請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96070完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺 | zh_TW |
| dc.contributor.advisor | Pai-Chi Li | en |
| dc.contributor.author | 陳欣渝 | zh_TW |
| dc.contributor.author | Hsin-Yu Chen | en |
| dc.date.accessioned | 2024-10-11T16:06:12Z | - |
| dc.date.available | 2024-10-12 | - |
| dc.date.copyright | 2024-10-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-26 | - |
| dc.identifier.citation | [1] Samus_. "Triangulo HSV," https://commons.wikimedia.org/wiki/File:Triangulo_HSV.png.
[2] P.-C. Li. "Principles of Medical Ultrasound," https://sites.google.com/view/pai-chilislab/courses. [3] D. H. Evans, J. A. Jensen, and M. B. Nielsen, “Ultrasonic colour Doppler imaging,” Interface Focus, vol. 1, no. 4, pp. 490-502, Aug 6, 2011. [4] D. Garcia. "Color Doppler principle," www.biomecardio.com. [5] M. Nelson B Schiller, FACC, FRCP, FASE, M. Bryan Ristow, FACC, FASE, FACP, and M. Xiushui Ren, “Echocardiographic evaluation of the pulmonic valve and pulmonary artery,” 2023. [6] R. H. Mehta, F. Helmcke, N. C. Nanda et al., “Transesophageal Doppler color flow mapping assessment of atrial septal defect,” J Am Coll Cardiol, vol. 16, no. 4, pp. 1010-6, Oct, 1990. [7] Junichi Yoshikawa, Kiyoshi Yoshida, Takashi Akasaka et al., “Value and limitations of color Doppler flow mapping in the detection and semiquantification of valvular regurgitation,” 1987. [8] E. Por, M. v. Kooten, and V. Sarkovic, “Nyquist–Shannon sampling theorem,” 2019. [9] R. Tutorials, "Continuous vs Pulsed Wave Doppler Ultrasound | Ultrasound Course | Radiology Physics Course #21," YouTube, 2023. [10] R. T. Hahn, T. Abraham, M. S. Adams et al., “Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists,” J Am Soc Echocardiogr, vol. 26, no. 9, pp. 921-64, Sep, 2013. [11] R. T. Hahn, M. Saric, F. F. Faletra et al., “Recommended Standards for the Performance of Transesophageal Echocardiographic Screening for Structural Heart Intervention: From the American Society of Echocardiography,” J Am Soc Echocardiogr, vol. 35, no. 1, pp. 1-76, Jan, 2022. [12] S. Muth, S. Dort, I. A. Sebag et al., “Unsupervised dealiasing and denoising of color-Doppler data,” Med Image Anal, vol. 15, no. 4, pp. 577-88, Aug, 2011. [13] D. Posada, J. Poree, A. Pellissier et al., “Staggered Multiple-PRF Ultrafast Color Doppler,” IEEE Trans Med Imaging, vol. 35, no. 6, pp. 1510-21, Jun, 2016. [14] Z. Zhao, H. Zhang, Z. Xiao et al., “Robust 2D phase unwrapping algorithm based on the transport of intensity equation,” Measurement Science and Technology, vol. 30, no. 1, 2019. [15] R. Nock, and F. Nielsen, “Statistical Region Merging,” 2004. [16] J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation,” Appl Opt, vol. 56, no. 25, pp. 7079-7088, Sep 1, 2017. [17] C. Zuo, J. Li, J. Sun et al., “Transport of intensity equation: a tutorial,” Optics and Lasers in Engineering, vol. 135, 2020. [18] P. Tabary, F. Guibert, L. Perier et al., “An Operational Triple-PRT Doppler Scheme for the French Radar Network,” pp. 1645–1656, 2006. [19] J. Poree, G. Goudot, O. Pedreira et al., “Dealiasing High-Frame-Rate Color Doppler Using Dual-Wavelength Processing,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 68, no. 6, pp. 2117-2128, Jun, 2021. [20] R. L. Harrison, “Introduction To Monte Carlo Simulation,” AIP Conf Proc, vol. 1204, pp. 17-21, Jan 5, 2010. [21] Gammex. "1430 LE Mini-Doppler Flow Systems User’s Guide," https://cspmedical.com/content/102-1880_mini_doppler_user_manual.pdf. [22] V. Perrot, M. Polichetti, F. Varray et al., “So you think you can DAS? A viewpoint on delay-and-sum beamforming,” Ultrasonics, vol. 111, pp. 106309, Mar, 2021. [23] D. Garcia, “Make the most of MUST, an open-source MATLAB UltraSound Toolbox,” IEEE International Ultrasonics Symposium 2021. [24] S. Bjærum, H. Torp, and K. Kristoffersen, “Clutter Filter Design for Ultrasound Color Flow Imaging,” 2002. [25] J. Baranger, J. Aguet, and O. Villemain, “Fast Thresholding of SVD Clutter Filter Using the Spatial Similarity Matrix and a Sum-Table Algorithm,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 70, no. 8, pp. 821-830, Aug, 2023. [26] J. Baranger, B. Arnal, F. Perren et al., “Adaptive Spatiotemporal SVD Clutter Filtering for Ultrafast Doppler Imaging Using Similarity of Spatial Singular Vectors,” IEEE Trans Med Imaging, vol. 37, no. 7, pp. 1574-1586, Jul, 2018. [27] Wikipedia contributors. "Singular value decomposition," https://en.wikipedia.org/w/index.php?title=Singular_value_decomposition&oldid=1234936471. [28] P. Costantini, F. Perone, A. Siani et al., “Multimodality Imaging of the Neglected Valve: Role of Echocardiography, Cardiac Magnetic Resonance and Cardiac Computed Tomography in Pulmonary Stenosis and Regurgitation,” J Imaging, vol. 8, no. 10, Oct 10, 2022. [29] A. D. Moore, Python GUI Programming with Tkinter: Develop responsive and powerful GUI applications with Tkinter: Packt Publishing Ltd, 2018. [30] Wikipedia contributors. "DICOM," https://en.wikipedia.org/w/index.php?title=DICOM&oldid=1236385307. [31] P. A. Grayburn, and J. D. Thomas, “Basic Principles of the Echocardiographic Evaluation of Mitral Regurgitation,” JACC: Cardiovascular Imaging, vol. 14, no. 4, pp. 843-853, 2021. [32] C. Huang, Y. Li, and X. Yao, “A Survey of Automatic Parameter Tuning Methods for Metaheuristics,” IEEE Transactions on Evolutionary Computation, vol. 24, no. 2, pp. 201-216, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96070 | - |
| dc.description.abstract | 彩色都卜勒作為一種可視化工具,對於診斷心臟和血管相關疾病,例如瓣膜周圍逆流和狹窄的問題,至關重要。然而,根據奈奎斯特準則,當血流速度超過系統能顯示的最大速度(即奈奎斯特速度)時,會產生混疊效應,導致速度資料的顯示與真實情況不相符。因此,本研究致力於開發一套去混疊演算法,並驗證在不同情境下的有效性,以解決彩色都卜勒的混疊問題。我們首先回顧了現有的去混疊方法,包括基於區塊分割之演算法、二維相位展開演算法和多種脈衝重複頻率交錯方法。分別介紹了它們的運作原理,並通過實例說明應用效果。由於這些方法各自存在著一些限制,導致難以達到理想效果,因此本研究提出了一套新的去混疊方法來克服這些不足。此技術的特點包含在區塊分割階段導入閾值設置,在速度校正時以區塊為單位並結合相位展開的概念,藉此解決分割不足的問題同時降低資料失真的發生。除此之外,我們通過取樣的方式獲得多種脈衝重複頻率的資料,隨後進行去混疊處理,期望藉由比較不同脈衝重複頻率設置下的處理結果,找出最佳的去混疊結果,從而提升訊號還原的正確性。為了評估演算法的成效,我們使用多種類型的資料進行測試,資料來源包括蒙地卡羅模擬、血管仿體實驗、活體實驗及臨床彩色都卜勒影像。實驗結果顯示,本研究提出的演算法在各種類型的資料中,正規化均方根誤差均優於其他演算法,顯示出其具有較高的適應性和通用性,能有效應對各種不同類型的資料。在臨床上,提供穩定可靠的去混疊結果,能協助醫生找出發生速度峰值的確切位置,有助於疾病診斷與後續治療。此外,本研究還為彩色都卜勒影像的去混疊設計了一個能與使用者互動的圖形介面,提高了該演算法在實際應用中的便捷性。 | zh_TW |
| dc.description.abstract | Color Doppler is an imaging tool for diagnosing heart and vascular diseases such as valvular regurgitation and stenosis. However, according to Nyquist criterion, when blood flow velocities exceed Nyquist velocity, aliasing occurs. This results in inaccuracies of velocity display compared to actual conditions. Therefore, this study aims to resolve aliasing problems in Color Doppler data by developing a dealiasing algorithm and validating the effectiveness across different scenarios. We start with reviewing existing dealiasing methods, including the segment-based dealiasing algorithm, the 2D phase unwrapping algorithm, and the staggered multi-PRF method. We introduce their underlying principles and demonstrate their applications. Each approach has some limitations, and this research proposes a new method to overcome these limitations. The technical highlights include introducing threshold setting in the segmentation stage and reconstructing the velocity field based on segment units, incorporating the concept of phase unwrapping during the process to alleviate the under-segmentation problem and mitigate data distortion. In addition, the acquisition of data with multiple PRFs is achieved through simple data decimation, followed by the dealiasing process. By comparing the results from different PRF settings, the optimal outcome is determined, thus enhancing the accuracy. To evaluate the algorithms, we applied them to various data collected from Monte Carlo simulations, flow phantom experiments, in vivo experiments, and clinical Color Doppler images. The experimental results demonstrate that the proposed algorithm achieves lower normalized root-mean-square error (NRMSE) than other algorithms across different data, indicating high adaptability and versatility. Providing the reliable dealiasing result can help doctors identify the specific position causing the peak velocity, thereby assisting in diagnosis and subsequent treatment. Furthermore, this study develops a user-interactive graphical interface, enhancing practical usability in real-world applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-11T16:06:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-10-11T16:06:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 xii 第一章 緒論 1 1.1彩色都卜勒 1 1.1.1脈衝波都卜勒與都卜勒效應 1 1.1.2都卜勒速度的估計 2 1.1.3彩色都卜勒成像 4 1.2混疊效應 5 1.3研究動機 6 1.4研究目標 9 1.5論文架構 11 第二章 現有去混疊方法的原理與應用 12 2.1 基於區塊分割之演算法 12 2.1.1演算法的原理與實際應用 12 2.2 二維相位展開 15 2.2.1相位卷繞 15 2.2.2二維相位展開演算法 16 2.2.3二維相位展開用於去混疊 17 2.3 多種脈衝重複頻率交錯方法 21 2.3.1 多種脈衝重複頻率交錯方法的原理 22 2.3.2 蒙地卡羅模擬 25 第三章 去除彩色都卜勒混疊效應之方法 28 3.1 流程架構 28 3.2 血流仿體實驗 29 3.2.1實驗架構 29 3.2.2彩色都卜勒成像 30 3.2.3雜訊濾波 32 3.3取樣 38 3.4結合影像分割與相位展開技術用以去除彩色都卜勒的混疊效應 40 3.4.1演算法的流程架構 40 3.4.2重建速度場 40 3.4.3區塊分割 41 3.4.4速度校正 44 第四章 結果與比較 48 4.1蒙地卡羅模擬 48 4.2血流仿體 53 4.2.1參數設定 53 4.2.2成像結果與去混疊結果 55 4.3活體實驗 58 4.4臨床資料 63 4.5使用者介面 66 第五章 討論 70 5.1演算法參數設定 70 5.1.1取樣 70 5.1.2區塊分割的閾值 70 5.2時間效能 72 5.3臨床影像資料效果分析 74 5.3.1連續波都卜勒波形重建 74 5.3.2重建後波形的分析與比較 77 第六章 結論與未來展望 84 6.1結論 84 6.2未來展望 85 參考文獻 87 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 結合相位展開技術實現基於區塊的彩色都卜勒去混疊 | zh_TW |
| dc.title | Segment-Based Dealiasing of Color Doppler Combined with Phase Unwrapping | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭耿璽;沈哲州;謝寶育 | zh_TW |
| dc.contributor.oralexamcommittee | Geng-Shi Jeng;Che-Chou Shen;Bao-Yu Hsieh | en |
| dc.subject.keyword | 彩色都卜勒,超音波血流成像,混疊效應,去混疊,多種脈衝重複頻率取樣, | zh_TW |
| dc.subject.keyword | Color Doppler,ultrasound blood flow imaging,Aliasing,Dealiasing,Multi-PRF Sampling, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202404420 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-09-27 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
