Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅zh_TW
dc.contributor.advisorChih-I Wuen
dc.contributor.author蔣子康zh_TW
dc.contributor.authorZih-Kang Jiangen
dc.date.accessioned2024-09-25T16:43:49Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation[1] G. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998.
[2] S. E. Thompson and S. Parthasarathy, "Moore's law: the future of Si microelectronics," Materials today, vol. 9, no. 6, pp. 20-25, 2006.
[3] T. Wei, Z. Han, X. Zhong, Q. Xiao, T. Liu, and D. Xiang, "Two dimensional semiconducting materials for ultimately scaled transistors," Iscience, vol. 25, no. 10, 2022.
[4] G. Schindler, W. Steinhögl, G. Steinlesberger, M. Traving, and M. Engelhardt, "Scaling of parasitics and delay times in the backend-of-line," Microelectronic engineering, vol. 70, no. 1, pp. 7-12, 2003.
[5] J. Gambino, "Process technology for copper interconnects," in Handbook of Thin Film Deposition: Elsevier, 2018, pp. 147-194.
[6] M. R. Baklanov, C. Adelmann, L. Zhao, and S. De Gendt, "Advanced interconnects: materials, processing, and reliability," ECS Journal of Solid State Science and Technology, vol. 4, no. 1, pp. Y1-Y4, 2015.
[7] J. G. Ryan, R. M. Geffken, N. R. Poulin, and J. R. Paraszczak, "The evolution of interconnection technology at IBM," IBM Journal of Research and Development, vol. 39, no. 4, pp. 371-381, 1995.
[8] L. ZHAO. "All About Interconnects." (accessed.
[9] R. Henriquez, L. Moraga, G. Kremer, M. Flores, A. Espinosa, and R. C. Munoz, "Size effects in thin gold films: Discrimination between electron-surface and electron-grain boundary scattering by measuring the Hall effect at 4 K," Applied Physics Letters, vol. 102, no. 5, 2013.

[10] K. Khoo, S. Tashiro, and J. Onuki, "Influence on the electro-migration resistance by line width and average grain size along the longitudinal direction of very narrow cu wires," Materials transactions, vol. 51, no. 7, pp. 1183-1187, 2010.
[11] Z. Guan, M. Marek-Sadowska, and S. Nassif, "SRAM bit-line electromigration mechanism and its prevention scheme," in International Symposium on Quality Electronic Design (ISQED), 2013: IEEE, pp. 286-293.
[12] K. Kyung-Hoae, "‘Comparison study of future on-chip interconnects for high performance VLSI applications," Ph. D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA, 2011.
[13] J. Lienig, "Electromigration and its impact on physical design in future technologies," in Proceedings of the 2013 ACM International symposium on Physical Design, 2013, pp. 33-40.
[14] A. Lodder and J. Dekker, "The electromigration force in metallic bulk," in AIP Conference Proceedings, 1998, vol. 418, no. 1: American Institute of Physics, pp. 315-328.
[15] Y. Hsu et al., "Failure mechanism of electromigration in via sidewall for copper dual damascene interconnection," Journal of The Electrochemical Society, vol. 153, no. 8, p. G782, 2006.
[16] P. Kapur, J. P. McVittie, and K. C. Saraswat, "Technology and reliability constrained future copper interconnects. I. Resistance modeling," IEEE Transactions on electron devices, vol. 49, no. 4, pp. 590-597, 2002.
[17] R. L. Graham et al., "Resistivity dominated by surface scattering in sub-50 nm Cu wires," Applied Physics Letters, vol. 96, no. 4, 2010.
[18] I. Ciofi et al., "Modeling of via resistance for advanced technology nodes," IEEE transactions on Electron Devices, vol. 64, no. 5, pp. 2306-2313, 2017.
[19] C.-L. Lo, K. Zhang, J. A. Robinson, and Z. Chen, "BEOL compatible sub-nm diffusion barrier for advanced Cu interconnects," in 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2018: IEEE, pp. 1-2.
[20] M. I. Katsnelson, "Graphene: carbon in two dimensions," Materials today, vol. 10, no. 1-2, pp. 20-27, 2007.
[21] N. D. Mermin, "Crystalline order in two dimensions," Physical review, vol. 176, no. 1, p. 250, 1968.
[22] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[23] T. Wehling et al., "Molecular doping of graphene," Nano letters, vol. 8, no. 1, pp. 173-177, 2008.
[24] M. Orlita et al., "Approaching the Dirac point in high-mobility multilayer epitaxial graphene," Physical review letters, vol. 101, no. 26, p. 267601, 2008.
[25] A. A. Balandin et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, no. 3, pp. 902-907, 2008.
[26] R. R. Nair et al., "Fine structure constant defines visual transparency of graphene," science, vol. 320, no. 5881, pp. 1308-1308, 2008.
[27] G. Shu et al., "Graphene-like conjugated π bond system in Pb1− xSnxSe," Applied Physics Letters, vol. 106, no. 12, 2015.
[28] G. Yang, L. Li, W. B. Lee, and M. C. Ng, "Structure of graphene and its disorders: a review," Science and technology of advanced materials, vol. 19, no. 1, pp. 613-648, 2018.
[29] G. R. Yazdi, T. Iakimov, and R. Yakimova, "Epitaxial graphene on SiC: a review of growth and characterization," Crystals, vol. 6, no. 5, p. 53, 2016.
[30] M. Yi and Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11700-11715, 2015.
[31] K. Subrahmanyam, L. Panchakarla, A. Govindaraj, and C. Rao, "Simple method of preparing graphene flakes by an arc-discharge method," The Journal of Physical Chemistry C, vol. 113, no. 11, pp. 4257-4259, 2009.
[32] Y. Chen et al., "Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2–inert gas mixtures," Chemical Physics Letters, vol. 538, pp. 72-76, 2012.
[33] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the american chemical society, vol. 80, no. 6, pp. 1339-1339, 1958.
[34] H. Bai, C. Li, and G. Shi, "Functional composite materials based on chemically converted graphene," Advanced Materials, vol. 23, no. 9, pp. 1089-1115, 2011.
[35] X. Chen, L. Zhang, and S. Chen, "Large area CVD growth of graphene," Synthetic Metals, vol. 210, pp. 95-108, 2015.
[36] M. Nakamura and L. Hirasawa, "Electric transport and magnetic properties in multilayer graphene," Physical Review B—Condensed Matter and Materials Physics, vol. 77, no. 4, p. 045429, 2008.
[37] J. Wang, X. Mu, L. Wang, and M. Sun, "Properties and applications of new superlattice: twisted bilayer graphene," Materials Today Physics, vol. 9, p. 100099, 2019.
[38] M. Koshino, "Interlayer screening effect in graphene multilayers with ABA and ABC stacking," Physical Review B—Condensed Matter and Materials Physics, vol. 81, no. 12, p. 125304, 2010.
[39] C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, "Observation of an electrically tunable band gap in trilayer graphene," Nature Physics, vol. 7, no. 12, pp. 944-947, 2011.
[40] S. Li et al., "Intercalated Graphene as Next Generation Back-end-of-Line Conductors," in 2023 International Electron Devices Meeting (IEDM), 2023: IEEE, pp. i-iv.
[41] D. Kondo et al., "Intercalated multi-layer graphene grown by CVD for LSI interconnects," in 2013 IEEE International Interconnect Technology Conference-IITC, 2013: IEEE, pp. 1-3.
[42] N. Jung, N. Kim, S. Jockusch, N. J. Turro, P. Kim, and L. Brus, "Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation," Nano letters, vol. 9, no. 12, pp. 4133-4137, 2009.
[43] W.-B. Li, S.-Y. Lin, N. T. T. Tran, M.-F. Lin, and K.-I. Lin, "Essential geometric and electronic properties in stage-n graphite alkali-metal-intercalation compounds," RSC advances, vol. 10, no. 40, pp. 23573-23581, 2020.
[44] W. Liu, J. Kang, and K. Banerjee, "Characterization of FeCl 3 intercalation doped CVD few-layer graphene," IEEE Electron Device Letters, vol. 37, no. 9, pp. 1246-1249, 2016.
[45] Y. Li and Q. Yue, "First-principles study of electronic and magnetic properties of FeCl3-based graphite intercalation compounds," Physica B: Condensed Matter, vol. 425, pp. 72-77, 2013.
[46] Z. Yan, Z. Zhuxia, L. Tianbao, L. Xuguang, and X. Bingshe, "XPS and XRD study of FeCl3–graphite intercalation compounds prepared by arc discharge in aqueous solution," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 70, no. 5, pp. 1060-1064, 2008.
[47] D. Zhan et al., "FeCl3‐based few‐layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping," Advanced Functional Materials, vol. 20, no. 20, pp. 3504-3509, 2010.
[48] W. Zhao, P. H. Tan, J. Liu, and A. C. Ferrari, "Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability," Journal of the American Chemical Society, vol. 133, no. 15, pp. 5941-5946, 2011.
[49] M. Son et al., "Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects," npj 2D Materials and Applications, vol. 5, no. 1, p. 41, 2021.
[50] K.-J. Lee, A. P. Chandrakasan, and J. Kong, "Breakdown current density of CVD-grown multilayer graphene interconnects," IEEE Electron Device Letters, vol. 32, no. 4, pp. 557-559, 2011.
[51] J. Jiang et al., "Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects," Nano letters, vol. 17, no. 3, pp. 1482-1488, 2017.
[52] C. G. Kang et al., "Enhanced current drivability of CVD graphene interconnect in oxygen-deficient environment," IEEE electron device letters, vol. 32, no. 11, pp. 1591-1593, 2011.
[53] X. Wang, S. M. Tabakman, and H. Dai, "Atomic layer deposition of metal oxides on pristine and functionalized graphene," Journal of the American Chemical Society, vol. 130, no. 26, pp. 8152-8153, 2008.
[54] A. Pyzyna et al., "Resistivity of copper interconnects beyond the 7 nm node," in 2015 Symposium on VLSI Technology (VLSI Technology), 2015: IEEE, pp. T120-T121.
[55] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, "Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration," Journal of The Royal Society Interface, vol. 13, no. 118, p. 20160182, 2016.
[56] B. Lv, T. Qian, and H. Ding, "Angle-resolved photoemission spectroscopy and its application to topological materials," Nature Reviews Physics, vol. 1, no. 10, pp. 609-626, 2019.
[57] B.-J. Park et al., "Realization of large-area wrinkle-free monolayer graphene films transferred to functional substrates," Scientific reports, vol. 5, no. 1, p. 9610, 2015.
[58] F. Zhou et al., "Adhesion-enhanced vertically oriented graphene on titanium-covered quartz glass toward high-stability light-dimming-related applications," ACS nano, vol. 15, no. 6, pp. 10514-10524, 2021.
[59] M. H. Jeong et al., "Heat dissipation of underlying multilayered graphene layers grown on Cu–Ni alloys for high-performance interconnects," Applied Surface Science, vol. 583, p. 152506, 2022.
[60] L. Yang, W. Gang, Y.-r. WANG, Y. JIANG, and D.-q. YI, "Enhanced Cu/graphene adhesion by doping with Cr and Ti: A first principles prediction," Transactions of Nonferrous Metals Society of China, vol. 29, no. 8, pp. 1721-1727, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96036-
dc.description.abstract隨著半導體技術的發展進步,電晶體尺寸遵循著摩爾定律持續微縮。然而,在後端製程上,傳統的銅互連將因導線尺寸微縮而面臨諸多問題,例如電子散射的機率增加將導致電阻率大幅上升,以及一定厚度的阻擋層導致銅在整體導線的比例逐漸下降,還有電致遷移效應的顯著增加將大幅縮短導線壽命等。為了解決銅互連面臨的瓶頸,本研究使用感應式耦合型電漿輔助化學氣相沉積系統生長多層石墨烯作為互連導線材料,藉由石墨烯材料的特性以及封裝效果的改善,提升小尺寸互連的性能及可靠度。
在本研究中,首先引入鈦薄膜並使其自然氧化成為石墨烯互連和封裝層之間的緩衝層材料,在不影響互連電阻率的情況下,使互連的崩潰電流密度提升29.4 %,並達到50.3 MA/cm²,這不僅明顯優於銅金屬互連的崩潰電流密度,也顯示鈦緩衝層能夠有效改善石墨烯互連和封裝層之間的界面黏附力,使封裝層能夠實際發揮隔絕大氣的效果,從而增加石墨烯互連的可靠度。接著,為了進一步使石墨烯互連的電阻率降低,本研究透過引入插層技術,成功使用氯化鐵分子對石墨烯互連進行插層,不僅讓互連的電阻值大幅下降95 %,使電阻率達到16.7 μΩ∙cm,也能藉由氯化鐵分子的保護作用,對互連表面進行電漿清潔處理以去除製程中的殘留物質。藉由穩定性量測發現,不管有無進行插層或覆蓋緩衝層,石墨烯互連皆可以在10 MA/cm²的電流密度以及100 ℃的溫度下穩定維持超過36 hr,顯示互連具有高度穩定性應且不受到電致遷移效應的影響。最後,透過減少石墨烯的生長時間將互連厚度降低,證實石墨烯互連的性能及可靠度皆沒有因為厚度減小而產生負面的影響。
總結來說,本研究製備的石墨烯互連不僅與相同尺寸下的銅互連有相近的電阻率,其崩潰電流密度和穩定性皆明顯高於銅互連。未來隨著互連尺寸微縮,石墨烯將有極高的潛力取代銅金屬,成為下一代互連的首選材料。
zh_TW
dc.description.abstractWith the advancement of semiconductor technology, transistor sizes have continued to shrink according to Moore's Law. However, in the back-end process, traditional copper interconnects face numerous challenges due to the downscaling of wire dimensions. For example, a significant increase in resistivity caused by the higher probability of electron scattering, a decrease in the proportion of copper in the overall wire due to the fixed thickness of the barrier layer, and a marked increase in electromigration effects, which significantly shorten the lifetime of the wires. In order to solve the bottlenecks faced by copper interconnects, this study utilizes an inductively coupled plasma enhanced chemical vapor deposition system to grow multilayer graphene as an interconnect material. By improving the properties of graphene and the encapsulation effect, the performance and reliability of small-sized interconnects are enhanced.
In this study, a titanium film was first introduced and naturally oxidized to become a buffer layer material between the graphene interconnection and encapsulation layers. This buffer layer increased the breakdown current density of the interconnect by 29.4%, reaching 50.3 MA/cm², without affecting the wire’s resistivity. This result not only significantly outperforms the breakdown current density of copper interconnects but also demonstrates that the titanium buffer layer effectively improves the interfacial adhesion between the graphene interconnect and the encapsulation layer, allowing the encapsulation layer to effectively isolate the interconnect from atmospheric exposure, thereby enhancing the reliability of the graphene interconnect. Next, to further reduce the resistivity of the graphene interconnect, this study successfully employed intercalation technology using ferric chloride molecules. This process not only significantly reduced the resistance value of the interconnections by 95%, but also achieving a resistivity of 16.7 μΩ∙cm. Additionally, the protective effect of the ferric chloride molecules allowed for plasma cleaning of the interconnect surface to remove residual substances from the manufacturing process. Stability measurements revealed that, regardless of whether intercalation or a buffer layer was used, the graphene interconnect could stably maintain its performance for over 36 hours at a current density of 10 MA/cm² and a temperature of 100°C, indicating that the interconnect has high stability and is not affected by electromigration effects. Finally, the interconnection thickness was reduced by reducing the graphene growth time, confirming that the performance and reliability of the graphene interconnect were not negatively impacted by the reduction in thickness.
In summary, the graphene interconnects fabricated in this study not only have a resistivity comparable to that of copper interconnects of the same dimensions, but they also exhibit significantly higher breakdown current density and stability than copper interconnects. As interconnect dimensions continue to shrink in the future, graphene has the potential to replace copper as the preferred material for the next generation of interconnects.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:43:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:43:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 ii
ABSTRACT iii
誌謝 v
目次 vii
表次 xi
圖次 xii
1 第一章 緒論 1
1.1 半導體的發展 1
1.1.1 製程演進 2
1.1.2 後端製程的重要性 2
1.2 互連(Interconnect) 3
1.2.1 互連常用的材料及架構 4
1.2.2 金屬互連瓶頸 5
1.2.3 電致遷移效應(Electromigration) 6
1.2.4 其他遷移效應 7
1.2.5 銅互連的挑戰 8
1.3 石墨烯簡介 9
1.3.1 石墨烯的架構 10
1.3.2 石墨烯的能帶結構 12
1.3.3 石墨烯的製備方式 13
1.3.4 多層石墨烯 18
1.3.5 插層石墨烯(Intercalation graphene) 18
1.3.6 石墨烯於互連的應用 21
1.3.7 石墨烯互連的封裝需求及挑戰 24
1.4 研究動機 26
2 第二章 實驗理論與方法 27
2.1 製程設備簡介 27
2.1.1 感應式耦合型電漿輔助化學氣相沉積系統 27
2.1.2 光罩對準式曝光機(Mask Aligner) 28
2.1.3 電子鎗金屬蒸鍍系統(E-gun Evaporation) 29
2.1.4 步進式曝光機(Stepper) 30
2.1.5 電漿輔助化學氣相沉積系統 31
2.2 量測儀器簡介 32
2.2.1 拉曼光譜儀(Raman spectrometer) 32
2.2.2 原子力顯微鏡(Atomic Force Microscope) 33
2.2.3 X射線光電子能譜儀(X-ray photoelectron spectroscopy) 34
2.2.4 穿透式電子顯微鏡(Transmission Electron Microscope) 35
2.2.5 能量散射X射線光譜儀(energy dispersive spectrometer) 36
2.2.6 電性量測設備 36
2.3 實驗原理及方法 37
2.3.1 電漿的原理 37
2.3.2 感應式耦合型電漿 39
2.3.3 石墨烯生長機制 40
2.3.4 四點探針量測 42
2.3.5 焦耳熱效應(Joule Heating Effect) 43
3 第三章 石墨烯互連製作與鈦緩衝層 44
3.1 石墨烯互連製作流程 44
3.1.1 石墨烯的生長 44
3.1.2 石墨烯的薄膜轉移 45
3.1.3 石墨烯互連的製備 46
3.1.4 緩衝層的製備 48
3.1.5 封裝層的製備 48
3.2 石墨烯薄膜品質分析 50
3.2.1 拉曼光譜分析 50
3.2.2 X射線光電子能譜分析 51
3.3 石墨烯互連品質分析 52
3.3.1 光阻殘留對互連品質的影響 52
3.3.2 殘留物質的去除方式與參數調整 54
3.3.3 去除殘留物質對石墨烯互連的影響 56
3.3.4 驗證殘留物質的去除效果 57
3.3.5 石墨烯互連樣品的結構分析 59
3.4 鈦緩衝層對石墨烯互連性能的提升 61
3.4.1 鈦薄膜沉積方式 62
3.4.2 鈦薄膜沉積厚度 64
3.4.3 緩衝層對石墨烯互連電阻率的影響 66
3.4.4 緩衝層對石墨烯互連崩潰電流密度的影響 67
4 第四章 氯化鐵插層石墨烯互連 71
4.1 插層石墨烯互連製作流程 71
4.1.1 石墨烯互連的插層 71
4.1.2 插層石墨烯互連的表面處理 72
4.2 插層石墨烯互連品質分析 74
4.2.1 拉曼光譜分析 74
4.2.2 插層石墨烯互連樣品的結構分析 75
4.3 插層石墨烯互連的性能分析 77
4.3.1 插層對石墨烯互連的電阻率變化 77
4.3.2 電漿處理對插層石墨烯互連的電阻率影響 78
4.3.3 緩衝層對插層石墨烯互連的崩潰電流變化 79
4.3.4 插層對石墨烯互連的崩潰電流影響 80
4.3.5 石墨烯互連的穩定性量測 82
5 第五章 厚度微縮之插層石墨烯互連 84
5.1 厚度微縮之互連製作流程 84
5.1.1 石墨烯的生長 84
5.1.2 插層石墨烯互連的製備 84
5.2 厚度微縮之互連的品質分析 85
5.2.1 拉曼光譜分析 85
5.2.2 厚度微縮之互連樣品的結構分析 86
5.3 厚度微縮之互連的電性分析 89
5.3.1 電阻率變化 89
5.3.2 崩潰電流變化 90
5.3.3 穩定性量測 91
6 第六章 結論 92
6.1 總結 92
6.2 未來展望 94
7 參考文獻 95
-
dc.language.isozh_TW-
dc.title透過氧化鈦緩衝層增強插層石墨烯互連的界面黏附力zh_TW
dc.titleEnhanced Interfacial Adhesion on Intercalated Graphene Interconnects through Titanium Oxide Buffer Layeren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張子璿;陳美杏;陳奕君;吳肇欣zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Chang;Mei-Hsin Chen;I-Chun Cheng;Chao-Hsin Wuen
dc.subject.keyword石墨烯,互連,感應式耦合型電漿輔助化學氣相沉積,界面黏附力,插層,後端製程,電阻率,崩潰電流密度,電致遷移效應,zh_TW
dc.subject.keywordGraphene,Interconnect,Inductively Coupled Plasma PECVD,Interfacial Adhesion,Intercalation,Back-end,Resistivity,Breakdown Current Density,Electromigration,en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202404086-
dc.rights.note未授權-
dc.date.accepted2024-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
8.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved