請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96032完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賀詩琳 | zh_TW |
| dc.contributor.advisor | Sze Ling Ho | en |
| dc.contributor.author | 董如芸 | zh_TW |
| dc.contributor.author | Ru-Yun Tung | en |
| dc.date.accessioned | 2024-09-25T16:42:35Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-29 | - |
| dc.identifier.citation | Anand, P., Elderfield, H., & Conte, M. H. (2003). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18(2). https://doi.org/10.1029/2002PA000846
Barker, S., Cacho, I., Benway, H., & Tachikawa, K. (2005). Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: A methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews, 24(7), 821–834. https://doi.org/10.1016/j.quascirev.2004.07.016 Bé, A. W. H. (1977). AN ECOLOGICAL, ZOOGEOGRAPHIC AND TAXONOMIC REVIEW OF RECENT PLANKTONIC FORAMINIFERA. AN ECOLOGICAL, ZOOGEOGRAPHIC AND TAXONOMIC REVIEW OF RECENT PLANKTONIC FORAMINIFERA. Berger, A. (1979). Spectrum of climatic variations and their causal mechanisms. Geophysical Surveys, 3(4), 351–402. https://doi.org/10.1007/BF01449756 Bijma, J., Spero, H. J., & Lea, D. W. (1999). Reassessing Foraminiferal Stable Isotope Geochemistry: Impact of the Oceanic Carbonate System (Experimental Results). In G. Fischer & G. Wefer (Eds.), Use of Proxies in Paleoceanography: Examples from the South Atlantic (pp. 489–512). Springer. https://doi.org/10.1007/978-3-642-58646-0_20 Broecker, W. S. (1989). The salinity contrast between the Atlantic and Pacific oceans during glacial time. Paleoceanography, 4(2), 207–212. https://doi.org/10.1029/PA004i002p00207 Chang, Y.-P., Chen, M.-T., Yokoyama, Y., Matsuzaki, H., Thompson, W. G., Kao, S.-J., & Kawahata, H. (2009). Monsoon hydrography and productivity changes in the East China Sea during the past 100,000 years: Okinawa Trough evidence (MD012404). Paleoceanography, 24(3). https://doi.org/10.1029/2007PA001577 Chen, M.-T., Lin, X. P., Chang, Y.-P., Chen, Y.-C., Lo, L., Shen, C.-C., Yokoyama, Y., Oppo, D. W., Thompson, W. G., & Zhang, R. (2010). Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years. Geophysical Research Letters, 37(23). https://doi.org/10.1029/2010GL045202 Clemens, S. C., Holbourn, A., Kubota, Y., Lee, K. E., Liu, Z., Chen, G., Nelson, A., & Fox-Kemper, B. (2018). Precession-band variance missing from East Asian monsoon runoff. Nature Communications, 9(1), 3364. https://doi.org/10.1038/s41467-018-05814-0 Cruz Salmeron, A. D., Takayanagi, H., Wakaki, S., Ishikawa, T., Miyajima, T., Wakaki, H., Itaki, T., & Iryu, Y. (2022). Characterization of water masses around the southern Ryukyu Islands based on isotopic compositions. Progress in Earth and Planetary Science, 9(1), 44. https://doi.org/10.1186/s40645-022-00503-5 Eggins, S., De Deckker, P., & Marshall, J. (2003). Mg/Ca variation in planktonic foraminifera tests: Implications for reconstructing palaeo-seawater temperature and habitat migration. Earth and Planetary Science Letters, 212(3), 291–306. https://doi.org/10.1016/S0012-821X(03)00283-8 Elderfield, H., & Ganssen, G. (2000). Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405(6785), Article 6785. https://doi.org/10.1038/35013033 Erez, J., & Luz, B. (1983). Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta, 47(6), 1025–1031. https://doi.org/10.1016/0016-7037(83)90232-6 Farmer, E. C., Kaplan, A., de Menocal, P. B., & Lynch-Stieglitz, J. (2007). Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens. Paleoceanography, 22(3). https://doi.org/10.1029/2006PA001361 Field, D. B. (2004). Variability in vertical distributions of planktonic foraminifera in the California Current: Relationships to vertical ocean structure. Paleoceanography, 19(2). https://doi.org/10.1029/2003PA000970 Gray, W. R., & Evans, D. (2019). Nonthermal Influences on Mg/Ca in Planktonic Foraminifera: A Review of Culture Studies and Application to the Last Glacial Maximum. Paleoceanography and Paleoclimatology, 34(3), 306–315. https://doi.org/10.1029/2018PA003517 Hastings, D. W., Kienast, M., Steinke, S., & Whitko, A. (2001). A Comparison of Three Independent Paleotemperature Estimates From a High Resolution Record of Deglacial SST Records in the Tropical South China Sea. 2001, PP12B-10. AGU Fall Meeting Abstracts. Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., & Skinner, L. C. (2020). Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon, 62(4), 779–820. https://doi.org/10.1017/RDC.2020.68 Horikawa, K., Kodaira, T., Zhang, J., & Murayama, M. (2015). δ18Osw estimate for Globigerinoides ruber from core-top sediments in the East China Sea. Progress in Earth and Planetary Science, 2(1), 19. https://doi.org/10.1186/s40645-015-0048-3 Hsin, Y.-C., Chiang, T.-L., & Wu, C.-R. (2011). Fluctuations of the thermal fronts off northeastern Taiwan. Journal of Geophysical Research: Oceans, 116(C10). https://doi.org/10.1029/2011JC007066 Ichikawa, H., & Beardsley, R. C. (2002). The Current System in the Yellow and East China Seas. Journal of Oceanography, 58(1), 77–92. https://doi.org/10.1023/A:1015876701363 Ijiri, A., Wang, L., Oba, T., Kawahata, H., Huang, C.-Y., & Huang, C.-Y. (2005a). Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(3), 239–261. https://doi.org/10.1016/j.palaeo.2004.12.028 Ijiri, A., Wang, L., Oba, T., Kawahata, H., Huang, C.-Y., & Huang, C.-Y. (2005b). Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(3–4), 239–261. https://doi.org/10.1016/j.palaeo.2004.12.028 Kim, J.-H., Romero, O. E., Lohmann, G., Donner, B., Laepple, T., Haam, E., & Sinninghe Damsté, J. S. (2012). Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard–Oeschger interstadials. Earth and Planetary Science Letters, 339–340, 95–102. https://doi.org/10.1016/j.epsl.2012.05.018 Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E. C., & Damsté, J. S. S. (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochimica et Cosmochimica Acta, 74(16), 4639–4654. https://doi.org/10.1016/j.gca.2010.05.027 Kısakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D., & Erez, J. (2008). Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth and Planetary Science Letters, 273(3), 260–269. https://doi.org/10.1016/j.epsl.2008.06.026 Ko, T. W., Lee, K. E., Bae, S. W., & Lee, S. (2018). Spatial and temporal distribution of C37 alkenones in suspended materials in the northern East China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 493, 102–110. https://doi.org/10.1016/j.palaeo.2018.01.004 Ko, T. W., Lee, K. E., Yamamoto, M., & Kim, D. (2022). Spatial and temporal distributions of glycerol dialkyl glycerol tetraethers in suspended materials in the northern East China Sea: Applicability as a paleotemperature proxy. Palaeogeography, Palaeoclimatology, Palaeoecology, 603, 111188. https://doi.org/10.1016/j.palaeo.2022.111188 Kubota, Y., Kimoto, K., Tada, R., Oda, H., Yokoyama, Y., & Matsuzaki, H. (2010a). Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea. Paleoceanography, 25(4). https://doi.org/10.1029/2009PA001891 Kubota, Y., Kimoto, K., Tada, R., Oda, H., Yokoyama, Y., & Matsuzaki, H. (2010b). Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea. Paleoceanography, 25(4). https://doi.org/10.1029/2009PA001891 Kubota, Y., Kimoto, K., Tada, R., Uchida, M., & Ikehara, K. (2019a). Millennial-scale variability of East Asian summer monsoon inferred from sea surface salinity in the northern East China Sea (ECS) and its impact on the Japan Sea during Marine Isotope Stage (MIS) 3. Progress in Earth and Planetary Science, 6(1), 39. https://doi.org/10.1186/s40645-019-0283-0 Kubota, Y., Kimoto, K., Tada, R., Uchida, M., & Ikehara, K. (2019b). Millennial-scale variability of East Asian summer monsoon inferred from sea surface salinity in the northern East China Sea (ECS) and its impact on the Japan Sea during Marine Isotope Stage (MIS) 3. Progress in Earth and Planetary Science, 6(1), 39. https://doi.org/10.1186/s40645-019-0283-0 Kubota, Y., Tada, R., & Kimoto, K. (2015). Changes in East Asian summer monsoon precipitation during the Holocene deduced from a freshwater flux reconstruction of the Changjiang (Yangtze River) based on the oxygen isotope mass balance in the northern East China Sea. Climate of the Past, 11(2), 265–281. https://doi.org/10.5194/cp-11-265-2015 Lee, K. E., Clemens, S. C., Kubota, Y., Timmermann, A., Holbourn, A., Yeh, S.-W., Bae, S. W., & Ko, T. W. (2021a). Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-26051-y Lee, K. E., Clemens, S. C., Kubota, Y., Timmermann, A., Holbourn, A., Yeh, S.-W., Bae, S. W., & Ko, T. W. (2021b). Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures. Nature Communications, 12(1), 5742. https://doi.org/10.1038/s41467-021-26051-y Lee, K. E., Lee, H. J., Park, J.-H., Chang, Y.-P., Ikehara, K., Itaki, T., & Kwon, H. K. (2013). Stability of the Kuroshio path with respect to glacial sea level lowering. Geophysical Research Letters, 40(2), 392–396. https://doi.org/10.1002/grl.50102 Liang, W.-D., Tang, T. Y., Yang, Y. J., Ko, M. T., & Chuang, W.-S. (2003). Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6), 1085–1105. https://doi.org/10.1016/S0967-0645(03)00011-0 Luo, Q., Jin, H., Jian, Z., & Wang, X. (2015). Vertical distribution of living planktonic foraminifera in the northern South China Sea and its paleoceanographic implications. Quaternary Sciences, 35(6), 1342–1353. https://doi.org/10.11928/j.issn.1001-7410.2015.06.04 Malevich, S. B., Vetter, L., & Tierney, J. E. (2019). Global Core Top Calibration of δ18O in Planktic Foraminifera to Sea Surface Temperature. Paleoceanography and Paleoclimatology, 34(8), 1292–1315. https://doi.org/10.1029/2019PA003576 Matsuzaki, K. M., Itaki, T., & Tada, R. (2019). Paleoceanographic changes in the Northern East China Sea during the last 400 kyr as inferred from radiolarian assemblages (IODP Site U1429). Progress in Earth and Planetary Science, 6(1), 22. https://doi.org/10.1186/s40645-019-0256-3 Murakami, S., Ohgaito, R., Abe-Ouchi, A., Crucifix, M., & Otto-Bliesner, B. L. (2008). Global-Scale Energy and Freshwater Balance in Glacial Climate: A Comparison of Three PMIP2 LGM Simulations. https://doi.org/10.1175/2008JCLI2104.1 Nakanishi, T., Yamamoto, M., Tada, R., & Oda, H. (2012). Centennial-scale winter monsoon variability in the northern East China Sea during the Holocene. Journal of Quaternary Science, 27(9), 956–963. https://doi.org/10.1002/jqs.2589 Oka, E., & Kawabe, M. (1998). Characteristics of variations of water properties and density structure around the Kuroshio in the East China Sea. Journal of Oceanography, 54(6), 605–617. https://doi.org/10.1007/BF02823281 Ortiz, J. D., Mix, A. C., Rugh, W., Watkins, J. M., & Collier, R. W. (1996). Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria. Geochimica et Cosmochimica Acta, 60(22), 4509–4523. https://doi.org/10.1016/S0016-7037(96)00256-6 Prahl, F. G., Muehlhausen, L. A., & Zahnle, D. L. (1988). Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta, 52(9), 2303–2310. https://doi.org/10.1016/0016-7037(88)90132-9 Rosenthal, Y., Bova, S., & Zhou, X. (2022). A User Guide for Choosing Planktic Foraminiferal Mg/Ca-Temperature Calibrations. Paleoceanography and Paleoclimatology, 37(6), e2022PA004413. https://doi.org/10.1029/2022PA004413 Sagawa, T., Yokoyama, Y., Ikehara, M., & Kuwae, M. (2011). Vertical thermal structure history in the western subtropical North Pacific since the Last Glacial Maximum. Geophysical Research Letters, 38(8). https://doi.org/10.1029/2010GL045827 Shackleton, N. J., & Opdyke, N. D. (1973). Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research, 3(1), 39–55. https://doi.org/10.1016/0033-5894(73)90052-5 Shirota, K., Okazaki, Y., Konno, S., Miyairi, Y., Yokoyama, Y., & Kubota, Y. (2021). Changes in surface water masses in the northern East China Sea since the Last Glacial Maximum based on diatom assemblages. Progress in Earth and Planetary Science, 8(1), 1–17. https://doi.org/10.1186/s40645-021-00456-1 Spero, H. J., Bijma, J., Lea, D. W., & Bemis, B. E. (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390(6659), Article 6659. https://doi.org/10.1038/37333 Spero, H. J., & Lea, D. W. (1993). Intraspecific stable isotope variability in the planktic foraminiferaGlobigerinoides sacculifer: Results from laboratory experiments. Marine Micropaleontology, 22(3), 221–234. https://doi.org/10.1016/0377-8398(93)90045-Y Stirpe, C. R., Allen, K. A., Sikes, E. L., Zhou, X., Rosenthal, Y., Cruz-Uribe, A. M., & Brooks, H. L. (2021). The Mg/Ca proxy for temperature: A Uvigerina core-top study in the Southwest Pacific. Geochimica et Cosmochimica Acta, 309, 299–312. https://doi.org/10.1016/j.gca.2021.06.015 Sun, Y., Oppo, D. W., Xiang, R., Liu, W., & Gao, S. (2005). Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography, 20(4). https://doi.org/10.1029/2004PA001061 Thirumalai, K., Quinn, T. M., & Marino, G. (2016). Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry. Paleoceanography, 31(10), 1409–1422. https://doi.org/10.1002/2016PA002970 Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L., & Thirumalai, K. (2019). Bayesian Calibration of the Mg/Ca Paleothermometer in Planktic Foraminifera. Paleoceanography and Paleoclimatology, 34(12), 2005–2030. https://doi.org/10.1029/2019PA003744 Ujiié, Y., Asahi, H., Sagawa, T., & Bassinot, F. (2016). Evolution of the North Pacific Subtropical Gyre during the past 190 kyr through the interaction of the Kuroshio Current with the surface and intermediate waters. Paleoceanography, 31(11), 1498–1513. https://doi.org/10.1002/2015PA002914 Ujiié, Y., & Ujiié, H. (2006). The changes of surface and intermediate waters for the last 250 ka in the Okinawa Trough and south off Ishigaki Island. Fossils, 79, 43–59. Ujiié, Y., Ujiié, H., Taira, A., Nakamura, T., & Oguri, K. (2003). Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: Evidence from planktonic foraminifera. Marine Micropaleontology, 49(4), 335–364. https://doi.org/10.1016/S0377-8398(03)00062-8 Urey, H. C. (1948). Oxygen Isotopes in Nature and in the Laboratory. Science, 108(2810), 489–496. https://doi.org/10.1126/science.108.2810.489 Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., & Labracherie, M. (2002). Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1), 295–305. https://doi.org/10.1016/S0277-3791(01)00101-9 Wang, L., Li, J., Zhao, J., Wei, H., Hu, B., Dou, Y., Sun, Z., Zou, L., & Bai, F. (2016). Solar-, monsoon- and Kuroshio-influenced thermocline depth and sea surface salinity in the southern Okinawa Trough during the past 17,300 years. Geo-Marine Letters, 36(4), 281–291. https://doi.org/10.1007/s00367-016-0448-4 Wolf-Gladrow, D. A., Riebesell, U., Burkhardt, S., & Buma, J. (1999). Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus B: Chemical and Physical Meteorology, 51(2), 461–476. https://doi.org/10.3402/tellusb.v51i2.16324 Xu, X., & Oda, M. (1999). Surface-water evolution of the eastern East China Sea during the last 36,000 years. Marine Geology, 156(1), 285–304. https://doi.org/10.1016/S0025-3227(98)00183-2 Xu, X., Yamasaki, M., Oda, M., & Honda, M. C. (2005). Comparison of seasonal flux variations of planktonic foraminifera in sediment traps on both sides of the Ryukyu Islands, Japan. Marine Micropaleontology, 58(1), 45–55. https://doi.org/10.1016/j.marmicro.2005.09.002 Xu, Y., Chang, F.-M., Li, T.-G., & Li, B.-H. (2021). High-resolution sea surface temperature and salinity dynamics in the northern Okinawa Trough over the last 24 kyr. Palaeoworld, 30(4), 770–785. https://doi.org/10.1016/j.palwor.2020.12.005 Yamasaki, M., Murakami, T., Tsuchihashi, M., & Oda, M. (2010). Seasonal variation in living planktic foraminiferal assemblage in the northeastern part of the East China Sea. Fossils, 87, 35–46. Yamasaki, M., & Oda, M. (2003). Sedimentation of planktonic foraminifera in the East China Sea: Evidence from a sediment trap experiment. Marine Micropaleontology, 49(1), 3–20. https://doi.org/10.1016/S0377-8398(03)00024-0 Yang, H., Guo, X., Miyazawa, Y., Varlamov, S. M., Abe-Ouchi, A., & Chan, W.-L. (2022). Changes in the Kuroshio Path, Surface Velocity and Transport During the Last 35,000 Years. Geophysical Research Letters, 49(4), e2021GL097250. https://doi.org/10.1029/2021GL097250 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96032 | - |
| dc.description.abstract | 黑潮為一強勁的西方邊界流,可將來自低緯度的熱傳輸到中高緯度。因此西北太平洋的區域氣候受到黑潮影響。現代海洋觀測結果顯示次表層/溫躍層的水溫可能比海表溫度更能指示黑潮的變化。然而,過去研究鮮少利用位在沖繩海槽不同緯度的多個站位的次表層溫度記錄來重建過去黑潮的變化。因此,為了克服上述缺點,本篇研究使用從沖繩海槽北部和琉球島弧東部採集的三個岩心中重建過去有孔蟲Pulleniatina obliquiloculata和Neogloboquadrina dutertrei 的δ18O和Mg/Ca來探討過去2.5萬年來沖繩海槽地區的上層水文變化。此外,我們還整合過去已發表的地球化學紀錄以及高解析度模擬的結果來提出並討論過去黑潮在冰期間冰期的變化。我們的溫度重建結果顯示出P. obliquiloculata和N. dutertrei指示的溫度隨時間變化的趨勢有所不同,可能是由於N. dutertrei的棲息深度隨著氣候條件變化而改變所導致。我們的鹽度重建結果顯示冰期間冰期之間沒有明顯的變化,這和模擬結果並不一致,可能是由於此鹽度重建的方法有很大的誤差導致。P. obliquiloculata的Mg/Ca溫度的冰期冷卻程度的空間分布顯示在末次冰盛期間黑潮有向東南方向遷移。但是此現象無法在G. ruber的Mg/Ca海表溫度中觀察到,可能是由於黑潮在表層的變化沒有很顯著又或者是採樣地點的選擇所影響。本研究著重在以多個站位來重建過去黑潮的優勢以及了解代用指標季節性的重要。 | zh_TW |
| dc.description.abstract | The regional climate in the northwest Pacific is greatly influenced by the Kuroshio Current (KC), a strong western boundary current that brings an enormous amount of heat from the Equatorial Pacific to the middle latitudes of the western Pacific. Modern oceanographic data show that the subsurface/thermocline waters may be more indicative of changes in the KC than the sea surface temperature. However, few studies in the literature have utilized subsurface temperature records from multiple sites along the latitudinal range of the Okinawa Trough (OT) to reconstruct past changes in the KC. Therefore, to overcome the aforementioned shortcoming, here I generated Mg/Ca ratios and δ18O data of thermocline-dwelling foraminifera, Pulleniatina obliquiloculata and Neogloboquadrina dutertrei, using three sediment cores retrieved from the northern OT and the east of the Ryukyu Arc to reconstruct past hydrographic changes over the past 25 ka. These datasets, together with published geochemical records, as well as high-resolution ocean model output, provide a glacial-interglacial perspective of the KC variations and its link to the regional climate. Our results showed discrepancies in the temperature evolution between P. obliquiloculata and N. dutertrei, which may be due to differences in habitat ecology, as N. dutertrei might have changed its habitat depth range in response to climatic conditions. Our salinity reconstructions show no coherent changes over the past 25 ka, which is different from the model simulation, plausibly due to the large uncertainties in the approach. A southeastward migration of an intensified KC during the LGM was suggested by the regional patterns of P. obliquiloculata Mg/Ca temperatures. However, this scenario is not evident in the sea surface temperature pattern derived from G. ruber, possibly due to the limited surface expression of KC changes and/or the choice of sites. This study highlights the advantage of a multi-site approach as well as the need to consider proxy seasonality in the reconstruction of past KC variability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:42:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:42:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文審定書 i
致謝 ii 摘要 iii ABSTRACT iv LIST OF FIGURES viii LIST OF TABLES x CHAPTER 1. INTRODUCTION 1 1.1 Kuroshio Current 1 1.2 Hydrography in the OT region 1 1.3 Past reconstructions of the KC variability over the last glacial cycle in the OT region 2 1.4 Proxies for reconstructing past changes in hydrography 4 1.4.1 Foraminiferal Mg/Ca 4 1.4.2 Foraminiferal stable oxygen isotopes 5 1.5 Objectives 6 CHAPTER 2. MATERIALS AND METHODS 11 2.1 Sediment cores 11 2.1.1 KY07-04-01 11 2.1.2 KR07-12 PC01 12 2.1.3 MD01-2398 12 2.2 Sediments processing and foraminifera picking 13 2.3 Mg/Ca analysis 14 2.4 Stable oxygen isotope analysis 15 2.5 Seawater salinity estimation 15 2.6 Compilation of δ18O and Mg/Ca-derived temperature records from the OT region 16 2.7 The optimal growth months and average growth temperature of G. ruber 17 2.8 Calculation of mean temperature and salinity for selected time slices 18 CHAPTER 3. RESULTS 23 3.1 G. ruber Mg/Ca-derived SST estimates based on different calibrations 23 3.2 KY07-04-01 and KR07-12 PC01 24 3.2.1 Mg/Ca-derived temperature records 24 3.2.3 δ18Osw-derived salinity estimates 25 3.3 MD01-2398 26 3.3.1 Mg/Ca-derived temperature records 26 3.3.2 Stable oxygen isotope records 27 3.3.3 δ18Osw-derived salinity estimates 28 3.4 G. ruber optimal growth months and the average SST of these months 29 CHAPTER 4. DISCUSSION 44 4.1 Choice of the Mg/Ca-temperature calibrations 44 4.2 Recording seasonality and depth range of thermocline-dwelling foraminifera at sites KYKR and MD01-2398 46 4.3 Assessing the reliability of paleosalinity reconstruction 49 4.4 The latitudinal pattern of upper ocean temperature evolution over the past 25 ka 50 4.5 The latitudinal pattern of upper ocean salinity evolution over the past 25 ka 52 4.6 Spatial distribution of the magnitude of glacial cooling derived from proxies and model outputs 53 4.7 Reconstructing the flow path and intensity of the KC during the LGM 55 CHAPTER 5. CONCLUSIONS 69 REFERENCES 72 APPENDIX (Manuscript in minor revision for Progress in Earth and Planetary Science) 83 | - |
| dc.language.iso | en | - |
| dc.title | 利用多種浮游有孔蟲種屬之氧同位素及鎂鈣古溫度指示過去2.5萬年來黑潮變化 | zh_TW |
| dc.title | Variability of the Kuroshio Current over the past 25 kyrs: Insights from multi-species planktonic foraminiferal δ18O and Mg/Ca paleotemperature | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張詠斌;佐川拓也;久保田好美 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Pin Chang;Takuya Sagawa;Yoshimi Kubota | en |
| dc.subject.keyword | Mg/Ca,浮游性有孔蟲,δ18O,黑潮,沖繩海槽, | zh_TW |
| dc.subject.keyword | Mg/Ca,Planktic foraminifera,δ18O,Kuroshio Current,Okinawa Trough, | en |
| dc.relation.page | 151 | - |
| dc.identifier.doi | 10.6342/NTU202402592 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-31 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2029-07-29 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-29 | 6.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
