Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96053
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾惠芸zh_TW
dc.contributor.advisorHui-Yun Tsengen
dc.contributor.author郭耘zh_TW
dc.contributor.authorYun Kuoen
dc.date.accessioned2024-09-25T16:48:47Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103(9), 1579–1588.
Amala, U., & Shivalingaswamy, T. (2017). Role of native buzz pollinator bees in enhancing fruit and seed set in tomatoes under open field conditions. Journal of Entomology and Zoology Studies, 5(3), 1742–1744.
Arroyo-Correa, B., Beattie, C., & Vallejo-Marín, M. (2019). Bee and floral traits affect the characteristics of the vibrations experienced by flowers during buzz pollination. Journal of Experimental Biology, 222(4), jeb198176.
Bashir, M. A., Alvi, A. M., Khan, K. A., Rehmani, M. I. A., Ansari, M. J., Atta, S., Ghramh, H. A., Batool, T., & Tariq, M. (2018). Role of pollination in yield and physicochemical properties of tomatoes (Solanum lycopersicum). Saudi Journal of Biological Sciences, 25(7), 1291–1297.
Brown, M. J., & Paxton, R. J. (2009). The conservation of bees: a global perspective. Apidologie, 40(3), 410–416.
Buchmann, S. L., & Cane, J. H. (1989). Bees assess pollen returns while sonicating Solanum flowers. Oecologia, 81, 289–294.
Carrizo Garcia, C., Matesevach, M., & Barboza, G. (2008). Features related to anther opening in Solanum species (Solanaceae). Botanical Journal of the Linnean Society, 158(2), 344–354.
Cocroft, R. B., & Rodríguez, R. L. (2005). The behavioral ecology of insect vibrational communication. Bioscience, 55(4), 323–334.
Cooley, H., & Vallejo-Marín, M. (2021). Buzz-pollinated crops: a global review and meta-analysis of the effects of supplemental bee pollination in tomato. Journal of Economic Entomology, 114(2), 505–519.
Corti, C., Arcerito, F. R. M., de Landa, G. F., Mazzei, M. P., de Landa, M. F., Maggi, M., & Galetto, L. (2024). Tomato production under greenhouse conditions: Bumble bees or hormones? Scientia Horticulturae, 326, 112747.
De Luca, P. A., Bussiere, L. F., Souto-Vilaros, D., Goulson, D., Mason, A. C., & Vallejo-Marín, M. (2013). Variability in bumble bee pollination buzzes affects the quantity of pollen released from flowers. Oecologia, 172, 805–816.
De Luca, P. A., & Vallejo-Marín, M. (2013). What's the ‘buzz’about? The ecology and evolutionary significance of buzz-pollination. Current Opinion in Plant Biology, 16(4), 429–435.
Delaplane, K. S., & Mayer, D. F. (2000). Crop pollination by bees. CABI publishing, New York, USA.
Deprá, M. S., Delaqua, G. G., Freitas, L., & Gaglianone, M. C. (2014). Pollination deficit in open-field tomato crops (Solanum lycopersicum L., Solanaceae) in Rio de Janeiro state, southeast Brazil. Journal of Pollination Ecology, 12, 1–8.
DeTar, W. R., Haugh, C., & Hamilton, J. (1968). Acoustically forced vibration of greenhouse tomato blossoms to induce pollination. Transactions of the ASAE, 11(5), 731–735.
Dingley, A., Anwar, S., Kristiansen, P., Warwick, N. W., Wang, C.-H., Sindel, B. M., & Cazzonelli, C. I. (2022). Precision pollination strategies for advancing horticultural tomato crop production. Agronomy, 12(2), 518.
Dogterom, M., Matteoni, J., & Plowright, R. (1998). Pollination of greenhouse tomatoes by the North American Bombus vosnesenskii (Hymenoptera: Apidae). Journal of Economic Entomology, 91(1), 71–75.
Downey, D. L., & Winston, M. L. (2001). Honey bee colony mortality and productivity with single and dual infestations of parasitic mite species. Apidologie, 32(6), 567–575.
Endress, P. K. (1996). Diversity and evolutionary biology of tropical flowers. Cambridge University Press.
Free, J. B. (1955). The division of labour within bumble bee colonies. Insectes Sociaux, 2, 195–212.
Gallai, N., Salles, J.-M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3), 810–821.
Goulson, D., Peat, J., Stout, J. C., Tucker, J., Darvill, B., Derwent, L. C., & Hughes, W. O. (2002). Can alloethism in workers of the bumble bee, Bombus terrestris, be explained in terms of foraging efficiency? Animal Behaviour, 64(1), 123–130.
Groot, R. d., Wilson, M. A., & Boumans, R. M. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393-408.
Halder, S., Ghosh, S., Khan, R., Khan, A. A., Perween, T., & Hasan, M. A. (2019). Role of pollination in fruit crops: A review. The Pharma Innovation Journal, 8(5), 695–702.
Hanna, H. (1999). Assisting natural wind pollination of field tomatoes with an air blower enhances yield. HortScience, 34(5), 846–847.
Harder, L., & Barclay, R. (1994). The functional significance of poricidal anthers and buzz pollination: controlled pollen removal from Dodecatheon. Functional Ecology, 509–517.
Heinrich, B. (2004) Bumblebee economics. Cambridge, Massachussets: Harvard University Press 288p (2nd edition)
Hiraguri, T., Shimizu, H., Kimura, T., Matsuda, T., Maruta, K., Takemura, Y., Ohya, T., & Takanashi, T. (2023). Autonomous drone-based pollination system using AI classifier to replace bees for greenhouse tomato cultivation. IEEE Access, 11, 99352–99364.
Ingram, M., Nabhan, G., & Buchmann, S. (1996). Impending pollination crisis threatens biodiversity and agriculture. Tropinet, 7.
Jones, K. N., Reithel, J. S., & Irwin, R. E. (1998). A trade-off between the frequency and duration of bumble bee visits to flowers. Oecologia, 117, 161–168.
Kato, M. (1993). Impacts of the introduction of Bombus terrestris colonies upon pollination mutualism in Japan. Honey bee Science, 1993, Vol. 14, No. 3, 110-114
Kawai, Y., & Kudo, G. (2009). Effectiveness of buzz pollination in Pedicularis chamissonis: significance of multiple visits by bumble bees. Ecological Research, 24, 215–223.
King, M. J. (1993). Buzz foraging mechanism of bumble bees. Journal of Apicultural Research, 32(1), 41–49.
Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313.
Kuo, Y., Lu, Y.-H., Lin, Y.-H., Lin, Y.-C., & Wu, Y.-L. (2023). Elevated temperature affects energy metabolism and behavior of bumble bees. Insect Biochemistry and Molecular Biology, 155, 103932.
Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27(2), 499–510.
Li, G., Suo, R., Zhao, G., Gao, C., Fu, L., Shi, F., Dhupia, J., Li, R., & Cui, Y. (2022). Real-time detection of kiwifruit flower and bud simultaneously in orchard using YOLOv4 for robotic pollination. Computers and Electronics in Agriculture, 193, 106641.
Matsumura, C., Yokoyama, J., & Washitani, I. (2004). Invasion status and potential ecological impacts of an invasive alien bumble bee, Bombus terrestris L.(Hymenoptera: Apidae) naturalized in Southern Hokkaido, Japan. Global Environmental Research-English Edition, 8(1), 51–66.
Michener, C. D. (1962). An interesting method of pollen collecting by bees from flowers with tubular anthers. Revista de Biologia Tropical, 10(2), 167–175
Morandin, L., Laverty, T., & Kevan, P. (2001a). Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. Journal of Economic Entomology, 94(2), 462–467.
Morandin, L., Laverty, T., & Kevan, P. (2001b). Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. Journal of economic entomology, 94(1), 172–179.
Mortimer, B. (2017). Biotremology: do physical constraints limit the propagation of vibrational information? Animal Behaviour, 130, 165–174.
Nahir, D., Gan-Mor, S., Rylski, I., & Frankel, H. (1984). Pollination of tomato flowers by a pulsating air jet. Transactions of the ASAE, 27(3), 894–896.
Nayak, R. K., Rana, K., Bairwa, V. K., Singh, P., & Bharthi, V. D. (2020). A review on role of bumble bee pollination in fruits and vegetables. Journal of Pharmacognosy and Phytochemistry, 9(3), 1328–1334.
Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., Favila, M., & Network, T. S. R. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological conservation, 141(6), 1461–1474.
Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326.
Pashalidou, F. G., Lambert, H., Peybernes, T., Mescher, M. C., & De Moraes, C. M. (2020). Bumble bees damage plant leaves and accelerate flower production when pollen is scarce. Science, 368(6493), 881–884.
Peat, J., & Goulson, D. (2005). Effects of experience and weather on foraging rate and pollen versus nectar collection in the bumble bee, Bombus terrestris. Behavioral Ecology and Sociobiology, 58, 152–156.
Peat, J., Tucker, J., & Goulson, D. (2005). Does intraspecific size variation in bumble bees allow colonies to efficiently exploit different flowers? Ecological Entomology, 30(2), 176–181.
Puff, C., Igersheim, A., Buchner, R., & Rohrhofer, U. (1995). The united stamens of Rubiaceae. Morphology, anatomy; their role in pollination ecology. Annals of the Missouri Botanical Garden, 357–382.
Russell, A. L., Leonard, A. S., Gillette, H. D., & Papaj, D. R. (2016). Concealed floral rewards and the role of experience in floral sonication by bees. Animal Behaviour, 120, 83–91.
Smith, K. M., Loh, E. H., Rostal, M. K., Zambrana-Torrelio, C. M., Mendiola, L., & Daszak, P. (2013). Pathogens, pests, and economics: drivers of honey bee colony declines and losses. EcoHealth, 10, 434–445.
Southwick, E. E., & Southwick Jr, L. (1992). Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. Journal of economic entomology, 85(3), 621–633.
Switzer, C. M., & Combes, S. A. (2017). Bumble bee sonication behavior changes with plant species and environmental conditions. Apidologie, 48, 223–233.
Thorp, R. W. (2000). The collection of pollen by bees. Pollen and pollination, 211–223.
Vallejo‐Marín, M. (2019). Buzz pollination: studying bee vibrations on flowers. New Phytologist, 224(3), 1068–1074.
Vergara, C. H., & Fonseca-Buendía, P. (2012). Pollination of greenhouse tomatoes by the Mexican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Journal of Pollination Ecology, 7.
Wolf, T., Ellington, C., & Begley, I. (1999). Foraging costs in bumble bees: field conditions cause large individual differences. Insectes sociaux, 46, 291–295.
Zameer, S., Ali, M., Sajjad, A., Saeed, S., Matloob, A., Bashir, M. A., Alajmi, R. A., Hargis, B. M., Hashem, M., & Alamri, S. (2022). Foraging behavior and visit optimization of bumble bees for the pollination of greenhouse tomatoes. Journal of King Saud University-Science, 34(1), 101744.
Zhang, H., Han, C., Breeze, T. D., Li, M., Mashilingi, S. K., Hua, J., Zhang, W., Zhang, X., Zhang, S., & An, J. (2022). Bumble bee pollination enhances yield and flavor of tomato in gobi desert greenhouses. Agriculture, 12(6), 795.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96053-
dc.description.abstract大部分的作物都需要昆蟲授粉,其中以蜜蜂為最常見的授粉昆蟲。然而,部分作物像是番茄或藍莓等,就必須依賴熊蜂或木蜂等昆蟲藉由產生特殊的振動頻率,使作物釋出花粉而授粉。人工繁殖的歐洲熊蜂經常被用來為溫室內的作物授粉,但對本土生態有潛在的威脅,而本土熊蜂的價格較高且活動受環境溫度影響,因此尋找替代且穩定的授粉方式是必要的。本研究目的為(1)利用機器模擬熊蜂的振動,測試番茄花釋出花粉的最佳振動頻率;(2)使用此最佳頻率在有機溫室進行番茄授粉,搭配不同的振動操作次數與模擬熊蜂授粉傷口,與熊蜂授粉後的著果率與果實品質做比較。研究結果顯示,500, 700, 800 與 900 Hz可以從番茄花中振出最多花粉粒,且振動時間並不會影響花粉粒數量。在田間試驗中,利用機械授粉振動單次的種子數量與著果率都顯著低於熊蜂授粉組,但一些機械授粉組別和熊蜂授粉有類似的番茄果實型質、甜度與酸度。提高機械授粉次數(振動一次增加為三次)後,不論是著果率、果實型質或風味都與熊蜂授粉組類似。人為模仿熊蜂在花藥錐所造成的授粉傷口並不會影響果實的型質特徵、甜度與酸度。本研究顯示機械授粉和熊蜂授粉的番茄果實品質相近;而增加振動次數後,可有效提升機械授粉的著果率,在未來氣候變遷或是授粉昆蟲減少的情況下,機械授粉應可提供有效且穩定的授粉方式。zh_TW
dc.description.abstractMost crops need insects for pollination, with honey bees being the most common pollinators. However, crops like blueberry and tomato rely on bumble bees and carpenter bees, which use their flight muscles to produce specific vibrations to extract pollen from poricidal anthers. Commercial European bumble bees are commonly introduced to pollinate greenhouse crops, but they pose an invasive risk, and native bumble bee (Bombus eximius) is expensive and their activities could be influenced by ambient temperature. Therefore, developing artificial pollination methods for stable crop pollination is necessary. The study aims to: (1) use machine-mimicked bumble bee vibrations to determine the optimal vibration frequency for pollen release in tomato flowers; and (2) apply this optimal pollination frequency and duration, combined with different numbers of pollination and simulated bumble bee-induced scars, in an organic farming greenhouse to compare fruit set ratio and fruit quality between machine and bumble bee buzz pollination. The study showed that 500, 700, 800, and 900 Hz can release the most pollen grains from tomato flowers, and vibration duration does not affect the number of pollen grains released. In the field experiment, the seed number and fruit set ratio from single machine pollination were significantly lower than those from bumble bee pollination. However, some machine pollination groups showed similar tomato fruit morphology, sweetness, and acidity to bumble bee pollination. Increasing the number of machine pollinations from one to three times resulted in a fruit set ratio, fruit morphology and flavor similar to that of bumble bee pollination. Artificially mimicking scars on the anther cone did not affect fruit morphometrics, sweetness, or acidity. This study shows that machine pollination and bumble bee pollination produce fruits of similar quality, and increasing the number of vibrations effectively improves the fruit set ratio of machine pollination. In the future, machine pollination may provide an efficient and stable pollination method in the face of climate change and the decline of natural pollinators.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:48:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:48:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
口試論文審定書 ............................................................................................................ i
致謝 .............................................................................................................................. ii
中文摘要 ...................................................................................................................... iii
Abstract ....................................................................................................................... iv
Contents ....................................................................................................................... vi
List of Figures ........................................................................................................... viii
Introduction ................................................................................................................. 1
Materials and methods ................................................................................................ 5
Tomatoes cultivation in laboratory condition ............................................................5
Optimal frequency and duration experiments ...........................................................5
Field tests ...................................................................................................................6
Assessing tomato fruits quality and morphometrics..................................................9
Statistical analyses ...................................................................................................10
Results ......................................................................................................................... 12
The number of pollen grains released at different frequencies and durations in the
laboratory experiments ............................................................................................12
Fruit set ratio, acidity, sweetness, mass, seeds of fruits and fruit morphometrics
under different field treatments in the first year ......................................................12
Fruit set ratio, acidity, sweetness, mass, seeds of fruits and fruit morphometrics
under different field treatments in the second year .................................................14
Comparison of fruit set ratios between control and bumble bee pollination groups
over two years..........................................................................................................16
Discussions.................................................................................................................. 18
Differences of pollination frequency and duration between machine and bumble
bee pollination .........................................................................................................18
Increasing the number of vibration can enhance fruit set ratio ...............................20
Increasing the number of vibration can enhance fruit quality .................................22
Conclusions................................................................................................................. 25
References................................................................................................................... 36
Supplementary materials .......................................................................................... 45
-
dc.language.isoen-
dc.title以機械模擬熊蜂振動行為評估番茄受粉成效zh_TW
dc.titleEvaluation of Tomato Pollination Effectiveness Using Mechanical Simulation of Bumble bee Buzzing Behavioren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陸聲山;宋一鑫;楊恩誠zh_TW
dc.contributor.oralexamcommitteeSheng-Shang Lu;I-Hsin Sung;En-Cheng Yangen
dc.subject.keyword振動授粉,氣候變遷,番茄,熊蜂,機械授粉,zh_TW
dc.subject.keywordbuzz pollination,climate change,tomato,bumble bee,machine pollination,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202402400-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept昆蟲學系-
dc.date.embargo-lift2027-07-26-
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved