, J., Baehr, J., Marotzke, J., Stark, J., Cunningham, S., and Beismann, J.-O. (2003). A monitoring design for the atlantic meridional overturning circulation. Geophysical Research Letters, 30(7).
Hunke, E., Lipscomb, W., Jones, P., Turner, A., Jeffery, N., and Elliott, S. (2017). Cice, the los alamos sea ice model. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S. (2015). Cice: The los alamos sea ice model. documentation and software user’s manual. version 5.1. Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, T-3 Fluid Dynamics Group.
Jackson, L., Kahana, R., Graham, T., Ringer, M., Woollings, T., Mecking, J., and Wood, R. (2015). Global and european climate impacts of a slowdown of the amoc in a high resolution gcm. Climate dynamics, 45:3299–3316.
Jackson, L. and Wood, R. (2020). Fingerprints for early detection of changes in the amoc. Journal of Climate, 33(16):7027–7044.
Jayne, S. R. (2009). The impact of abyssal mixing parameterizations in an ocean general circulation model. Journal of Physical Oceanography, 39(7):1756–1775.
Johns, W. E., Baringer, M. O., Beal, L., Cunningham, S., Kanzow, T., Bryden, H. L., Hirschi, J., Marotzke, J., Meinen, C., Shaw, B., et al. (2011). Continuous, array-based estimates of atlantic ocean heat transport at 26.5 n. Journal of Climate, 24(10):2429–2449.
Kim, S. Y., Lee, H. J., Park, J.-H., and Kim, Y. H. (2015). Effects of reduced vertical mixing under sea ice on atlantic meridional overturning circulation (amoc) in a global ice-ocean model. Ocean Science Journal, 50:155–161.
Kösters, F., Käse, R., Schmittner, A., and Herrmann, P. (2005). The effect of denmark strait overflow on the atlantic meridional overturning circulation. Geophysical Research Letters, 32(4).
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and Rahmstorf, S. (2007). On the driving processes of the atlantic meridional overturning circulation. Reviews of Geophysics, 45(2).
Large, W. G., McWilliams, J. C., and Doney, S. C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of geophysics, 32(4):363–403.
Latif, M., Roeckner, E., Botzet, M., Esch, M., Haak, H., Hagemann, S., Jungclaus, J., Legutke, S., Marsland, S., Mikolajewicz, U., et al. (2004). Reconstructing, monitoring, and predicting multidecadal-scale changes in the north atlantic thermohaline circulation with sea surface temperature. Journal of Climate, 17(7):1605–1614.
Li, C. and Born, A. (2019). Coupled atmosphere-ice-ocean dynamics in dansgaard-oeschger events. Quaternary Science Reviews, 203:1–20.
Lique, C. and Thomas, M. D. (2018). Latitudinal shift of the atlantic meridional overturning circulation source regions under a warming climate. Nature Climate Change, 8(11):1013–1020.
Liu, W. and Fedorov, A. (2022). Interaction between arctic sea ice and the atlantic meridional overturning circulation in a warming climate. Climate Dynamics, pages 1–17.
Lobelle, D., Beaulieu, C., Livina, V., Sevellec, F., and Frajka-Williams, E. (2020). Detectability of an amoc decline in current and projected climate changes. Geophysical Research Letters, 47(20):e2020GL089974.
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S., de Jong, M. F., de Steur, L., deYoung, B., Fischer, J., et al. (2019). A sea change in our view of overturning in the subpolar north atlantic. Science, 363(6426):516–521.
Marsh, R. (2000). Recent variability of the north atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. Journal of climate, 13(18):3239–3260.
Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickson, R., Hurrell, J., Mc-Cartney, M., Saravanan, R., and Visbeck, M. (2001). North atlantic climate variability: phenomena, impacts and mechanisms. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(15):1863–1898.
Mecking, J., Drijfhout, S. S., Jackson, L. C., and Graham, T. (2016). Stable amoc off state in an eddy-permitting coupled climate model. Climate Dynamics, 47:2455–2470.
Meinen, C. S., Johns, W. E., Moat, B. I., Smith, R. H., Johns, E. M., Rayner, D., Frajka-Williams, E., Garcia, R. F., and Garzoli, S. L. (2019). Structure and variability of the antilles current at 26.5 n. Journal of Geophysical Research: Oceans, 124(6):3700–3723.
Menary, M. B., Hodson, D. L., Robson, J. I., Sutton, R. T., Wood, R. A., and Hunt, J. A. (2015). Exploring the impact of cmip5 model biases on the simulation of north atlantic decadal variability. Geophysical Research Letters, 42(14):5926–5934.
Moat, B. I., Smeed, D. A., Frajka-Williams, E., Desbruyères, D. G., Beaulieu, C., Johns, W. E., Rayner, D., Sanchez-Franks, A., Baringer, M. O., Volkov, D., et al. (2020). Pending recovery in the strength of the meridional overturning circulation at 26 n. Ocean Science, 16(4):863–874.
Msadek, R., Dixon, K., Delworth, T., and Hurlin, W. (2010). Assessing the predictability of the atlantic meridional overturning circulation and associated fingerprints. Geophysical Research Letters, 37(19).
Oka, A., Hasumi, H., and Suginohara, N. (2001). Stabilization of thermohaline circulation by wind-driven and vertical diffusive salt transport. Climate dynamics, 18:71–83.
Østerhus, S., Turrell, W. R., Jónsson, S., and Hansen, B. (2005). Measured volume, heat, and salt fluxes from the atlantic to the arctic mediterranean. Geophysical Research Letters, 32(7).
Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., De Steur, L., Quadfasel, D., Olsen, S. M., Moritz, M., Lee, C. M., Larsen, K. M. H., et al. (2019). Arctic mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Science, 15(2):379–399.
Persechino, A., Mignot, J., Swingedouw, D., Labetoulle, S., and Guilyardi, E. (2013). Decadal predictability of the atlantic meridional overturning circulation and climate in the ipsl-cm5a-lr model. Climate dynamics, 40:2359–2380.
Pillar, H. R., Heimbach, P., Johnson, H. L., and Marshall, D. P. (2016). Dynamical attribution of recent variability in atlantic overturning. Journal of Climate, 29(9):3339–3352.
Polo, I., Robson, J., Sutton, R., and Balmaseda, M. A. (2014). The importance of wind and buoyancy forcing for the boundary density variations and the geostrophic component of the amoc at 26 n. Journal of Physical Oceanography, 44(9):2387–2408.
Quadfasel, D. and Käse, R. H. (2007). Present-day manifestation of the nordic seas overflows. In Natural Gas Hydrates-Occurence, Distribution and Detection (ed. CK Paull and WP Dillon) Amerikan Geophysical Union, volume 173, pages 75–89. AGU (American Geophysical Union).
Roberts, C. D., Garry, F. K., and Jackson, L. C. (2013). A multimodel study of sea surface temperature and subsurface density fingerprints of the atlantic meridional overturning circulation. Journal of Climate, 26(22):9155–9174.
Robson, J., Ortega, P., and Sutton, R. (2016). A reversal of climatic trends in the north atlantic since 2005. Nature Geoscience, 9(7):513–517.
Rossby, T., Chafik, L., and Houpert, L. (2020). What can hydrography tell us about the strength of the nordic seas moc over the last 70 to 100 years? Geophysical Research Letters, 47(12):e2020GL087456.
Semenov, V. A., Latif, M., Dommenget, D., Keenlyside, N. S., Strehz, A., Martin, T., and Park, W. (2010). The impact of north atlantic–arctic multidecadal variability on northern hemisphere surface air temperature. Journal of Climate, 23(21):5668–5677.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (2014). Climate change 2013: The physical science basis. contribution of working group i to the fifth assessment report of ipcc the intergovernmental panel on climate change.
Sutton, R. T. and Dong, B. (2012). Atlantic ocean influence on a shift in european climate in the 1990s. Nature Geoscience, 5(11):788–792.
Sutton, R. T. and Hodson, D. L. (2005). Atlantic ocean forcing of north american and european summer climate. science, 309(5731):115–118.
Swingedouw, D., Braconnot, P., Delécluse, P., Guilyardi, É., and Marti, O. (2007a). The impact of global freshwater forcing on the thermohaline circulation: adjustment of north atlantic convection sites in a cgcm. Climate Dynamics, 28(2):291–305.
Swingedouw, D., Braconnot, P., Delécluse, P., Guilyardi, É., and Marti, O. (2007b). Sensitivity of the atlantic thermohaline circulation to global freshwater forcing. Clim. Dyn., 28:291–305.
Tanhua, T., Olsson, K. A., and Jeansson, E. (2005). Formation of denmark strait overflow water and its hydro-chemical composition. Journal of Marine Systems, 57(3-4):264–288.
Toggweiler, J. and Samuels, B. (1995). Effect of drake passage on the global thermohaline circulation. Deep Sea Research Part I: Oceanographic Research Papers, 42(4):477–500.
Toggweiler, J. and Samuels, B. (1998). On the ocean's large-scale circulation near the limit of no vertical mixing. Journal of Physical Oceanography, 28(9):1832–1852.
Tréguier, A.-M., Deshayes, J., Lique, C., Dussin, R., and Molines, J.-M. (2012). Eddy contributions to the meridional transport of salt in the north atlantic. Journal of Geophysical Research: Oceans, 117(C5).
Tseng, Y.-H., Tsao, S.-E., Kuo, Y.-C., and Tsai, J.-Y. (2022). Timcom model datasets for the cmip6 ocean model intercomparison project. Ocean Modelling, 179:102109.
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., et al. (2020). Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the ocean model intercomparison project phase 2 (omip-2). Geoscientific Model Development, 13(8):3643–3708.
Williams, P. D. (2009). A proposed modification to the robert–asselin time filter. Monthly Weather Review, 137(8):2538–2546.
Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M., and Brayshaw, D. J. (2012). Response of the north atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nature Geoscience, 5(5):313–317.
Wunsch, C. (2000). Moon, tides and climate. Nature, 405(6788):743–744.
Yao, Y. and Luo, D. (2014). Relationship between zonal position of the north atlantic oscillation and euro-atlantic blocking events and its possible effect on the weather over europe. Science China Earth Sciences, 57:2628–2636.
Yeager, S., Castruccio, F., Chang, P., Danabasoglu, G., Maroon, E., Small, J., Wang, H., Wu, L., and Zhang, S. (2021). An outsized role for the labrador sea in the multidecadal variability of the atlantic overturning circulation. Science Advances, 7(41):eabh3592.
Young, C.-C., Liang, Y.-C., Tseng, Y.-H., and Chow, C.-H. (2014). Characteristics of the raw-filtered leapfrog time-stepping scheme in the ocean general circulation model. Monthly Weather Review, 142(1):434–447.
Zhang, J. and Steele, M. (2007). Effect of vertical mixing on the atlantic water layer circulation in the arctic ocean. Journal of geophysical research: Oceans, 112(C4).
Zhang, J. and Zhang, R. (2015). On the evolution of atlantic meridional overturning circulation fingerprint and implications for decadal predictability in the north atlantic. Geophysical Research Letters, 42(13):5419–5426.
Zhang, R. (2008). Coherent surface-subsurface fingerprint of the atlantic meridional overturning circulation. Geophysical Research Letters, 35(20).
Zhao, J. and Johns, W. (2014). Wind-forced interannual variability of the atlantic meridional overturning circulation at 26.5 n. Journal of Geophysical Research: Oceans, 119(4):2403–2419.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96091-
dc.description.abstract大西洋經向翻轉環流(AMOC)在地球氣候系統內的經向熱傳輸中發揮重要作用。許多 OMIP2 的模式無法很好地模擬 2010 年後 AMOC 再次上升的趨勢(Tsujino et al., 2020),此研究探討了驅動 AMOC 回復及 AMOC 年際間變化的主要物理機制。研究證實,北大西洋濤動(NAO)透過表面熱通量影響混合層深度(MLD)和密度異常的變化,導致 AMOC 的年際變異。本文也闡明了拉布拉多海和溢流 (overflow) 的作用。透過使用 CMIP6 OMIP2 大氣強迫的敏感性實驗,我們發現海洋 K-Profile 參數化(KPP)在 AMOC 強度變化下中扮演關鍵角色。這些結果顯示在海冰區域下合適的垂直混合率可以更好地描繪拉布拉多海中的深水形成以及通過丹麥海峽的溢流狀態,且隨著變得更淺的溫躍層,等密面進而向上移動,使得溫鹽性質更接近觀測資料,從而更好地模擬 2010 年後的 AMOC 回復。
本研究使用基於 OMIP2 實驗的兩個不同的海洋-海冰耦合模型進行敏感性實驗,並採用 JRA55-do 資料集作為強迫場,該資料集涵蓋 1958 年至 2018 年。通過TIMCOM 和 POP2 海洋模型的敏感性實驗發現,降低海冰面積下的垂直背景擴散係數會使 45°N 以北水域的密度增大,尤其在北極海。隨後,較高密度的水被輸送到北歐海,推高格陵蘭-冰島-蘇格蘭海嶺上的等密面,導致穿過丹麥海峽的高密度水溢出,進而影響拉布拉多海域,增強AMOC。我們進一步比較不同年份下的機制,根據 AMOC 的上升趨勢,將其區分為丹麥海峽溢出水和拉布拉多海域鹽度剖面指標,並發現 AMOC 傳輸通量的上升幅度與丹麥海峽溢出水影響拉布拉多海域呈正相關。這一平衡態機制在不同時間段內保持穩定且一致,可以良好闡釋模式內 AMOC 的上升。
zh_TW
dc.description.abstractRecent AMOC recovery after 2010 cannot be well simulated by many OMIP2 mod els(Tsujino et al., 2020). The primary physical mechanism driving this recovery and interan nual variability of AMOC is investigated in this study. North Atlantic Oscillation (NAO) is confirmed to affect the changes of mixed layer depth (MLD) and density anomalies lead ing to the interannual variability of AMOC through surface heat flux. The roles of Labrador Sea and overflow are clarified. CMIP6 OMIP2 forcing sensitivity experiments are used to show the key role of K-profile Parameterization (KPP) on the AMOC strength. These results suggest the required modification of KPP under sea ice area to improve the AMOC simulation. An appropriate boundary layer can better represent deep water formation in the Labrador Sea and the overflow through Denmark Strait, leading to a better simulation of AMOC recovery after 2010.
This study uses sensitivity experiments based on OMIP2 experiments with two independent ocean-sea ice coupled models, utilizing the JRA55-do dataset as the forcing field, covering the period from 1958 to 2018. Our study indicates that sensitivity experiments with the TIMCOM and POP2 ocean models reveal that reducing the background diffu sivity under sea-ice region increases water density north of 45°N, especially in the Arctic Ocean. Consequently, denser water is transported to the Nordic Seas, raising the isopyc nal surfaces over the Greenland-Iceland-Scotland Ridge, leading to an overflow of denser water through the Denmark Strait. This overflow subsequently impacts the Labrador Sea, strengthening the AMOC. We further compared the mechanisms across different years, clearly distinguishing between the Denmark Strait overflow and the salinity profiles in the Labrador Sea as indicators of AMOC enhancement. The increase in AMOC transport positively correlates with the influence of Denmark Strait overflow on the Labrador Sea, which has been particularly significant over the past decade.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-14T16:09:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-10-14T16:09:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsPage
誌謝 i
摘要 iii
Abstract v
目次 vii
圖次 x
第一章 前言 1
1.1 AMOC 簡介與未來趨勢 . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 用於檢測 AMOC 變化的環境因子 . . . . . . . . . . . . . . . . . . . 6
1.2.1 時間上驅動的機制及因子 . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 大氣方面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 海洋方面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 AMOC 實驗下的變化 . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 減少鹽度垂直擴散係數 . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 減少背景擴散係數 . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 研究議題 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
第二章 資料與方法 11
2.1 CESM2-POP 海洋海冰耦合模式 . . . . . . . . . . . . . . . . . . . . 11
2.1.1 模式簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 OMIP2 實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 台灣多尺度社區海洋模式 (TIMCOM) . . . . . . . . . . . . . . . . . 13
2.2.1 模式簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 觀測陣列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 AMOC Fingerprint 指標定義 . . . . . . . . . . . . . . . . . . . . . . 18
2.5 研究分析方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
第三章 AMOC 年際變化的物理機制 25
3.1 影響 AMOC 年際變化的先驅因子 . . . . . . . . . . . . . . . . . . . 25
3.2 區域相關性及機制分析 . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 機制之間相互作用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
第四章 POP2 敏感性實驗 39
4.1 調整不同區域及不同垂直擴散係數結果 . . . . . . . . . . . . . . . . 39
4.2 V DCR 結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 KP PICEL 結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 實驗後 AMOC 平均場的變化 . . . . . . . . . . . . . . . . . . . . 41
4.3.2 海洋環流場及等密面變化 . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2.1 北冰洋海洋環流場變化 . . . . . . . . . . . . . . . . 44
4.3.2.2 等密面變化 . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2.3 觀測資料驗證與最後十年變化 . . . . . . . . . . . . 53
4.4 分析結果總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
第五章 物理機制總結與討論 61
參考文獻 67
附錄 A — Supplementary Figures 79
-
dc.language.isozh_TW-
dc.title溫鹽環流在 2010 年後上升趨勢的物理機制zh_TW
dc.titleThe Physical Mechanism Associated with The Recent AMOC Recovery After 2010en
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃彥婷;李時雨zh_TW
dc.contributor.oralexamcommitteeYen-Ting Hwang;Shih-Yu Leeen
dc.subject.keyword溫鹽環流,OMIP2,正壓流函數,北大西洋震盪,年際變化,溢流,zh_TW
dc.subject.keywordAMOC,OMIP2,Barotropic stream function,NAO,interannual variation,overflow,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202404387-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-09-24-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
60.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved