請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96018
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王立民 | zh_TW |
dc.contributor.advisor | Li-Ming Wang | en |
dc.contributor.author | 蔡峰洋 | zh_TW |
dc.contributor.author | Feng-Yang Tsai | en |
dc.date.accessioned | 2024-09-25T16:38:31Z | - |
dc.date.available | 2024-09-26 | - |
dc.date.copyright | 2024-09-25 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | 參考文獻
1 Esmaeil Zadeh, I. et al. Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications. Applied Physics Letters 118 (2021). 2 Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nature Photonics 3, 696-705 (2009). 3 Chen, L. et al. Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science. Accounts of Chemical Research 50, 1400-1409 (2017). 4 Feautrier, P. et al. High-speed superconducting single photon detectors for innovative astronomical applications. Journal of Physics: Conference Series 97, 012087 (2008). 5 Beutel, F. et al. Fully integrated four-channel wavelength-division multiplexed QKD receiver. Optica 9, 1121-1130 (2022). 6 Atwater, H. A. The promise of plasmonics. Scientific American 296, 56-63 (2007). 7 Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proceedings of the Physical Society of London 18, 269 (1902). 8 Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). J. Opt. Soc. Am. 31, 213-222 (1941). 9 Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968). 10 Kretschmann, E. & Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A 23, 2135-2136 (1968). 11 Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews 108, 462-493 (2008). 12 Maier, S. A. Plasmonics: fundamentals and applications. Vol. 1 (Springer, 2007). 13 Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R. & Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical reviews 99, 2957-2976 (1999). 14 Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature materials 9, 205-213 (2010). 15 朱育正. 難熔電漿子材料的開發與應用: 氮化鉿電漿子晶體實現全彩顯色, (2022). 16 Yu, M.-J. et al. Plasmon-Enhanced Solar-Driven Hydrogen Evolution Using Titanium Nitride Metasurface Broadband Absorbers. ACS Photonics 8, 3125-3132 (2021). 17 Chiao, Z.-Y. et al. Full-color generation enabled by refractory plasmonic crystals. Nanophotonics 11, 2891-2899 (2022). 18 Syong, W.-R. et al. Enhanced Photogating Gain in Scalable MoS2 Plasmonic Photodetectors via Resonant Plasmonic Metasurfaces. ACS Nano 18, 5446-5456 (2024). 19 Yang, J.-W. et al. Nanoscale Gap-Plasmon-Enhanced Superconducting Photon Detectors at Single-Photon Level. Nano Letters 23, 11387-11394 (2023). 20 Onnes, H. K. The superconductivity of mercury. Comm. Phys. Lab. Univ. Leiden 122, 124 (1911). 21 Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Physical review 108, 1175 (1957). 22 Testardi, L. R. Destruction of Superconductivity by Laser Light. Physical Review B 4, 2189-2196 (1971). 23 Gol’tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Applied Physics Letters 79, 705-707 (2001). 24 Moision, B. & Farr, W. Communication Limits Due to Photon Detector Jitter. IEEE Photonics Technology Letters 20, 715-717 (2008). 25 Wollman, E. E. et al. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature. Opt. Express 25, 26792-26801 (2017). 26 Hadfield, R. H., Habif, J. L., Schlafer, J., Schwall, R. E. & Nam, S. W. Quantum key distribution at 1550nm with twin superconducting single-photon detectors. Applied Physics Letters 89, 241129 (2006). 27 Natarajan, C., Tanner, M. & Hadfield, R. Superconducting nanowire single-photon detectors: Physics and applications. Superconductor Science & Technology - SUPERCONDUCT SCI TECHNOL 25 (2012). 28 Il’in, K. et al. Picosecond hot-electron energy relaxation in NbN superconducting photodetectors. Applied Physics Letters 76, 2752-2754 (2000). 29 Maxwell, J. C. The Scientific Papers of James Clerk Maxwell. Vol. 2 (University Press, 1890). 30 Drude, P. Zur elektronentheorie der metalle. Annalen der physik 306, 566-613 (1900). 31 Lorentz, H. A. The theory of electrons and its applications to the phenomena of light and radiant heat. Vol. 29 (GE Stechert & Company, 1916). 32 Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photonics 5, 349-356 (2011). 33 邱國斌 & 蔡定平. 金屬表面電漿簡介. 物理雙月刊 (廿八卷二期) (2006). 34 Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127-130 (2016). 35 Ding, F., Yang, Y., Deshpande, R. A. & Bozhevolnyi, S. I. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics 7, 1129 - 1156 (2018). 36 Smith, P. & Turner, E. A bistable Fabry‐Perot resonator. Applied Physics Letters 30, 280-281 (1977). 37 Hsieh, Y.-H. et al. Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold. ACS Nano 14, 11670-11676 (2020). 38 Ohring, M. Materials science of thin films: depositon and structure. (Elsevier, 2001). 39 George, S. M. Atomic layer deposition: an overview. Chemical reviews 110, 111-131 (2010). 40 Malus, E. L. Théorie de la double réfraction de la lumière dans les substances cristallisées: mémoire couronné par l'Institut, dans la séance publique du 2 janvier 1810. (Garnery, 1810). 41 Arago, F. & Fresnel, A. J. Mémoire sur l'action que les rayons de lumière polarisés exercent les uns sur les autres. (De l'Imprimerie de Feugueray, rue du Cloitre Saint-Benoit, no. 4, 1819). 42 Stokes, G. G. XXX. On the change of refrangibility of light. Philosophical transactions of the Royal Society of London, 463-562 (1852). 43 Wee, A. T., Yin, X. & Tang, C. S. Introduction to Spectroscopic Ellipsometry of Thin Film Materials: Instrumentation, Data Analysis, and Applications. (John Wiley & Sons, 2022). 44 Hansma, P. K., Elings, V., Marti, O. & Bracker, C. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science 242, 209-216 (1988). 45 Quate, C. The AFM as a tool for surface imaging. Surface Science 299, 980-995 (1994). 46 Josephson, B. D. Possible new effects in superconductive tunnelling. Physics letters 1, 251-253 (1962). 47 Jaklevic, R., Lambe, J., Silver, A. & Mercereau, J. Quantum interference effects in Josephson tunneling. Physical Review Letters 12, 159 (1964). 48 Rohlf, J. W. (Wiley, 1994). 49 Chesca, B., Kleiner, R., Koelle, D., Clarke, J. & Braginski, A. Fundamentals and technology of SQUIDs and SQUID systems. The SQUID Handbook, edited by J. Clarke and AI Braginski (Wiley-VCH, Weinheim, 2004) 1, 29-92 (2004). 50 Koblischka, M. R., Půst, L., Chang, C.-S., Hauet, T. & Koblischka-Veneva, A. The Paramagnetic Meissner Effect (PME) in Metallic Superconductors. Metals 13, 1140 (2023). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96018 | - |
dc.description.abstract | 高靈敏度光子偵測器在光學通訊、光譜分析、生物醫學影像學、量子計算等領域具有廣泛的應用。其中,超導奈米線單光子偵測器(SNSPD)因其良好的偵測效率、極低的暗計數和極短的時間抖動而受到科學家們青睞。然而,奈米線由於偵測面積較小,需要較長且曲折的複雜結構來增加偵測面積,導致動態電感增加,恢復時間增長,限制了其快速量測下一次事件的能力。此外,大部分SNSPD僅限於通訊波段(1550 nm),對於可見光範圍的研究相對較少。因此,為了克服動態電感的限制,我們致力於開發超導微米線單光子偵測器(SMSPD)。微米線具有較大的偵測面積和較小的動態電感,但其偵測效率不及奈米線。因此,本研究在微米線上引入奈米結構,使其產生隙電漿子共振,以提高其偵測效率,使超導微米線單光子偵測器成為一個更具競爭力的選擇。
在本研究中,我們選擇氮化鈮(NbN)作為超導單光子偵測器的材料。NbN是一種已知的超導材料,也是難熔電漿子材料,在低溫時仍保持超導狀態並具有激發電漿子模態的能力。通過引入隙電漿子共振結構,我們有效增強了微弱光子信號與NbN超導微米線之間的交互作用,從而提高其偵測效率。本實驗室已經透過隙電漿子共振增強氮化鈮超導單光子偵測器使波長532 nm的偵測效率從68%增加至98%,我們仍致力於開發寬頻和偏振敏感的超導單光子偵測器,然而銀奈米立方無法共振在藍光波段(450 nm),所以我利用鋁奈米立方作為隙電漿子的共振腔使其在可見光波段有寬頻共振,利用有限時域差分法(FDTD)模擬不同形狀大小的鋁奈米立方結構,使其在特定波長、偏振與NbN發生隙電漿子共振,進而增強光子電場,使其提高偵測效率。寬頻SMSPD在量子通信和量子計算中,能夠在不同波長下檢測單光子,非常適合量子密鑰分發(QKD)和量子糾纏光子的檢測。此外,在生物醫學成像中,寬頻SMSPD能夠提高螢光壽命成像和單分子檢測的分辨率和靈敏度。在天文觀測中,這些探測器可以檢測來自遙遠天體的微弱光子信號,適用於高精度的天文觀測。同時,寬頻SMSPD在光譜分析中可提供高分辨率和高靈敏度的數據,應用於材料科學和化學分析。在高能物理實驗中,寬頻SMSPD也可用於檢測高能粒子與物質相互作用產生的光子,適合於粒子軌跡重建和能量測量。 在製程方面,我們利用超高真空射頻磁控濺鍍機在氧化鎂(MgO)基板上成長出15 nm的NbN薄膜,並通過橢圓偏振儀、原子力顯微鏡和超導量子干涉元件磁量儀來確認樣品的品質。在確定了NbN薄膜品質後,我們利用雷射直寫光刻機和反應式離子蝕刻機製備微米線結構,並通過原子層沉積法成長出5 nm的氧化鋁(Al2O3)絕緣層。最後,通過電子束微影並用熱蒸鍍機蒸鍍出鋁(Al)膜後進行掀離處理在微米線上製造奈米結構,完成樣品製備。在量測方面,我們將樣品放入低溫腔體中進行量測,通過引入可見光脈衝雷射作為光子源,並通過連接電路到示波器上觀察不同波長和光強的光信號,我們量測了波長450 nm、515 nm和640 nm以及波長532 nm的偏振敏感性的光子偵測效率,並比較了沒有奈米結構的SMSPD,最後通過MATLAB程式進行偵測效率分析。分析結果為有奈米結構的SMSPD在波長450 nm的偵測效率為96.5%、波長515 nm的偵測效率為94.4%、波長640 nm的偵測效率為98.3%,與沒有奈米結構的SMSPD相比光子敏感度增加約6.7倍、4倍以及8倍,而波長532 nm的偏振敏感性從1.1提升至10.1,以上可以證明利用奈米結構所產生的隙電漿子共振會提升SMSPD的光子敏感度。 最後,我們討論了SMSPD的未來發展方向。我們將整合光子源、波導和超導偵測器,在單一晶片上實現積體光路,以最大化超導單光子偵測器的效率。未來將進一步擴展到通訊波段的超導單光子偵測器,並應用於生物醫學、量子計算和高能粒子物理等領域。 | zh_TW |
dc.description.abstract | High sensitivity photon detectors have wide applications in optical communications, spectroscopy, biomedical imaging, quantum computing, and other fields. Among them, superconducting nanowire single-photon detectors (SNSPDs) are favored by scientists due to their excellent detection efficiency, extremely low dark counts, and very short timing jitter. However, due to the small detection area of nanowires, complex, long, and convoluted structures are required to increase the detection area, leading to increased dynamic inductance, longer recovery times, and limitations in rapidly measuring subsequent events. Additionally, most SNSPDs are limited to the communication wavelength band (1550 nm), with relatively little research on the visible light range. Therefore, to overcome the limitations of kinetic inductance, we are dedicated to developing superconducting microwire single-photon detectors (SMSPDs). A microwire has a larger detection area and smaller dynamic inductance, but their detection efficiency is not as good as nanowires. Hence, in this study, we fabricated nanostructures on microwires to induce gap plasmon resonance, thereby improving detection efficiency and making SMSPDs a more competitive option.
In this study, we selected niobium nitride (NbN) as the material for SMSPDs. NbN is a known superconducting material and a refractory plasmonic material that maintains superconductivity at low temperatures and has the ability to excite plasmon modes. By introducing a gap plasmon resonance structure, we effectively enhanced the interaction between weak photon signals and NbN superconducting microwires, thereby improving their detection efficiency. Our laboratory has successfully improved the single-photon detection efficiency of SMSPDs at a wavelength of 532 nm from 68% to 98%. To developing broadband and polarization-sensitive SMSPDs, We use the finite-difference time-domain (FDTD) to optimize the gap plasmon resonance of aluminum nanocubes and NbN at specific wavelengths and polarizations, promise the excellent performance detection efficiency. However, since silver nanocubes cannot resonate in the blue light (450 nm), I utilized aluminum nanocubes as the gap plasmon resonance cavity to achieve broadband resonance in the visible light range. Broadband SMSPDs perform excellently in quantum communication and quantum computing. They can detect single photons at different wavelengths, making them ideal for quantum key distribution (QKD) and quantum entangled photon pair detection. Additionally, in biomedical imaging, broadband SMSPDs can improve the resolution and sensitivity of fluorescence lifetime imaging and single-molecule detection. For high-precision observational astronomy, these detectors can detect weak photon signals from distant celestial bodies. Moreover, broadband SMSPDs can provide high-resolution and high-sensitivity data in spectroscopy, applicable in materials science and chemical analysis. In high-energy physics experiments, broadband SMSPDs can also be used to detect photons generated by the interaction of high-energy particles with matter, suitable for particle trajectory reconstruction and energy measurement. In sample preparation, we used an ultra-high vacuum RF magnetron sputtering machine to grow a 15 nm-NbN film on a magnesium oxide (MgO) substrate and confirmed the quality of the sample through ellipsometry, atomic force microscopy, and superconducting quantum interference device. After determining the quality of the NbN film, we used direct writing lithography and a reactive ion etching machine to fabricate the microwire structure and grew a 5 nm aluminum oxide (Al2O3) as a insulating layer through atomic layer deposition. Finally, we fabricated nanostructures on the microwires by electron beam lithography and thermal evaporation of an aluminum (Al) film followed by a lift-off process to complete sample preparation. To determine the detectivity, we cooled the SMSPD in a optical cryostat, illuminate it with pulsed visible laser, and measured the photon-induced electric signal at different wavelengths and intensities by connecting the circuit to an oscilloscope. We also discussed the polarization sensitivity at wavelengths of 450 nm, 515 nm, 532 nm , and 640 nm, and compared it with SMSPDs without nanostructures. Finally, we determined the detection efficiency by a MATLAB program. The analysis results show that the detection efficiency of the SMSPD with nanostructures is 96.45% at a wavelength of 450 nm, 94.39% at 515 nm, and 98.31% at 640 nm. Compared to the SMSPD without nanostructures, the photon sensitivity increases approximately 6.66 times, 4 times, and 8 times, respectively. Additionally, the polarization sensitivity at a wavelength of 532 nm increases from 1.05 to 10.06. This demonstrates that the plasmonic resonance generated by the nanostructures enhances the photon sensitivity of the SMSPD. In the end, we discussed the potential of SMSPDs. We plan to integrate the photon emitters, waveguides, and superconducting detectors on a single chip to maximize the efficiency of superconducting single-photon detectors. Future work will further extend to superconducting single-photon detectors in the communication wavelength band and applications in biomedical, quantum computing, and high-energy particle physics. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:38:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-25T16:38:31Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
口試委員會審定書 I 誌謝 II 中文摘要 III 英文摘要 V 目次 IX 圖次 XI 表次 XVII 第一章、緒論 1 1.1研究動機與背景 1 1.1.1研究動機 1 1.1.2電漿子學概述 2 1.1.3超導概述 6 1.2 超導單光子偵測器介紹 7 1.2.1 超導單光子偵測器的光偵測機制 7 1.2.2 偵測效率 8 1.2.3 暗計數率 9 1.2.4 時間抖動 10 1.2.5 恢復時間 11 1.3 光與物質交互作用之基本原理 12 1.3.1 物質中的馬克士威方程組 12 1.3.2 自由電子與德魯德模型 14 1.3.3 束縛電子與勞倫茲震盪模型 17 1.3.4 複數介電函數 18 1.3.5 表面電漿子模態 19 1.3.6 隙電漿子模態 21 第二章、材料分析與元件製備 25 2.1 薄物理氣相沉積氮化鈮─超高真空磁控射頻濺鍍機 25 2.2 光學性質量測─橢圓偏振儀 28 2.3 表面形貌量測─原子力顯微鏡 31 2.4 超導性質量測─超導量子干涉儀 33 2.5 隙電漿子增強之超導微米線單光子偵測器元件製備 38 第三章、單光子量測實驗系統架設 41 3.1雷射光路系統 41 3.2低溫光電系統 43 3.3電訊號量測系統 45 第四章、隙電漿子增強之超導微米線單光子偵測器 47 4.1 隙電漿子增強之寬頻超導微米線單光子偵測器 47 4.1.1 有限時域差分法的模擬設計 47 4.1.2 實驗結果 51 4.2 隙電漿子增強之偏振選擇超導微米線單光子偵測器 60 4.2.1 有限時域差分法的模擬設計 60 4.2.2 實驗結果 62 第五章、結論及未來展望 64 參考文獻 66 | - |
dc.language.iso | zh_TW | - |
dc.title | 開發具寬頻高效率之氮化鈮超導單光子偵測器: 共振可調之隙電漿子 | zh_TW |
dc.title | Enhanced Broadband High Detection Efficiency in NbN Superconducting Single Photon Detectors via Tunable Gap-Plasmon Resonances | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 呂宥蓉 | zh_TW |
dc.contributor.coadvisor | Yu-Jung Lu | en |
dc.contributor.oralexamcommittee | 柯忠廷;梁啟德 | zh_TW |
dc.contributor.oralexamcommittee | Chung-Ting Ke;Chi-Te Liang | en |
dc.subject.keyword | 電漿子學,隙電漿子共振,超導微米線單光子偵測器,氮化鈮,寬頻,超導過渡金屬氮化物, | zh_TW |
dc.subject.keyword | Plasmonics,Gap Plasmon Resonance,Superconducting Microwire Single-Photon Detector (SMSPD),NbN,Broadband,Superconducting Transition Metal Nitrides, | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU202403961 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 6.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。