Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96010
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀乾zh_TW
dc.contributor.advisorYao-Chien Alex Changen
dc.contributor.author楊悅zh_TW
dc.contributor.authorYue Yangen
dc.date.accessioned2024-09-25T16:36:06Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation行政院農業部. 2022. 農業統計資料查訊系統. 30 Mar. 2023. <https://agrstat.coa.gov.tw/sdweb/public/trade/TradeCoa.aspx>
李哖、林雨森. 1992. 蝴蝶蘭花朵之呼吸作用. 中國園藝38:228-240.
林雨森. 1988. 蝴蝶蘭切花採收後生理與老化. 國立臺灣大學園藝學研究所碩士論文. 臺北.
邱健誠、謝廷芳、戴廷恩. 2017. 不同來源大白花蝴蝶蘭Phalaenopsis Sogo Yukidian種苗生育特性之比較. 臺灣農業研究 66:53-65.
秦英華. 2021. 可溶性醣提升文心蘭切花採後品質. 國立臺灣大學園藝暨景觀學系研究所碩士論文. 臺北.
莊雅晴. 2010. 植體水分狀況及碳水化合物變化對洋桔梗切花品質之影響. 國立臺灣大學園藝學研究所碩士論文. 臺北.
連程翔. 1995. 唐菖蒲與蝴蝶蘭採後生理之研究. 國立臺灣大學園藝學研究所博士論文. 臺北.
劉盈勤. 2011. 乙烯抑制物質對蝴蝶蘭花朵除雄後老化之影響. 國立臺灣大學園藝系碩士論文. 臺北.
鍾淨慧、褚哲維. 2018. 日本切花市場變化之觀察. 強化台灣花卉產業競爭力之科研技術研討會專刊 98-108.
Adams, D.O. and S.F. Yang. 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1- carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. 76:170-174.
Albert, S.D., R.J. Goldacre and B.G. Balfour. 1947. The influence of chemical constitution on antibacterial activity. Part III: A study of 8-hydroxylquinoline (oxine) and related compounds. Brit. J. Expt. Pathol. 28:69-87.
Alvarez, M.E. 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol. 44:429-442.
Amborabé, P., J.F. Chollet, and G. Roblin. 2002. Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: Structure–activity relationship. Plant Physiol. Biochem. 40:1051-1060.
Apte, P.V., and M.M., Laloraya. 1982. Inhibitory action of phenolic compounds on abscisic acid-induced abscission. J. Expt. Bot. 33:826-830.
Asgharia, M. and M.S. Aghdamb. 2010. Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Sci. Technol. 21: 502-509.
Asif, I., M. Qasim, and R. Ahmad. 2016. Effect of pulsing with various preservatives on postharvest performance of cut Polianthes tuberosa L. ‘Single’ spikes. Pak. J. Agr. Sci. 53:331-338.
Asil, M.H. and M. Karimi. 2010. Efficiency of benzyladenine reduced ethylene production and extended vase life of cut Eustoma flowers. Plant Omics J. 3:199-203.
Babalar, M., A. Talaei, and A. Khosroshahi. 2007. Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chem. 105:449-453.
Bhattachrjee, S. 2005. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plant. Curr. Sci. 89:1113-1121.
Blankenship, S.M. and J.M. Dole. 2003.1-Methylcyclopropene: A review. Postharvest Biol Technol. 28:1-25.
Bleeksma, H.C. and W.G. van Doorn. 2003. Embolism in rose stems as a result of vascular occlusion by bacteria. Postharvest Biol. Technol. 29:334-340.
Binder, B.M. 2020. Ethylene signal in plants. J. Biol. Chem. 295:7710-7725.
Burg, S.P. 1973. Ethylene in plant growth. Proc. Nat. Acad. Sci. USA 70:591-597.
Brun, W.A. and K.J. Betts. 1984. Source/sink relations of abscising and nonabscising soybean flowers. Plant Physiol. 75:187-191.
Chen, H., and D.F. Klessig. 1993. Active oxygen species in the induction of plant systemtic acquired resistance by salicylic acid. Science 262:1883-1886.
Cheng, L., S. He, J. Liu, and H. Huang. 2020. Involvement of pectin and hemicellulose depolymerization in cut gerbera flower stem bending during vase life. Postharvest Biol. Technol. 167:1-9.
Cho, F.G., L. Dodge, and M.S. Reid. 2001. Sucrose enhances the postharvest quality of cut flowers of Eustoma grandiflorum(raf.) Shinn. Acta Hort.543:305-315.
Dai, J. and R.E. Paul. 1991. Effect of water status on Dendrobium flower spray postharvest life. J. Amer. Sot. Hort. Sci. 116:491-496.
Damunupola, J.W. and D.C. Joyce. 2008. When is a vase solution biocide not, or not only, antimicrobial?. Int. J. Jpn. Soc. Hort. Sci. 77: 211-228.
de Rocha Neto, M. and R.M.D. Piero. 2015. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Intl. J. Food Microbiol. 215:64-70.
Endo, M. and I. Ikushima. 1992. Changes in concentrations of sugars and organic acids in the long-lasting clusters of Phalaenopsis. Plant Cell Physiol. 33:7-12.
Endo, M. and I. Ikushima. 1997. Effects of CO2 enrichment on yields and preservability of cut flowers in Phalaenopsis. J. Jpn. Soc. Hort. Sci. 66:169-174.
Ferrarese, P., L. Trainotti, N. Rascio and G. Casadoro. 1996. Cellulase involvement in the abscission of peach and pepper leaves is affected by salicylic acid. J. Expt. Bot. 47:251-257.
Gunawan, M.I. and S.A. Barringer. 2000. Green color degradation of blanched broccoli (Brassica oleracea) due to acid and microbial growth. J. Food Processing Preservation 24:253-263..
Halevy, A.H. and S. Mayak. 1979. Senescence and postharvest physiology of cut flowers, part 1. Hort. Rev. 204-236.
Halevy, A.H. and S. Mayak. 1981. Senescence and postharvest physiology of cut flowers, part 2. Hort. Rev. 3:59-143.
Harper, J.R. and N.E. Balke. 1981. Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol. 68:1349-1353.
Han, S.S. 2003. Role of sugar in the vase solution on postharvest flower and leaf quality of oriental lily ‘Stargazer’. HortScience 38:412-416.
Hew, C.S. and J.W.H. Yong. 2004. Growth and development of orchid flower and inflorescence, p.247-254. In: C.S. Hew and J.W.H. Yong (eds.). The physiology of tropical orchids in relation to the industry. World Scientific, Singapore.
Ho, L.C. and R. Nichols. 1977. Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different stages of developmentInt. J. Jpn. Soc. Hort. Sci. 77: 211-228.
Hou, W.L., N. Lee, and Y.C.A. Chang. 2012. The residual effect of 1-methylcyclopropene on protecting Phalaenopsis flowers against ethylene injury. Int. J. Jpn. Soc. Hort. Sci. 77: 211-228.
Ichimura, K. 1998. Improvement of postharvest life in several cut flowers by the addition of sucrose. Jpn. Agr. Res. Qrtly. 32:275-280.
Ichimura, K. and K. Suto. 1999. Effects of the time of sucrose treatment on vase life, soluble carbohydrate concentrations and ethylene production in cut sweet pea flowers. Plant Growth Regulat. 28:117-122.
Ichimura, K. and T. Hisamatsu. 1999. Effects of continuous with sucrose on the vase life, soluble carbohydrate concentrations, and ethylene production of cut snapdragon flowers. J. Jpn. Soc. Hort. Sci. 68:61-66.
Ichimura, K. and T. Hiraya. 1999. Effect of silver thiosulfate complex (STS) in combination with sucrose on the vase life of cut sweet flowers. J. Jpn. Soc. Hort. Sci. 68:23-27.
Kande, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:283-307.
Kesta, S. and D. Amutiratana. 1986. Relationship between the vase life and some anatomical, morphological and physiological aspects of Dendrobium ‘Pompadour’ flowers. Asean Orchid Congress 113-115.
Kesta, S. and A. Boonrote. 1990. Holding solutions for maximizing bud opening and vase life of Dendrobium ‘Youppaddewan’ flowers. J. Hort. Sci. 65:41-47.
Kesta, S. and T. Nobuchi. 1991. Histochemical study of vascular blockage in flower stems of orchids in relation to vase life. Natl. Sci. Suppl. 25:111-118.
Kesta, Y. and S. Parthuangwong. 1995. Mode of action of AgNO3 in maximizing vase life of Dendrobium ‘Pompadour’ flowers. Postharvest Biol. Technol. 5:109-117.
Khan, H., T. Taufique, N. Ahsan, and A.F.M.J. Uddin. 2015. Vase life and keeping quality of dendrobium orchid (Dendrobium sp.) on preservative solutions. Int. J. Expt. Agri. 5:22-27.
Khunmuang, S., C. Wongs-Aree, S. Meir, S. Philosoph-Hadas, M. Oren-Shamir, R. Ovadia, and M. Buanong. 2019. Ethylene induces a rapid degradation of petal anthocyanins in cut Vanda ‘Sansai Blue’ orchid flowers. Frontiers Plant Sci. 10:1-13.
Klessig, D.F. and J. Malamy. 1994. The salicylic acid signal in plants. Plant Mol. Biol. 26:1439-1458.
Leslie, C.A. and R.J. Romani. 1988. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 88:833-837.
Lee, E.S. and W.T. Kim. 1999. Inhibition of auxin-induced ethylene production by salicylic acid in mung bean hypocotyls. J. Plant Biol. 42:1-7.
Li, X.B., Q.S. Shi, H.Y. Zeng, Y.S. OU-Yang, and Y.B. Chen. 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85:1115-1122.
Loubaud, M. and W.G. van Doorn. 2004. Wound-induced and bacteria-induced xylem blockage in roses, Astilbe, and Viburnum. Postharvest Biol. Technol. 32:281-288.
Mayak, S., A.H. Halevy, S. Sagie, A. Bar-Yoseph, and B. Bravdo. 1974. The water balance of cut rose flowers.Physiol. Plant. 31:15-22.
Mehdikhah, R. and D. Hashemabadi. 2016. Postharvest life of cut gerbera (Gerbera jamesonii) flowers as affected by salicylic acid, citric acid and ascorbic acid. J. Agr. Biol. Sci. 11:170-174.
Milosevic, N. and A.J. Slusarenko. 1996. Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiol. Mol. Plant Pathology. 49:143-158.
Moalem-Beno, G., Y. Leitner-Dagan, A. Borochov, and D. Weiss. 1997. Sugar-dependent gibberellin-induced chalcone synthase gene expression in petunia corollas. Plant Physiol. 113:419-424.
Morris, S.A.H., T. Page, C.F. John, A.M. Murphy, J.P. Carr, and V. Buchanan-Wollaston. 2000. Salicylic acid has a role in regulation gene expression during leaf senescence. Plant J. 23:677-685.
Neto, M., and R.M.D. Piero. 2015. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Intl. J. Food Microbiol. 215:64-70.
Nguyen, T.K. and L.J. Hee. 2021. Do eco-friendly floral preservative solutions prolong vase life better than chemical solutions? Horticulturae:1-11.
Parups, E.V. and E.A. Peterson. 1973. Inhibition of ethylene production in plant tissues by 8-hydroxyquinoline. Can. J. Plant Sci. 53:351-353.
Patharkar, O.R. and J.C. Walker. 2019. Connections between abscission, dehiscence, pathogen defense, drought tolerance and senescence. Plant Sci. 284:25-29.
Pourzarnegar, F. and D. Hashemabadi. 2020. The effect of cerium nitrate and salicylic acid on vase life and antioxidant system of cut lisianthus (Eustoma grandiflorum cv. Pink Picotte) flowers. J. Ornamental Plants 2: 69-80.
Put, H.M.C. and A.C.M. Clerkx. 1988. The infiltration ability of micro-organisms Bacillus, Fusarium, Kluyveromyces and Pseudomonas spp. into xylem vessels of Gerbera cv. ‘Fleur’ and Rosa cv. ‘Sonia’ cut flowers: A scanning electron microscope study. J. Appl. Bacteriology 64:515-530.
Pulido, R.R. and F.L. Cuquel. 2021. Sucrose, salicylic acid and citric acid solutions to extent vase life of Vriesea incurvata Gaudich. (Bromeliaceae) floral scapes. Acta Agronómica. 70:27-34.
Rao, G., D.P. Ormrod, D.P. Murr, and C.B. Watkins. 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol. 115:137-149.
Radojičić, X. and Y. Zhang. 2018. Salicylic acid: A double-edged sword for prorammed cell death in plants. Frontiers Plant Sci. 9:1-5.
Reid, M.S. and Wu, M.J. 1992. Ethylene and flower senescence. Plant Growth Regul. 11:37-43.
Romani, B.M., and C.A. Leslie. 1989. Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. J. Plant Growth Regul. 8:63-69..
Saeed, I., N.A. Abbasi, and G. Jilani. 2016. Antioxidative activities and qualitative changes in gladiolus cutflowers in response to salicylic acid application. Scientia Hort. 210:236-241.
Saltveit, M.E. 2000. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biol. Technol. 21:61-69.
Shi, Z., Z. Zhu, Q. Ying, and Q. Qian. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul. 48:127-135.
Shabanian, M.N., R. Karamian, and L.S.P. Tran. 2019. Salicylic acid modulates cutting-induced physiological and biochemical responses to delay senescence in two gerbera cultivars. Plant Growth Regul. 87:245–256.
Sisler, E.C. and M. Serek. 1997. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol. Plantarum. 100:577-582.
Song, R., Q. Zang, S. He, and Y. Wang. 2022. Antibacterial effect and possible mechanism of salicylic acid microcapsules against Escherichia coli and Staphylococcus aureus. Intl. J. Environ. Research Public Health. 19:12761.
Sun, B., F. Liu, H. Wang, and R. Müller. 2009. Effects of ethylene and 1-MCP (1-methylcyclopropene) on bud and flower drop in mini Phalaenopsis cultivars. Plant Growth Regul. 59:83-91.
Thurman, C.P. and G. Bitton. 1989. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Critical Rev. Environ. Control. 18:295-315.
Tian, Z., Z. Jiang, X. Huang, L. Zhang, Z. Zhang, and P. Sun. 2022. Effects of plant growth regulators on flower abscission and growth of tea plant Camellia sinensis (L.) O. Kuntze. J. Plant Growth Regul. 41:1161-1173.
Vámos‐Vigyázó, L. and N.F. Haard, 1981. Polyphenol oxidases and peroxidases in fruits and vegetables. Critical Rev. Food Sci. Nutr. 15:49-127.
van Doorn, K. and Y. de Witte. 1988. Role of endogenous bacteria in vascular blockage of cut rose flowers. J. Plant Physiol. 134:375-381.
van Doom, W.G. and R.R.J. Perik. 1990. Hydroxyquinoline citrate and low pH prevent vascular blockage in stems of cut rose flowers by reducing the number of bacteria. J. Amer. Soc. Hort. Sci. 115:979-981.
van Doorn, W.G. and A.D. Stead. 1997. Abscission of flowers and floral parts. J. Expt. Bot. 48:821-837.
van Doorn, W.G. 1999. Water relations of cut flowers. II. Some species of tropical provenance. Acta Hort. 482:65-69.
van Doorn, W.G. 1999. Vascular occlusion in cut flowers. I. general principles and recent advances. Intl. Symposium Cut Flowers Tropics 482:59-64.
van Doorn, W.G. and N. Vaslier. 2002. Wounding-induced xylem occlusion in stems of cut chrysanthemum flowers: Roles of peroxidase and cathechol oxidase. 26:275-284.
van der Meulen-Muisers, J.C., B.B. Meijkamp and F.H.M. Derks. 1995. Effect of floral bud reduction on individual flower longevity in Asiatic hybrid lilies. Acta Hort. 405:46-57.
Vaslier, N. and W.G. van Doorn. 2003. Xylem occlusion in bouvardia flowers: Evidence for a role of peroxidase and cathechol oxidase. Postharvest Biol. Technol. 28:231-237.
Veen, H. 1983. Silver thiophostate: An experimental tool in plant science. Sci. Hort. 20:211-224.
Verlinden, S., and J.J.V. Garcia. 2004. Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus cv. White Sim) petals. Postharvest Biol. Technol. 31:305-312.
Vendruscolo, I., M. Pileggi, C.A. Scapim, H.B.C. Molinari, C.J. Marur, L.G.E. Vieira. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 164:1367-1376.
Vehniwal and Abbey. 2019. Cut flower vase life influential factors metabolism and organic formulation. Hort. Intl. J. 3:275-281.
Waithaka, L.L., and M.S. Reid. 2001. Carbohydrate traffic during opening of gladiolus florets. J. Hort. Sci. Biotechnol. 76:120-124.
Wang, Y., M. Wu., F. Dai., M. Ye, F. Chen, Y. Qi, Z. Luo, H. Huang. 2023. Involvement of lignin deposition and cell wall degradation in stem senescence of Chinese flowering cabbage during storage. Postharvest Biol. Technol. 198:1-9.
Yan, L., X. Dou, M. Qi, Q. Du, Q. He, M. Nan, Z. Chang, and P. Nan. 2015.Toxicity of 8-hydroxylquinoline in Cryprinus carpio using the acute toxity test, hepatase activity analysis and the comet assay. Bull Environ. Contam. Toxicol. 95:171-176.
Yu, Y., and S. Yan. 2021. Salicylic acid and ethylene coordinately promote leaf senescence. J. Integrative Plant Biol. 63:823-827.
Zamani, M., and M. Aran. 2011. Postharvest life of cut rose flowers as affected by salicylic acid and glutamin. World Appl. Sci. J. 12:1261-1624.
Zhang, K., S. Zhang, I. Ferguson. 2003. The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biol. Technol. 28:67-74.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96010-
dc.description.abstract蝴蝶蘭是台灣重要的外銷切花。業者多以切花保鮮劑延長切花瓶插壽命,維持切花品質。前人研究顯示,水楊酸 (salicylic acid,SA) 具有提升切花吸水量、抑制乙烯生合成或提升花瓣抗氧化酵素活性等作用,然而目前鮮少有關SA處理蘭科切花之研究,故本研究探討SA對蝴蝶蘭切花品質之影響,及SA應用於蝴蝶蘭切花採後處理的可能性。
瓶插液以純水、0.125、0.25、0.5、1.0、1.5、2.0和4.0 mM SA處理大白花蝴蝶蘭(Phalaenopsis Sogo Yukidian ‘V3’)切花。瓶插液處理0.125和0.25 mM SA之切花,瓶插壽命分別較對照組短3及5天,其餘濃度之SA處理與對照組沒有差異,為15至16天。經SA瓶插液處理的切花切口皆提前褐化,且花梗褐化程度較純水組高。濃度大於0.5 mM SA的瓶插液處理中,花序梗滲出水珠,且水珠的數量隨SA濃度提高而上升。處理2.0和4.0 mM SA瓶插液的切花,於瓶插後期落花數上升且相對鮮重下降。瓶插測試中低濃度SA降低蝴蝶蘭‘V3’切花瓶插壽命,而高濃度SA瓶插液雖不影響瓶插壽命,但長時間瓶插後切花品質迅速劣化。
後續試驗縮短SA處理時間,以純水、0.0625、0.125、0.25、0.5、1.0和2.0 mM SA預措切花24小時,再轉移至純水中瓶插。最高濃度2.0 mM SA處理之瓶插壽命較純水處理延長3天。進一步測試高濃度SA之預措效果,處理0.5、1.0、2.0、4.0、8.0和16.0 mM。此試驗中所有SA預措濃度均縮短切花瓶插壽命,以16.0 mM處理之瓶插壽命最短,為13天;純水組瓶插壽命最長,為43.7天。切花經SA預措,切口褐化皆較純水處理提早且更為嚴重。預措8.0和16.0 mM SA處理的切花花梗滲出水珠,且兩處理之花朵分別於瓶插第14天和第11.8天提前掉落。
水楊酸處理發生提早落花、花梗褐化及花梗滲出液等徵狀,因此將蝴蝶蘭切花瓶插於純水或經16.0 mM SA預措24小時後,觀察花序梗及小花柄離層區之細胞結構變化。預措SA相對於純水處理,花序梗中細胞膜與細胞壁分離、皮層細胞色素流失,以及基本組織的薄壁細胞結構破損;小花柄離層區之細胞提前大約14天分離。預措SA處理組提前落花,落花之乾、鮮重皆較對照組高,顯示預措SA後花朵在相對新鮮的狀態發生離層。本研究結果顯示SA作為瓶插液或預措液皆無法維持蝴蝶蘭切花瓶插品質,SA處理濃度越高,可能使切花瓶插品質下降,不適合應用於蝴蝶蘭切花採後處理。
zh_TW
dc.description.abstractPhalaenopsis is an important cut flower in Taiwan for export. Preservatives are used in the cut flower industry to extend vase life and maintain cut flower quality. Literature shows that salicylic acid (SA) improves water absorption, inhibits ethylene biosynthesis, and increases the activity of antioxidant enzymes in petals of cut flowers. However, only a few studies investigated the effects of SA on cut orchids. Therefore, this study investigated the effects of SA on the quality of Phalaenopsis cut flowers and the anatomical structures and explored the possibility of SA application on the postharvest of Phalaenopsis cut flowers.
Phalaenopsis Sogo Yukidian ‘V3’ cut flowers were placed in the vase solutions containing water, 0.125, 0.25, 0.5, 1.0, 1.5, or 2.0 mM SA. In vase solutions treated with 0.125 and 0.25 mM SA, the vase life was 3 and 5 days shorter than the control. The vase life of the other SA treatments was 15 to 16 days, which were not significantly different from the control. The inflorescence incision exhibited earlier browning, and the browning length was longer with SA treatments. With the SA concentrations greater than 0.5 mM, exudates leaked from the inflorescence, and the number of exudates increased as the SA concentration increased. The number of dropped florets rose significantly in the 2.0 mM and 4.0 mM SA treatments during the later stage in vase. The lower SA concentrations in preservatives shortened the vase life of Phalaenopsis Sogo Yukidian ‘V3’ but higher SA concentrations did not influence the vase life. However, after a long period in the high concentration of SA preservatives, the cut flower quality decreased significantly in the late stage of vase life.
Therefore, we shortened the SA treatment duration and pulsed the cut flowers in water, 0.0625, 0.125, 0.25, 0.5, 1.0, or 2.0 mM SA pulsing solution for 24 hours, then transferred them to water. The vase life of the highest concentration treatment, 2.0 mM SA, was the longest. Then we further applied the pulsing solution with higher SA concentrations of 0.5, 1.0, 2.0, 4.0, 8.0, or 16.0 mM. All concentrations of SA pulsing solution reduced the vase life of Phalaenopsis cut flowers in this experiment. The cut flowers treated with 16.0 mM SA pulsing had the shortest vase life, which was 13 days, while the vase life of the control was 43.7 days, the longest among all treatments. Inflorescence incision got browning earlier with all SA pulsing treatments. The peduncle produced exudates when treated with 8.0 and 16.0 mM SA, and these two treatments had the earliest floret drops that occurred on 11.8 and 14.0 days in a vase, respectively.
The symptoms, such as early floret drop, peduncle browning, and exudate production, occurred in Phalaenopsis cut flowers after being treated with SA. Cut flowers were placed in water or 16.0 mM SA pulsing solution for 24 hours and then transferred to water. We investigated the effects of the two treatments on the cell structure changes of the peduncle and pedicel abscission zone during the vase life. With 16.0 mM SA pulsing solution, peduncle cells showed protoplast shrinkage and separation from the cell wall. Cortical cells near the epidermis exhibited pigment loss. Parenchyma cells in the ground tissue were damaged. Abscission zone cells separated 14 days earlier than the control. Browning was limited around the peduncle incision in the control. The dry and fresh weights of dropped florets of SA treatment were higher than those in the control, indicating they were fresher than the control when the florets dropped. Results showed that neither the SA vase solution nor the SA pulsing solution could maintain Phalaenopsis cut flower quality. As concentration of SA increased, the cut flower quality decreased. Therefore, SA may not be suitable for Phalaenopsis cut flower postharvest.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:36:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:36:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 (Acknowledgement) i
摘要 ii
Abstract iv
目次 (Content) vii
表次 (List of Tables) ix
圖次 (List of Figures) x
壹、前言 (Introduction) 1
貳、前人研究 (Literature Review) 3
一、影響切花瓶插壽命的因子 3
二、蝴蝶蘭切花採後生理 6
三、水楊酸對切花瓶插品質的影響 9
參、材料與方法 (Materials and Methods) 12
一、植物材料 12
二、試驗場地與日期 12
三、試驗設計 13
四、調查項目 16
五、SA藥品配置 17
六、染色方式及觀察切片 18
七、統計分析 18
肆、結果 (Results) 19
試驗一、水楊酸瓶插液對蝴蝶蘭切花品質之影響 19
試驗二、水楊酸預措液對蝴蝶蘭切花品質之影響I 21
試驗三、水楊酸預措液對蝴蝶蘭切花品質之影響II 22
試驗四、蝴蝶蘭切花瓶插期間花序梗細胞結構之變化 24
伍、討論 (Discussion) 27
一、水楊酸對蝴蝶蘭切花外觀與瓶插壽命之影響 27
二、水楊酸對蝴蝶蘭切花水分平衡之影響 29
三、蝴蝶蘭切花瓶插期間組織結構之變化 30
四、蝴蝶蘭切花瓶插期間小花鮮乾重之變化 31
結論 (Conclusion) 34
參考文獻 (Reference) 35
柒、表 (Tables) 45
捌、圖 (Figures) 50
-
dc.language.isozh_TW-
dc.title瓶插或預措水楊酸溶液對蝴蝶蘭切花品質之影響zh_TW
dc.titleThe Effects of Salicylic Acid as a Vase Solution or Pulsing Solution on the Quality of Phalaenopsis Cut Flowersen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳香君;官彥州;陳彥樺zh_TW
dc.contributor.oralexamcommitteeShiang-Jiuun Chen;Yen-Chou Kuan;Yen-Hua Chenen
dc.subject.keyword蝴蝶蘭切花,採後處理,水楊酸,離層,水分平衡,zh_TW
dc.subject.keywordPhalaenopsis cut flower,postharvest,salicylic acid,abscission,water-balance,en
dc.relation.page120-
dc.identifier.doi10.6342/NTU202404274-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2029-08-12-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-12
8.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved