請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9606
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
dc.contributor.author | Rung-Guo Tzeng | en |
dc.contributor.author | 曾榮國 | zh_TW |
dc.date.accessioned | 2021-05-20T20:31:06Z | - |
dc.date.available | 2009-08-04 | |
dc.date.available | 2021-05-20T20:31:06Z | - |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-31 | |
dc.identifier.citation | [1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.
Addison Wesley, 1983. [2] Albert, H. Jeong, and A.-L. Barabasi. Diameter of the world wide web. Nature, 401:130– 131, 1999. [3] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. Pagerank computation and the structure of the web: Experiments and algorithms. In Proceedings of the 11th International World Wide Web Conference, Poster Track, 2002. [4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994. [5] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Pagerank as a function of the damping factor. In Proceedings of the 14th international conference on World Wide Web, pages 557– 566, New York, NY, USA, 2005. ACM Press. 40 [6] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web. Comput. Netw., 33(1-6):309–320, 2000. [7] Junghoo Cho and Hector Garcia-Molina. The evolution of the web and implications for an incremental crawler. In Proceedings of 26th International Conference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 200–209, 2000. [8] C. M. Hsu. On the Processing and Measurement of High Dimensional Data. PhD thesis. [9] C. M. Hsu and M. S. Chen. Efficient web matrix processing based on dual reordering. In Proceedings of ACM 17th Conference on Information and Knowledge Management, 2008. [10] G. Jeh and J. Widom. Scaling personalized web search. Technical report, Stanford University, 2002. [11] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H. Golub. Exploiting the block structure of the web for computing pagerank. Technical Report 2003- 17, Stanford University, 2003. [12] A. N. Langville and C. D. Meyer. Deeper inside pagerank. Internet Mathematics, 1(3):335– 400, 2004. [13] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, 2006. 41 [14] A. N. Langville and C. D. Meyer. A reordering for the pagerank problem. SIAM J. Scientific and Statistical Computing, 27(6):2112–2120, 2006. [15] C. P. Lee, G. H. Golub, and S. A. Zenios. A fast two-stage algorithm for computing pagerank. Technical Report SCCM-2003-15, Stanford University, 2003. [16] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison Wesleyd, 2003. [17] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. Technical Report 2003-17, Stanford University, 1998. [18] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, 2003. [19] E. Seneta. Non-negative Matrices and Markov Chains (Revised Printing). Springer, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9606 | - |
dc.description.abstract | 網頁排序是搜尋引擎中一項重要的排序技術。藉由不同的個人化向量,搜尋引擎公司可以為不同群組的使用者計算出特殊及適合的網頁排序向量。然而,僅計算單一網頁排序向量便需花費許多時間。為了解決這個問題,我們提出了SCC (Strongly Connected Component)網頁排序演算法。SCC 網頁排序演算法的主要精神在於利用舊的網頁排序向量推導出新的網頁排序向量。我們將網頁排序模組中原先的線性系統拆解為線性子系統。利用這些線性子系統間的相依關係,我們將原本的計算轉變為階層式架構。在計算個人化網頁排序向量時,我們檢查重覆計算的必要性。因此,我們可以避免一些迭代的重覆計算並達到效能上的改進。根據我們的實驗成果顯示,在計算諸多個人化網頁排序向量時,SCC 網頁排序演算法的表現在許多情況下可優於已知的加速演算法。 | zh_TW |
dc.description.abstract | PageRank is an important ranking technique used in search engines. By using different personalization vectors, search engine companies can compute specific and adaptive PageRank vectors for different classes of users. However, computing even one PageRank vector consumes a lot of time. To address this problem, we propose the SCC (Strongly Connected Component) PageRank algorithm. The main spirit of SCC PageRank is utilizing the old PageRank vector to deduce the new one. We decompose the original linear system of PageRank model into linear subsystems. By using the dependency relation between these linear subsystems, we translate the original computation into a hierarchical manner. While computing personalized PageRank vectors, we check the necessity of recomputation. Thus, we can prevent some iterative recomputations and achieve an improvement of efficiency. As shown by our experimental results, while computing several personalized PageRank vectors, SCC PageRank performs better than the known accelerating algorithms in most cases. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:31:06Z (GMT). No. of bitstreams: 1 ntu-97-R95921088-1.pdf: 1025283 bytes, checksum: c2a23c5586d1e4a9c3155134fdb029a9 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 1 Introduction 1
2 Preliminaries 7 2.1 Web Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Google’s PageRank Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 The Personalization Vector vT . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 The Personalized PageRank Problem . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Linear System for PageRank Problem . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Two-Way Reordered PageRank Model . . . . . . . . . . . . . . . . . . . . . . . 12 3 SCC PageRank Algorithm 18 3.1 Two-Way Reordered PageRank on Personalized PageRank . . . . . . . . . . . . 18 3.2 SCC PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 SCC PageRank on Personalized PageRank . . . . . . . . . . . . . . . . . . . . . 24 3.4 Time and Space Complexities of SCC PageRank . . . . . . . . . . . . . . . . . 29 4 Experimental Evaluation 32 5 RelatedWork 37 6 Conclusions 39 | |
dc.language.iso | en | |
dc.title | 利用網路中的強連結單元計算個人化網頁排序 | zh_TW |
dc.title | Computing Personalized PageRank Using Strongly Connected Components in Web | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 鄭士康(Shyh-Kang Jeng) | |
dc.contributor.oralexamcommittee | 呂永和(Yung-Ho Leu),陳孟彰(Meng-Chang Chen),楊得年(De-Nian Yang) | |
dc.subject.keyword | 演算法,搜尋引擎,鏈結分析,線性系統,網頁排序, | zh_TW |
dc.subject.keyword | Algorithm,Search Engine,Linkage Analysis,Linear System,PageRank, | en |
dc.relation.page | 42 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf | 1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。