請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96059完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂宥蓉 | zh_TW |
| dc.contributor.advisor | Yu-Jung Lu | en |
| dc.contributor.author | 林承翰 | zh_TW |
| dc.contributor.author | Cheng-Han Lin | en |
| dc.date.accessioned | 2024-09-25T16:50:40Z | - |
| dc.date.available | 2024-12-27 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | (1) Chiao, Z.-Y.; Chen, Y.-C.; Chen, J.-W.; Chu, Y.-C.; Yang, J.-W.; Peng, T.-Y.; Syong, W.-R.; Lee, H. W. H.; Chu, S.-W.; Lu, Y.-J. Full-color Generation Enabled by Refractory Plasmonic Crystals. Nanophotonics 2022, 11 (12), 2891-2899.
(2) Yu, M.-J.; Chang, C.-L.; Lan, H.-Y.; Chiao, Z.-Y.; Chen, Y.-C.; Howard Lee, H. W.; Chang, Y.-C.; Chang, S.-W.; Tanaka, T.; Tung, V.; et al. Plasmon-Enhanced Solar-Driven Hydrogen Evolution Using Titanium Nitride Metasurface Broadband Absorbers. ACS Photonics 2021, 8 (11), 3125-3132. (3) Yang, J.-W.; Peng, T.-Y.; Clarke, D. D. A.; Bello, F. D.; Chen, J.-W.; Yeh, H.-C.; Syong, W.-R.; Liang, C.-T.; Hess, O.; Lu, Y.-J. Nanoscale Gap-Plasmon-Enhanced Superconducting Photon Detectors at Single-Photon Level. Nano Letters 2023, 23 (24), 11387-11394. (4) Syong, W.-R.; Fu, J.-H.; Kuo, Y.-H.; Chu, Y.-C.; Hakami, M.; Peng, T.-Y.; Lynch, J.; Jariwala, D.; Tung, V.; Lu, Y.-J. Enhanced Photogating Gain in Scalable MoS2 Plasmonic Photodetectors via Resonant Plasmonic Metasurfaces. ACS Nano 2024, 18 (7), 5446-5456. (5) Lien, D.-H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager, J. W.; Yablonovitch, E.; Javey, A. Electrical Suppression of All Nonradiative Recombination Pathways in Monolayer Semiconductors. Science 2019, 364 (6439), 468-471. (6) Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly Bound Trions in Monolayer MoS2. Nature Materials 2013, 12 (3), 207-211. (7) Liu, Y.; Shen, T.; Linghu, S.; Zhu, R.; Gu, F. Electrostatic Control of Photoluminescence from A and B Excitons in Monolayer Molybdenum Disulfide. Nanoscale Advances 2022, 4 (11), 2484-2493. (8) Warnock, R. On the Propagation of Electrodynamic Waves Along a Wire by A. Sommerfeld. Electromagnetics 2019, 39 (5), 281-324. (9) Wood, R. W. XLII. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1902, 4 (21), 396-402. (10) Zenneck, J. Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Annalen der Physik 1907, 328, 846-866. (11) Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America 1941, 31 (3), 213-222. (12) Hessel, A.; Oliner, A. A. A New Theory of Wood’s Anomalies on Optical Gratings. Applied Optics 1965, 4 (10), 1275-1297. (13) Ritchie, R. H. Plasma Losses by Fast Electrons in Thin Films. Physical Review 1957, 106 (5), 874-881. (14) Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Zeitschrift für Physik A Hadrons and nuclei 1968, 216 (4), 398-410. (15) Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. 1968, 23 (12), 2135-2136 (16) Kittel, C. Introduction to Solid State Physics; Wiley, 1956. (17) Torino, S.; Conte, L.; Iodice, M.; Coppola, G.; Prien, R. D. PDMS Membranes as Sensing Element in Optical Sensors for Gas Detection in Water. Sensing and Bio-Sensing Research 2017, 16, 74-78.. (18) Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a Spaser-based Nanolaser. Nature 2009, 460 (7259), 1110-1112. (19) De Angelis, F.; Gentile, F.; Mecarini, F.; Das, G.; Moretti, M.; Candeloro, P.; Coluccio, M. L.; Cojoc, G.; Accardo, A.; Liberale, C.; et al. Breaking the Diffusion Limit with Super-hydrophobic Delivery of Molecules to Plasmonic Nanofocusing SERS Structures. Nature Photonics 2011, 5 (11), 682-687. (20) Fei, Z.; Andreev, G. O.; Bao, W.; Zhang, L. M.; McLeod, A. S.; Wang, C.; Stewart, M. K.; Zhao, Z.; Dominguez, G.; Thiemens, M.; et al. Infrared Nanoscopy of Dirac Plasmons at the Graphene–SiO2 Interface. Nano Letters 2011, 11 (11), 4701-4705. (21) Altewischer, E.; Van Exter, M.; Woerdman, J. Plasmon-assisted Transmission of Entangled Photons. Nature 2002, 418 (6895), 304-306. (22) Geddes, C. D. Reviews in Plasmonics 2017; Springer International Publishing, 2019. (23) Raza, S.; Christensen, T.; Wubs, M.; Bozhevolnyi, S. I.; Mortensen, N. A. Nonlocal Response in Thin-film Waveguides: Loss Versus Nonlocality and Breaking of Complementarity. Physical Review B 2013, 88 (11), 115401. (24) Guler, U.; Shalaev, V. M.; Boltasseva, A. Nanoparticle Plasmonics: Going Practical with Transition Metal Nitrides. Materials Today 2015, 18 (4), 227-237. (25) Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.; Xiao, X.; Lee, J.-M. Transition Metal Nitrides for Electrochemical Energy Applications. Chemical Society Reviews 2021, 50 (2), 1354-1390. (26) Calzolari, A.; Catellani, A. Controlling the TiN Electrode Work Function at the Atomistic Level: A First Principles Investigation. IEEE Access 2020, 8, 156308-156313. (27) Guler, U.; Boltasseva, A.; Shalaev, V. M. Refractory Plasmonics. Science 2014, 344 (6181), 263-264. (28) Kurinec, S. K. Metal Oxide–Semiconductor Field Effect Transistors. In Encyclopedia of Materials: Science and Technology, Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., Veyssière, P. Eds.; Elsevier, 2001; pp 5461-5475. (29) Agarwal, H.; Gupta, C.; Chauhan, Y. S.; Hu, C. Chapter 4 - Leakage Current. In BSIM-Bulk MOSFET Model for IC Design - Digital, Analog, RF and High-voltage, Agarwal, H., Gupta, C., Chauhan, Y. S., Hu, C. Eds.; Woodhead Publishing, 2023; 81-98. (30) HongYu, Y.; Ming-Fu, L.; Dim-Lee, K. Thermally Robust HfN Metal as a Promising Gate Electrode for Advanced MOS Device Applications. IEEE Transactions on Electron Devices 2004, 51 (4), 609-615. (31) Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Kavalieros, J.; Metz, M. High-K Metal-gate Stack and its MOSFET Characteristics. IEEE Electron Device Letters 2004, 25 (6), 408-410. (32) Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J.; Shalaev, V. M.; Kildishev, A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Advanced Materials 2014, 26 (47), 7959-7965. (33) Westlinder, J.; Schram, T.; Pantisano, L.; Cartier, E.; Kerber, A.; Lujan, G. S.; Olsson, J.; Groeseneken, G. On the Thermal Stability of Atomic Layer Deposited TiN as Gate Electrode in MOS Devices. IEEE Electron Device Letters 2003, 24 (9), 550-552. (34) Ren, C.; Faizhal, B. B.; Chan, D. S. H.; Li, M. F.; Yeo, Y. C.; Trigg, A. D.; Balasubramanian, N.; Kwong, D. L. Work Function Tuning of Metal Nitride Electrodes for Advanced CMOS Devices. Thin Solid Films 2006, 504 (1), 174-177. (35) Novikov, A. Experimental Measurement of Work Function in Doped Silicon Surfaces. Solid-State Electronics 2010, 54 (1), 8-13.. (36) Liu, Y.; Kijima, S.; Sugimata, E.; Masahara, M.; Endo, K.; Matsukawa, T.; Ishii, K. i.; Sakamoto, K.; Sekigawa, T.; Yamauchi, H.; et al. Investigation of the TiN Gate Electrode With Tunable Work Function and Its Application for FinFET Fabrication. IEEE Transactions on Nanotechnology 2006, 5, 723-730. (37) Gotoh, Y.; Tsuji, H.; Ishikawa, J. Measurement of Work Function of Transition Metal Nitride and Carbide Thin Films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2003, 21 (4), 1607-1611. (38) Fujii, R.; Gotoh, Y.; Liao, M. Y.; Tsuji, H.; Ishikawa, J. Work Function Measurement of Transition Metal Nitride and Carbide Thin Films. Vacuum 2006, 80 (7), 832-835. (39) Fillot, F.; Morel, T.; Minoret, S.; Matko, I.; Maîtrejean, S.; Guillaumot, B.; Chenevier, B.; Billon, T. Investigations of Titanium Nitride as Metal Gate Material, Elaborated by Metal Organic Atomic Layer Deposition using TDMAT and NH3. Microelectronic Engineering 2005, 82 (3), 248-253. (40) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. science 2004, 306 (5696), 666-669. (41) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters 2010, 105 (13), 136805. (42) Du, L.; Tang, J.; Liang, J.; Liao, M.; Jia, Z.; Zhang, Q.; Zhao, Y.; Yang, R.; Shi, D.; Gu, L.; et al. Giant Valley Coherence at Room Temperature in 3R WS2 with Broken Inversion Symmetry. Research 2019, 2019. (43) Suzuki, R.; Sakano, M.; Zhang, Y. J.; Akashi, R.; Morikawa, D.; Harasawa, A.; Yaji, K.; Kuroda, K.; Miyamoto, K.; Okuda, T.; et al. Valley-dependent Spin Polarization in Bulk MoS2 with Broken Inversion Symmetry. Nature Nanotechnology 2014, 9 (8), 611-617. (44) Xu, Z.; Yang, H.; Song, X.; Chen, Y.; Yang, H.; Liu, M.; Huang, Z.; Zhang, Q.; Sun, J.; Liu, L.; et al. Topical Review: Recent Progress of Charge Density Waves in 2D Transition Metal Dichalcogenide-based Heterojunctions and Their Applications. Nanotechnology 2021, 32 (49), 492001. (45) Chang, J.; Blackburn, E.; Holmes, A. T.; Christensen, N. B.; Larsen, J.; Mesot, J.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Watenphul, A.; et al. Direct Observation of Competition Between Superconductivity and Charge Density Wave Order in YBa2Cu3O6.67. Nature Physics 2012, 8 (12), 871-876. (46) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-dimensional Transition Metal Dichalcogenides. Nature Nanotechnology 2012, 7 (11), 699-712. (47) Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Letters 2011, 11 (12), 5111-5116. (48) Chen, K.; Deng, J.; Yan, Y.; Shi, Q.; Chang, T.; Ding, X.; Sun, J.; Yang, S.; Liu, J. Z. Diverse Electronic and Magnetic Properties of CrS2 Enabling Strain-controlled 2D Lateral Heterostructure Spintronic Devices. npj Computational Materials 2021, 7 (1), 79. (49) Lin, Y.-C.; Dumcenco, D. O.; Huang, Y.-S.; Suenaga, K. Atomic Mechanism of the Semiconducting-to-metallic Phase Transition in Single-layered MoS2. Nature Nanotechnology 2014, 9 (5), 391-396. (50) Matsui, F.; Eguchi, R.; Nishiyama, S.; Izumi, M.; Uesugi, E.; Goto, H.; Matsushita, T.; Sugita, K.; Daimon, H.; Hamamoto, Y.; et al. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface. Scientific Reports 2016, 6 (1), 36258. (51) Pulkin, A.; Yazyev, O. V. Spin- and Valley-polarized Transport across Line Defects in Monolayer MoS2. Physical Review B 2016, 93 (4), 041419. (52) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Letters 2010, 10 (4), 1271-1275. (53) Liu, G.-B.; Shan, W.-Y.; Yao, Y.; Yao, W.; Xiao, D. Three-band tight-binding Model for Monolayers of group-VIB Transition Metal Dichalcogenides. Physical Review B 2013, 88 (8), 085433. (54) Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y.; Aslan, B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Physical Review Letters 2014, 113 (7), 076802. (55) Frenkel, J. On the Transformation of Light into Heat in Solids. I. Physical Review 1931, 37 (1), 17-44. (56) Frenkel, J. On the Transformation of Light into Heat in Solids. II. Physical Review 1931, 37 (10), 1276-1294. (57) Mott, N. F. The Transition to the Metallic State. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1961, 6 (62), 287-309. (58) Kéna-Cohen, S. Strong Exciton-photon Coupling in Organic Semiconductor Microcavities. 2010. (59) Liu, X.; Zhang, S.; Zhong, Y.; Yang, F.; Cao, Q.; Du, W.; Jianwei, S. Cavity Engineering of Two-dimensional Perovskites and Inherent Light-matter Interaction. Photonics Research 2020, 8. (60) Basov, D. N.; Fogler, M. M.; García de Abajo, F. J. Polaritons in van der Waals Materials. Science 2016, 354 (6309), aag1992. (61) Pandey, J.; Soni, A. Unraveling Biexciton and Excitonic Excited States from Defect Bound States in Monolayer MoS2. Applied Surface Science 2019, 463, 52-57. (62) Golovynskyi, S.; Irfan, I.; Bosi, M.; Seravalli, L.; Datsenko, O. I.; Golovynska, I.; Li, B.; Lin, D.; Qu, J. Exciton and Trion in Few-layer MoS2: Thickness- and Temperature-dependent Photoluminescence. Applied Surface Science 2020, 515, 146033. (63) Li, Y.; Wu, X.; Liu, W.; Xu, H.; Liu, X. Revealing the Interrelation between C- and A-exciton Dynamics in Monolayer WS2 via Transient Absorption Spectroscopy. Applied Physics Letters 2021, 119 (5). (64) Harats, M. G.; Kirchhof, J. N.; Qiao, M.; Greben, K.; Bolotin, K. I. Dynamics and Efficient Conversion of Excitons to Trions in Non-uniformly Strained Monolayer WS2. Nature Photonics 2020, 14 (5), 324-329. (65) Fu, J.-H.; Min, J.; Chang, C.-K.; Tseng, C.-C.; Wang, Q.; Sugisaki, H.; Li, C.; Chang, Y.-M.; Alnami, I.; Syong, W.-R.; et al. Oriented Lateral Growth of Two-dimensional Materials on C-plane Sapphire. Nature Nanotechnology 2023, 18 (11), 1289-1294. (66) Huang, Y.; Pan, Y.-H.; Yang, R.; Bao, L.-H.; Meng, L.; Luo, H.-L.; Cai, Y.-Q.; Liu, G.-D.; Zhao, W.-J.; Zhou, Z.; et al. Universal Mechanical Exfoliation of Large-area 2D Crystals. Nature Communications 2020, 11 (1), 2453. (67) Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS Nano 2011, 5 (12), 9703-9709. (68) Halpern, A. R.; Corn, R. M. Lithographically Patterned Electrodeposition of Gold, Silver, and Nickel Nanoring Arrays with Widely Tunable Near-Infrared Plasmonic Resonances. ACS Nano 2013, 7 (2), 1755-1762. (69) Liu, Y.; Duan, X.; Shin, H.-J.; Park, S.; Huang, Y.; Duan, X. Promises and Prospects of Two-Dimensional Transistors. Nature 2021, 591 (7848), 43-53 (70) Huang, X.; Liu, C.; Zhou, P. 2D Semiconductors for Specific Electronic Applications: from Device to System. npj 2D Materials and Applications 2022, 6 (1), 51. (71) Johnson, R. W.; Hultqvist, A.; Bent, S. F. A Brief Review of Atomic Layer Deposition: from Fundamentals to Applications. Materials Today 2014, 17 (5), 236-246. (72) Velický, M.; Donnelly, G. E.; Hendren, W. R.; McFarland, S.; Scullion, D.; DeBenedetti, W. J. I.; Correa, G. C.; Han, Y.; Wain, A. J.; Hines, M. A.; et al. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano 2018, 12 (10), 10463-10472. (73) Okuyama, Y.; Hashimoto, T.; Koguchi, T. High Dose Ion Implantation into Photoresist. Journal of The Electrochemical Society 1978, 125 (8), 1293. (74) Kawaguchi, M. N.; Papanu, J. S.; Su, B.; Castle, M.; Al-Bayati, A. Surface Characterization of Ion-enhanced Implanted Photoresist Removal. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2006, 24 (2), 657-663. (75) McCreary, K. M.; Hanbicki, A. T.; Sivaram, S. V.; Jonker, B. T. A- and B-exciton Photoluminescence Intensity Ratio as a Measure of Sample Quality for Transition Metal Dichalcogenide Monolayers. APL Materials 2018, 6 (11). (76) Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W. J. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 2017, 11 (2), 1588-1596. (77) Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H.; et al. Large Work Function Modulation of Monolayer MoS2 by Ambient Gases. ACS Nano 2016, 10 (6), 6100-6107. (78) Illarionov, Y. Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M. I.; Mueller, T.; Lemme, M. C.; Fiori, G.; Schwierz, F.; et al. Insulators for 2D Nanoelectronics: The Gap to Bridge. Nature Communications 2020, 11 (1), 3385. (79) Nishimura, T.; Kita, K.; Toriumi, A. Evidence for Strong Fermi-level Pinning due to Metal-induced Gap States at Metal/Germanium Interface. Applied Physics Letters 2007, 91 (12). (80) Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The Valley Hall effect in MoS2 Transistors. Science 2014, 344 (6191), 1489-1492. (81) Ye, Y.; Wong, Z. J.; Lu, X.; Ni, X.; Zhu, H.; Chen, X.; Wang, Y.; Zhang, X. Monolayer Excitonic Laser. Nature Photonics 2015, 9 (11), 733-737. (82) Zhang, X.; Nan, H.; Xiao, S.; Wan, X.; Ni, Z.; Gu, X.; Ostrikov, K. Shape-Uniform, High-Quality Monolayered MoS2 Crystals for Gate-Tunable Photoluminescence. ACS Applied Materials & Interfaces 2017, 9 (48), 42121-42130. (83) 張立謙. 利用過渡金屬氮化物電漿子超穎介面增強二次諧波產生. 國立臺灣大學, 台北市, 2022. https://hdl.handle.net/11296/5mm2c3. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96059 | - |
| dc.description.abstract | 近年來,隨著對於元件尺度的要求以達到單位面積數量的提升,層狀二維材料被認定是相當具有潛力的新興半導體,尤其單層大面積的過渡金屬二硫族化物(TMDCs)為光電整合提供良好的機會與未來性,原因在於單層時其能帶結構為直接能隙,使得發光效率明顯提升。此外,當傳統多晶矽逐漸縮小至奈米尺度,載子的遷移率將顯著下降,而過渡金屬二硫族化物仍保持相當好的電子遷移率。最後,由於單層引致較弱的介電屏蔽效應(Dielectric Screening Effect),電子與電洞具有較強的激子束縛能,因此能在室溫下穩定發光;而相對較大的激子半徑則使其易與表面載子發生作用,而可透過施加閘極電壓調制其自發輻射發光。
過往研究並未著重於電閘極調制光致發光的實際應用,原因在於大多數研究使用手撕製備單層二硫化鉬以利得到優良的發光性質,然而手撕製備之單層二硫化鉬十分不便與現今元件製程整合,因此我們透過氮化鉿與化學氣相沉積之單層大面積二硫化鉬之異質結構接面以簡便的製程初步實現了元件整合並透過氮化鉿作為良好反射層以及作為閘極與二硫化鉬之功函數匹配實現高發光強度以及高閘極調制能力。立基於此結果,我們更進一步利用過渡金屬氮化物作為耐熱材料以及置於大氣下的高環境穩定性,運用隙電漿震盪的局域強場增強二維材料的自發輻射發光以致調控光的程度增強。 在實驗上,我們透過比較氮化鉿與p型矽作為金屬閘極,並透過相關電性檢測一步步地確認元件運作機制。最後我們成功驗證功函數機制能有效調控二硫化鉬的光致發光,同時運用電漿震盪強場優勢,增加光與物質的交互作用實現發光強度增強;然由於奈米共振金屬結構直接接觸二硫化鉬表面中和了累積之載子而導致調制幅度減弱。 總結以上,我們實現過渡金屬氮化物閘極調控載子濃度與隙電漿共振的整合並驗證閘極調致發光的機制。最後,我們期望此元件同時具備良好閘極光調制能力也維持元件的電性,以其做到單位面積室溫下光調制元件做Li-Fi 可見光通訊應用。 | zh_TW |
| dc.description.abstract | In recent years, with the increasing demand for smaller device scales to enhance the number of units per unit area, layered two-dimensional (2D) materials have been identified as highly promising emerging semiconductors. Particularly, single-layer large-area transition metal dichalcogenides (TMDCs) offer excellent opportunities and prospects for optoelectronic integration. This is because their band structure in a single layer forms a direct bandgap, significantly improving light emission efficiency. Additionally, as traditional polysilicon is scaled down to the nanoscale, the carrier mobility decreases significantly, whereas TMDCs maintain good electron mobility. Finally, due to the weaker dielectric screening effect in a single layer, electrons and holes exhibit stronger exciton binding energy, allowing for stable light emission at room temperature. Moreover, the relatively large exciton radius facilitates interactions with surface carriers, enabling modulation of spontaneous radiative emission through gate voltage application.
Previous research has not focused on practical applications of gate modulation of photoluminescence because most studies used mechanically exfoliated monolayer molybdenum disulfide (MoS₂) to achieve excellent luminescent properties. However, mechanically exfoliated monolayer MoS₂ is inconvenient for integration with current device fabrication processes. Therefore, we have achieved initial device integration through a simple process using hafnium nitride and chemical vapor deposition of large-area monolayer MoS₂ with heterostructure interfaces. Hafnium nitride serves as a good reflective layer and matches the work function with MoS₂ to achieve high light emission intensity and high gate modulation capability. Based on this result, we further utilized transition metal nitrides as refractory materials with high environmental stability under atmospheric conditions. We employed local strong field enhancement of spontaneous emission of two-dimensional materials via plasmonic resonance to enhance the extent of light modulation. In our experiments, we compared hafnium nitride and p-type silicon as metal gates and verified the device operation mechanism through related electrical tests. We successfully confirmed that the work function mechanism effectively modulates the photoluminescence of MoS₂. Simultaneously, we used plasmonic resonance to enhance light-matter interactions, resulting in enhanced light emission intensity. However, the direct contact of the nano-plasmonic metal structure with the MoS₂ surface neutralized the accumulated carriers, leading to reduced modulation amplitude. In summary, we have achieved integration of transition metal nitride gate modulation of carrier concentration and plasmonic resonance and verified the gate-tuned light emission mechanism. We hope this device will combine excellent gate-tunable light modulation capability with maintained device electrical properties, enabling unit-area room-temperature light modulation devices for Li-Fi visible light communication applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:50:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:50:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 V Abstract VI 目次 VIII 圖次 X 表次 XV 第一章 緒論 1 1.1 研究背景 1 1.2 電漿子學(Plasmonics) 2 1.2.1 電漿振盪的機制與性質 5 1.2.2 電漿振盪的電動力學描述 7 1.2.3 奈米金屬球的局域表面電漿共振 13 1.2.4 隙電漿子共振(Gap-Plasmon Resonance) 16 1.3 過渡金屬氮化物(Transition Metal Nitrides, TMNs) 18 1.3.1 應用於電漿子材料 18 1.3.2 應用於金屬閘極 20 1.4 過渡金屬二硫族化物(Transition Metal Dichalcogenides, TMDCs) 24 1.5 研究動機 36 第二章 樣品製備及實驗量測系統 37 2.1 二硫化鉬薄膜電晶體(MoS2 Thin Film Transistor) 37 2.1.1 氮化鉿金屬閘極製備—高真空磁控射頻交流濺鍍 38 2.1.2 氧化層製備—原子層沉積 40 2.1.3 熱蒸鍍金之MoS2 / Sapphire基板乾轉印 42 2.1.4 電晶體源極汲極之金屬製備—熱電阻蒸鍍 44 2.1.5 元件設計定義—曝光顯影及蝕刻 46 2.2 光學實驗量測系統 50 2.2.1 光致發光共軛焦掃瞄系統(Confocal Scanning System) 50 2.2.2 閘極調制光致發光光學系統 52 2.3 電性量測系統 54 第三章 功函數影響之閘極調制發光 55 3.1 單層二硫化鉬於不同基板上的光學特性 55 3.2 單層二硫化鉬薄膜電晶體之電性量測 58 3.2.1 能帶圖及定義物理量 58 3.2.2 二硫化鉬之電性量測分析 67 3.3 閘極電壓調制之光致發光結果及載子分析 69 3.3.1 入射光強度分析 69 3.3.2 功函數相依性分析 70 第四章 電漿增強之主動電控光調製器 73 4.1 電漿子系統模擬方法—有限時域差分法(Finite-Difference Time Domain, FDTD) 73 4.2 電漿子共振奈米結構製作—電子束微影製程(Electron Beam Lithography, EBL) 74 4.3 實驗結果與模擬預測 76 第五章 結論與未來方向 80 第六章 參考文獻及相關補充 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 過渡金屬氮化物 | zh_TW |
| dc.subject | 可見光通訊 | zh_TW |
| dc.subject | 閘極調控 | zh_TW |
| dc.subject | 激子–電漿子耦合 | zh_TW |
| dc.subject | 光致發光光譜 | zh_TW |
| dc.subject | 功函數 | zh_TW |
| dc.subject | 電子能帶彎曲 | zh_TW |
| dc.subject | 氮化鉿 | zh_TW |
| dc.subject | 單層二硫化鉬 | zh_TW |
| dc.subject | Monolayer Molybdenum Disulfide (MoS2) | en |
| dc.subject | Band Bending | en |
| dc.subject | Work Function | en |
| dc.subject | Photoluminescence Spectrum | en |
| dc.subject | Plexciton | en |
| dc.subject | Gate-tunable | en |
| dc.subject | Li-Fi | en |
| dc.subject | Hafnium Nitride (HfN) | en |
| dc.subject | Transition Metal Nitrides | en |
| dc.title | 過渡金屬氮化物閘極增強電場調控單層二硫化鉬之激子—電漿子耦合 | zh_TW |
| dc.title | Gate-Tunable Plexciton Emission in Monolayer MoS2 Coupled with Nitride-Based Plasmonic Heterostructures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱士維;施閔雄 | zh_TW |
| dc.contributor.oralexamcommittee | Shi-Wei Chu;Min-Hsiung Shih | en |
| dc.subject.keyword | 單層二硫化鉬,過渡金屬氮化物,氮化鉿,電子能帶彎曲,功函數,光致發光光譜,激子–電漿子耦合,閘極調控,可見光通訊, | zh_TW |
| dc.subject.keyword | Monolayer Molybdenum Disulfide (MoS2),Transition Metal Nitrides,Hafnium Nitride (HfN),Band Bending,Work Function,Photoluminescence Spectrum,Plexciton,Gate-tunable,Li-Fi, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202403843 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2029-08-09 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-09 | 6.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
