請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96008
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 金必耀 | zh_TW |
dc.contributor.advisor | Bih-Yaw Jin | en |
dc.contributor.author | 林彥廷 | zh_TW |
dc.contributor.author | Yen-Ting Lin | en |
dc.date.accessioned | 2024-09-25T16:35:30Z | - |
dc.date.available | 2024-09-26 | - |
dc.date.copyright | 2024-09-25 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-09-04 | - |
dc.identifier.citation | [1] Sarma, D. D.; Shukla, A. K. Building Better Batteries: A Travel Back in Time. ACS Energy Lett. 2018, 3, 2841–2845.
[2] Lodge, O. J. Experiments on the Discharge of Leyden Jars. Proc. R. Soc. 1891, 50, 2–39. [3] Dubal, D. P.; Wu, Y. P.; Holze, R. Supercapacitors: From the Leyden Jar to Electric Busses. ChemTexts 2016, 2, 13. [4] da Rosa, A. Fundamentals of Renewable Energy Processes (Third Edition); Academic Press: Boston, 2013. [5] Li, H.; Yang, G.; Chen, J.; Li, M.; Su, Y.; Dai, Q.; Ye, H.; Guo, B.; Geng, L.; Yang, T. Revealing the Electrochemistry in a Voltaic Cell by in Situ Electron Microscopy. ChemElectroChem 2022, 9, e202200441. [6] Boulabiar, A.; Bouraoui, K.; Chastrette, M.; Abderrabba, M. A Historical Analysis of the Daniell Cell and Electrochemistry Teaching in French and Tunisian Textbooks. J. Chem. Educ. 2004, 81, 754. [7] Nindhia, T. G. T.; Surata, I. W.; Swastika, I. D. G. P.; Wahyudi, I. M. Reuse of Carbon Paste from Used Zinc-Carbon Battery for Biogas Desulfurizer with Clay as a Binder. Int. J. Environ. Sci. Dev. 2016, 7, 203. [8] May, G. J.; Davidson, A.; Monahov, B. Lead Batteries for Utility Energy Storage: A Review. J. Energy Storage 2018, 15, 145–157. [9] Daniel, C.; Mohanty, D.; Li, J.; Wood, D. L. Cathode Materials Review. AIP Conf. 2014, 1597, 26–43. [10] Lopes, P. P.; Stamenkovic, V. R. Past, Present, and Future of Lead–Acid Batteries. Science 2020, 369, 923-924. [11] Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126–1127. [12] Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<X<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789. [13] Yoshino, A. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 5798–5800. [14] Whittingham, M. S. Materials Challenges Facing Electrical Energy Storage. MRS Bulletin 2008, 33, 411–419. [15] Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [16] Manthiram, A. A Reflection on Lithium-Ion Battery Cathode Chemistry. Nat. Commun. 2020, 11, 1550. [17] Goodenough, J. B.; Mizushima, K.; Takeda, T. Solid-Solution Oxides for Storage-Battery Electrodes. Jpn. J. Appl. Phys. 1980, 19, 305. [18] Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Cobalt Dissolution in LiCoO2-Based Non-Aqueous Rechargeable Batteries. Solid State Ion. 1996, 83, 167–173. [19] Johnston, W. D.; Heikes, R. R.; Sestrich, D. The Preparation, Crystallography, and Magnetic Properties of the LixCo(1−x)O System. J. Phys. Chem. Solids 1958, 7, 1–13. [20] Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural Classification and Properties of the Layered Oxides. Physica B+C 1980, 99, 81–85. [21] Van der Ven, A.; Ceder, G. Lithium Diffusion Mechanisms in Layered Intercalation Compounds. J. Power Sources 2001, 97, 529–531. [22] Sun, L.; Zhang, Z.; Hu, X.; Tian, H.; Zhang, Y.; Yang, X. Realization of Ti Doping by Electrostatic Assembly to Improve the Stability of LiCoO2 Cycled to 4.5 V. J. Electrochem. Soc. 2019, 166, A1793. [23] Carroll, K. J.; Qian, D.; Fell, C.; Calvin, S.; Veith, G. M.; Chi, M.; Baggetto, L.; Meng, Y. S. Probing the Electrode/Electrolyte Interface in the Lithium Excess Layered Oxide Li1.2Ni0.2Mn0.6O2. Phys. Chem. Chem. Phys. 2013, 15, 11128–11138. [24] Chen, Z.; Dahn, J. R. Methods to Obtain Excellent Capacity Retention in LiCoO2 Cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090. [25] Choi, J. U.; Voronina, N.; Sun, Y.-K.; Myung, S.-T. Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today, and Tomorrow. Adv. Energy Mater. 2020, 10, 2002027. [26] Li, M.; Liu, T.; Bi, X.; Chen, Z.; Amine, K.; Zhong, C.; Lu, J. Cationic and Anionic Redox in Lithium-Ion Based Batteries. Chem Soc Rev 2020, 49, 1688–1705. [27] Jung, C.-H.; Shim, H.; Eum, D.; Hong, S.-H. Challenges and Recent Progress in LiNixCoyMn1−x−yO2 (NCM) Cathodes for Lithium Ion Batteries. J. Korean Ceram. Soc. 2021, 58, 1–27. [28] Streich, D.; Erk, C.; Guéguen, A.; Müller, P.; Chesneau, F.-F.; Berg, E. J. Operando Monitoring of Early Ni-Mediated Surface Reconstruction in Layered Lithiated Ni–Co–Mn Oxides. J. Phys. Chem. C 2017, 121, 13481–13486. [29] He, T.; Chen, L.; Su, Y.; Lu, Y.; Bao, L.; Chen, G.; Zhang, Q.; Chen, S.; Wu, F. The Effects of Alkali Metal Ions with Different Ionic Radii Substituting in Li Sites on the Electrochemical Properties of Ni-Rich Cathode Materials. J. Power Sources 2019, 441, 227195. [30] Kong, F.; Liang, C.; Wang, L.; Zheng, Y.; Perananthan, S.; Longo, R. C.; Ferraris, J. P.; Kim, M.; Cho, K. Kinetic Stability of Bulk LiNiO2 and Surface Degradation by Oxygen Evolution in LiNiO2‐Based Cathode Materials. Adv. Energy Mater. 2019, 9, 1802586. [31] Xia, Y.; Zheng, J.; Wang, C.; Gu, M. Designing Principle for Ni-Rich Cathode Materials with High Energy Density for Practical Applications. Nano Energy 2018, 49, 434–452. [32] Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D. H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K. Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries. Adv. Energy Mater. 2014, 4, 1300787. [33] Nguyen, M. T.; Pham, H. Q.; Berrocal, J. A.; Gunkel, I.; Steiner, U. An Electrolyte Additive for the Improved High Voltage Performance of LiNi0.5Mn1.5O4 (LNMO) Cathodes in Li-Ion Batteries. J. Mater. Chem. A 2023, 11, 7670–7678. [34] Bensalah, N.; Dawood, H. Review on Synthesis, Characterizations, and Electrochemical Properties of Cathode Materials for Lithium Ion Batteries. J Material Sci. Eng. 2016, 5:4. [35] Zhang, X.; Cheng, F.; Zhang, K.; Liang, Y.; Yang, S.; Liang, J.; Chen, J. Facile Polymer-Assisted Synthesis of LiNi0.5Mn1.5O4 with a Hierarchical Micro–Nano Structure and High Rate Capability. RSC Adv. 2012, 2, 5669–5675. [36] Fehse, M.; Etxebarria, N.; Otaegui, L.; Cabello, M.; Martín-Fuentes, S.; Cabañero, M. A.; Monterrubio, I.; Elkjær, C. F.; Fabelo, O.; Enkubari, N. A. Influence of Transition-Metal Order on the Reaction Mechanism of LNMO Cathode Spinel: An Operando X-Ray Absorption Spectroscopy Study. Chem. Mater. 2022, 34, 6529–6540. [37] Liu, D.; Zhu, W.; Trottier, J.; Gagnon, C.; Barray, F.; Guerfi, A.; Mauger, A.; Groult, H.; Julien, C. M.; Goodenough, J. B. Spinel Materials for High-Voltage Cathodes in Li-Ion Batteries. RSC Adv. 2014, 4, 154–167. [38] Atanasov, M.; Barras, J. L.; Benco, L.; Daul, C. Electronic Structure, Chemical Bonding, and Vibronic Coupling in Mn(IV)/Mn(III) Mixed Valent Li(x)Mn2O4 Spinels and Their Effect on the Dynamics of Intercalated Li: A Cluster Study Using DFT. J. Am. Chem. Soc. 2000, 122, 4718–4728, ArticleScopus. [39] Kunduraci, M.; Amatucci, G. G. The Effect of Particle Size and Morphology on the Rate Capability of 4.7V LiMn1.5+δNi0.5−δO4 Spinel Lithium-Ion Battery Cathodes. Electrochim. Acta 2008, 53, 4193–4199. [40] Manthiram, A.; Chemelewski, K.; Lee, E.-S. A Perspective on the High-Voltage LiMn1.5Ni0.5O4 Spinel Cathode for Lithium-Ion Batteries. Energy Environ. Sci. 2014, 7, 1339–1350. [41] Lu, D.; Xu, M.; Zhou, L.; Garsuch, A.; Lucht, B. L. Failure Mechanism of Graphite/LiNi0.5Mn1.5O4 Cells at High Voltage and Elevated Temperature. J. Electrochem. Soc. 2013, 160, A3138. [42] Aurbach, D.; Markovsky, B.; Shechter, A.; Ein‐Eli, Y.; Cohen, H. A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures. J. Electrochem. Soc. 1996, 143, 3809. [43] Nzereogu, P.; Omah, A.; Ezema, F.; Iwuoha, E.; Nwanya, A. Anode Materials for Lithium-Ion Batteries: A Review. Appl. Surf. Sci. 2022, 9, 100233. [44] Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271–4301. [45] Foroozan, T.; Sharifi-Asl, S.; Shahbazian-Yassar, R. Mechanistic Understanding of Li Dendrites Growth by in-situ/Operando Imaging Techniques. J. Power Sources 2020, 461, 228135. [46] Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. Dendritic Growth Mechanisms in Lithium/Polymer Cells. J. Power Sources 1999, 81, 925–929. [47] Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W. Filming Mechanism of Lithium-Carbon Anodes in Organic and Inorganic Electrolytes. J. Power Sources 1995, 54, 228–231. [48] Insinna, T.; Bassey, E. N.; Märker, K.; Collauto, A.; Barra, A.-L.; Grey, C. P. Graphite Anodes for Li-Ion Batteries: An Electron Paramagnetic Resonance Investigation. Chem. Mater. 2023, 35, 5497–5511. [49] Hu, D.; Chen, L.; Tian, J.; Su, Y.; Li, N.; Chen, G.; Hu, Y.; Dou, Y.; Chen, S.; Wu, F. Research Progress of Lithium Plating on Graphite Anode in Lithium‐Ion Batteries. Chin. J. Chem. 2021, 39, 165–173. [50] Arora, P.; Doyle, M.; White, R. E. Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium‐Ion Batteries Using Carbon‐Based Negative Electrodes. J. Electrochem. Soc. 1999, 146, 3543. [51] Teki, R.; Datta, M. K.; Krishnan, R.; Parker, T. C.; Lu, T. M.; Kumta, P. N.; Koratkar, N. Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries. small 2009, 5, 2236–2242. [52] Wang, W.; Li, P.; Fu, Y.; Ma, X. The Preparation of Double-Void-Space SnO2/carbon Composite as High-Capacity Anode Materials for Lithium-Ion Batteries. J. Power Sources 2013, 238, 464–468. [53] Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires. Nat. Nanotechnol. 2008, 3, 31-35. [54] Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires. Nat Nanotechnol. 2008, 3, 31–35. [55] Santhosha, A.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P. The Indium− Lithium Electrode in Solid‐State Lithium‐Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. Batter. Supercaps. 2019, 2, 524–529. [56] Oh, D. Y.; Choi, Y. E.; Kim, D. H.; Lee, Y.-G.; Kim, B.-S.; Park, J.; Sohn, H.; Jung, Y. S. All-Solid-State Lithium-Ion Batteries with TiS2 Nanosheets and Sulphide Solid Electrolytes. J. Mater. Chem. A 2016, 4, 10329–10335. [57] Fry, A. J. Synthetic Organic Electrochemistry; John Wiley & Sons, 1989. [58] Nyman, A.; Behm, M.; Lindbergh, G. Electrochemical Characterisation and Modelling of the Mass Transport Phenomena in LiPF6–EC–EMC Electrolyte. Electrochim. Acta 2008, 53, 6356–6365. [59] Deng, Z.; Mo, Y.; Ong, S. P. Computational Studies of Solid-State Alkali Conduction in Rechargeable Alkali-Ion Batteries. NPG Asia Mater. 2016, 8, e254–e254. [60] Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30, 1705702. [61] Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 1–16. [62] Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2016, 116, 140–162. [63] Goodenough, J. B.; Hong, H.-P.; Kafalas, J. Fast Na+-ion Transport in Skeleton Structures. Mater. Res. Bull. 1976, 11, 203–220. [64] Francisco, B. E.; Stoldt, C. R.; M’Peko, J.-C. Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes. Chem. Mater. 2014, 26, 4741–4749. [65] Thangadurai, V.; Weppner, W. Recent Progress in Solid Oxide and Lithium Ion Conducting Electrolytes Research. Ionics 2006, 12, 81–92. [66] Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. y. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. J. Electrochem. Soc. 1990, 137, 1023. [67] Cruz, A. M.; Ferreira, E. B.; Rodrigues, A. C. M. Controlled Crystallization and Ionic Conductivity of a Nanostructured LiAlGePO4 Glass–Ceramic. J. Non-Cryst. 2009, 355, 2295–2301. [68] Key, B.; Schroeder, D. J.; Ingram, B. J.; Vaughey, J. T. Solution-Based Synthesis and Characterization of Lithium-Ion Conducting Phosphate Ceramics for Lithium Metal Batteries. Chem. Mater. 2012, 24, 287–293. [69] Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. High Lithium Ion Conducting Solid Electrolytes Based on NASICON Li1+xAlxM2−x(PO4)3 Materials (M=Ti, Ge and 0≤X≤0.5). J. Eur. Ceram. Soc. 2015, 35, 1477–1484. [70] DeWees, R.; Wang, H. Synthesis and Properties of NaSICON-type LATP and LAGP Solid Electrolytes. ChemSusChem 2019, 12, 3713–3725. [71] Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. A Lithium Superionic Conductor. Nat. Mater. 2011, 10, 682–686. [72] Kwon, O.; Hirayama, M.; Suzuki, K.; Kato, Y.; Saito, T.; Yonemura, M.; Kamiyama, T.; Kanno, R. Synthesis, Structure, and Conduction Mechanism of the Lithium Superionic Conductor Li10+Δ Ge1+ Δ P2− Δ S12. J. Mater. Chem. A 2015, 3, 438–446. [73] Bai, X.; Duan, Y.; Zhuang, W.; Yang, R.; Wang, J. Research Progress in Li-Argyrodite-Based Solid-State Electrolytes. J. Mater. Chem. A 2020, 8, 25663–25686. [74] Song, J.; Wang, Y.; Wan, C. C. Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries. J. Power Sources 1999, 77, 183-197. [75] Fenton, D. Complex of Alkali Metal Ions with Poly (Ethylene Oxide). polymer 1973, 14, 589. [76] Meyer, W. H. Polymer Electrolytes for Lithium‐Ion Batteries. Adv. Mater. 1998, 10, 439–448. [77] Feng, J.; Wang, L.; Chen, Y.; Wang, P.; Zhang, H.; He, X. PEO Based Polymer-Ceramic Hybrid Solid Electrolytes: A Review. Nano Converg. 2021, 8, 1–12. [78] Tsuchida, E.; Ohno, H.; Tsunemi, K. Conduction of Lithium Ions in Polyvinylidene Fluoride and Its Derivatives. Electrochim. Acta 1983, 28, 591–595. [79] Mathies, L.; Diddens, D.; Dong, D.; Bedrov, D.; Leipner, H. Transport Mechanism of Lithium Ions in Non-Coordinating P (VDF-HFP) Copolymer Matrix. Solid State Ion. 2020, 357, 115497. [80] Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and Prospects of PVDF Based Polymer Electrolytes. J. Energy Chem. 2022, 64, 62–84. [81] Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X. Progress and Perspectives on Halide Lithium Conductors for All-Solid-State Lithium Batteries. Energy Environ. Sci. 2020, 13, 1429–1461. [82] Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid Halide Electrolytes with High Lithium‐Ion Conductivity for Application in 4 V Class Bulk‐Type All‐Solid‐State Batteries. Adv. Mater. 2018, 30, 1803075. [83] Schlem, R.; Banik, A.; Ohno, S.; Suard, E.; Zeier, W. G. Insights into the Lithium Sub-Structure of Superionic Conductors Li3YCl6 and Li3YBr6. Chem. Mater. 2021, 33, 327–337. [84] Bohnsack, A.; Stenzel, F.; Zajonc, A.; Balzer, G.; Wickleder, M. S.; Meyer, G. Ternäre Halogenide Vom Typ A3MX6. Vi [1]. Ternäre Chloride Der Selten‐Erd‐Elemente Mit Lithium, Li3MCl6 (M = Tb, Lu, Y, Sc): Synthese, Kristallstrukturen Und Ionenbewegung. Z. Anorg. Allg. Chem. 1997, 623, 1067–1073. [85] Hu, L.; Zhu, J.; Duan, C.; Zhu, J.; Wang, J.; Wang, K.; Gu, Z.; Xi, Z.; Hao, J.; Chen, Y. Revealing the Pnma Crystal Structure and Ion-Transport Mechanism of the Li3YCl6 Solid Electrolyte. Cell Rep. Phys. Sci. 2023, 4. [86] Li, X.; Liang, J.; Luo, J.; Banis, M. N.; Wang, C.; Li, W.; Deng, S.; Yu, C.; Zhao, F.; Sun, X. Air-Stable Li3InCl6 Electrolyte with High Voltage Compatibility for All-Solid-State Batteries. Energy Environ. Sci. 2019, 12, 2665–2671. [87] Molaiyan, P.; Mailhiot, S. E.; Voges, K.; Kantola, A. M.; Hu, T.; Michalowski, P.; Kwade, A.; Telkki, V.-V.; Lassi, U. Investigation of the Structure and Ionic Conductivity of a Li3InCl6 Modified by Dry Room Annealing for Solid-State Li-Ion Battery Applications. Mater. Des. 2023, 227, 111690. [88] Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T. K.; Zhang, L.; Sun, X. Water‐Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angew. Chem. 2019, 131, 16579–16584. [89] Wen, S.; Sheng, H.; Zhang, Y.; Zheng, S.; Wang, Z. The Effect of Hcl on Achieving Pure Li3InCl6 by Water-Mediated Synthesis Process. J. Alloys Compd. 2024, 173973. [90] Zhang, S.; Zhao, F.; Wang, S.; Liang, J.; Wang, J.; Wang, C.; Zhang, H.; Adair, K.; Li, W.; Sun, X. Advanced High‐Voltage All‐Solid‐State Li‐Ion Batteries Enabled by a Dual‐Halogen Solid Electrolyte. Adv. Energy Mater. 2021, 11, 2100836. [91] Jiang, Z.; Liu, C.; Yang, J.; Li, X.; Wei, C.; Luo, Q.; Wu, Z.; Li, L.; Li, L.; Cheng, S. Designing F-Doped Li3InCl6 Electrolyte with Enhanced Stability for All-Solid-State Lithium Batteries in a Wide Voltage Window. Chin. Chem. Lett. 2024, 109741. [92] Kim, Y.; Choi, S. Investigation of the Effect of F-Doping on the Solid-Electrolyte Property of Li3InCl6. J. Power Sources 2023, 567, 232962. [93] Helm, B.; Schlem, R.; Wankmiller, B.; Banik, A.; Gautam, A.; Ruhl, J.; Li, C.; Hansen, M. R.; Zeier, W. G. Exploring Aliovalent Substitutions in the Lithium Halide Superionic Conductor Li3–xIn1–xZrxCl6 (0≤ X≤ 0.5). Chem. Mater. 2021, 33, 4773–4782. [94] Lee, D.; Cui, Z.; Goodenough, J. B.; Manthiram, A. Interphase Stabilization of LiNi0.5Mn1.5O4 Cathode for 5 V‐Class All‐Solid‐State Batteries. Small 2024, 20, 2306053. [95] Chatterjee, A. X-Ray Diffraction. Handbook of analytical techniques in concrete science and technology 2000, 275-332. [96] Choudhary, O.; Kalita, P.; Doley, P.; Kalita, A. Scanning Electron Microscope-Advantages and Disadvantages in Imaging Components. Life Sci. 2017, 85, 1–7. [97] Sierra, C. F. E. Fundamentals of Transmission Electron Microscopy, the Technique with the Best Resolution in the World. Screen 2019, 9, 10. [98] Iglesias-Juez, A.; Chiarello, G. L.; Patience, G. S.; Guerrero-Pérez, M. O. Experimental Methods in Chemical Engineering: X-Ray Absorption Spectroscopy—XAS, XANES, EXAFS. Can. J. Chem. Eng. 2022, 100, 3-22. [99] Fadley, C. S. X-Ray Photoelectron Spectroscopy: Progress and Perspectives. J. Electron Spectrosc. Relat. Phenom. 2010, 178, 2–32. [100] Zen, J.-M.; Ilangovan, G.; Jou, J.-J. Square-Wave Voltammetric Determination and Ac Impedance Study of Dopamine on Preanodized Perfluorosulfonated Ionomer-Coated Glassy Carbon Electrodes. Anal. Chem. 1999, 71, 2797-2805. [101] Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-Ion Batteries. J. Electrochem. Sci. 2020, 11, 1–13. [102] Zeng, S.; Ding, X.; He, L.; Li, H.-W.; Zhang, Q.; Li, Y. Realizing Fast Li-Ion Conduction of Li3PO4 Solid Electrolyte at Low Temperature by Mechanochemical Formation of Lithium-Containing Dual-Shells. Materials Advances 2023, 4, 2780–2784. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96008 | - |
dc.description.abstract | 近年穿戴式裝置與電動車之發展,對於電池之需求逐漸上升,因兩者皆具移動性,降低電池重量以增加裝置之輕便性與電動車之續航力即為急需解決之問題,如何提升電池之能量密度與安全性為目前研究重要之方向。
本研究於鹵化物型固態電解質鋰銦氯(Li3InCl6)進行雙摻雜改質,摻雜鋯離子取代銦離子以增加固態電解質之離子導率,並摻雜氟離子取代氯離子以增加其電化學窗口。因摻雜氟離子將降低固態電解質之離子導率,故本研究以Li2.9In0.9Zr0.1Cl5.2F0.8作為固態電解質,其離子導率可達5.96 × 10-4 S/cm,與純鋰銦氯與純摻氟離子之固態電解質相比,其具較高之離子導率,同時其可抑制電解質於高電壓之氧化反應,降低副反應之問題。雙摻雜結構與純鋰銦氯相比,對稱電池可得較低之過電位與較長之循環壽命。 本研究亦對鎳錳酸鋰陰極(LiNi0.5Mn1.5O4; LNMO)與Li2.9In0.9Zr0.1Cl5.2F0.8進行界面反應研究,以X光電子能譜儀證實無序相鎳錳酸鋰陰極(disordered-LNMO)與Li2.9In0.9Zr0.1Cl5.2F0.8將產生副反應,形成銦金屬與Mn4+,然而若於LNMO表面包覆磷酸鋰(Li3PO4; LPO)則可抑制副反應發生。 最後本研究以鈷酸鋰(LiCoO2; LCO)與LNMO陰極組裝全電池。以Li2.9In0.9Zr0.1Cl5.2F0.8作為固態電解質之全固態LCO電池,其首圈電容為140 mAh且庫倫效率為90%,與純鋰銦氯與摻氟之結果相比可得較好循環穩定性與較高之電容。而以LNMO作為陰極之全固態電池,有序相鎳錳酸鋰(ordered-LNMO)因其離子導率較低,其組裝之固態電池因阻抗過高無法進行充放電,而disordered-LNMO包覆Li3PO4之陰極可得更高之電容,其首圈電容為78 mAh/g且庫倫效率為86%,其相較於僅摻氟之電池具較佳之電池表現。 | zh_TW |
dc.description.abstract | In recent years, the development of wearable devices and electric vehicles has increasingly demanded batteries due to their need for mobility. Reducing battery weight to enhance the portability of devices and the endurance of electric vehicles is a critical issue that needs to be addressed. The enhancement of battery energy density and safety is currently a major focus of research.
This study modifies halide-type solid electrolyte lithium indium chloride (Li3InCl6) through dual doping to increase its ionic conductivity and electrochemical window. Considering that doping with fluorine ions may reduce the ionic conductivity, this study uses a dual-doped lithium indium chloride formulation, Li2.9In0.9Zr0.1Cl5.2F0.8, achieving an ionic conductivity of 5.96 × 10-4 S/cm, surpassing the results obtained with pure lithium indium chloride. This research assembles full batteries using lithium cobalt oxide (LiCoO2; LCO) and LNMO cathodes. A solid-state LCO battery using Li2.9In0.9Zr0.1Cl5.2F0.8 as the electrolyte shows a first-cycle capacity and coulombic efficiency superior to those obtained with pure lithium indium chloride and fluorine-doped lithium indium chloride. With LNMO as the cathode, the solid-state battery assembled using ordered LNMO has too high an impedance for charging and discharging due to its lower ionic conductivity. However, a cathode of disordered LNMO coated with Li3PO4 achieves a higher capacity compared to pure disordered LNMO. The novelty of this study lies in the use of dual-doped halide solid electrolyte lithium indium chloride, which not only increases its ionic conductivity but also enhances its electrochemical window. This reduces side reactions at high voltages and also enhances the cycling efficiency of the battery. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:35:30Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-25T16:35:30Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV 目次 V 圖次 VIII 表次 XIII 第一章 緒論 1 1.1電池之演變與原理 1 1.2鋰離子二次電池 4 1.3鋰離子電池之陰極材料 6 1.3.1 鋰鈷氧化物 8 1.3.2 鎳鈷錳酸鋰 11 1.3.3 鎳錳酸鋰 14 1.4鋰離子電池之陽極材料 17 1.4.1 鋰金屬 17 1.4.2石墨烯 18 1.4.3合金 20 1.5液態電解質 23 1.6固態電解質 23 1.6.1鈉超離子型之固態電解質 26 1.6.2硫化物型固態電解質 28 1.6.3聚合物型固態電解質 31 1.6.4鹵化物型固態電解質 34 1.7研究動機與目的 39 第二章 實驗步驟與儀器分析原理 41 2.1 化學藥品 41 2.2 實驗步驟 42 2.2.1雙摻雜鹵化物固態電解質之合成 42 2.2.2磷酸鋰包覆鎳錳酸鋰陰極之合成 43 2.2.3固態鋰離子電池之組裝 43 2.3 儀器分析 44 2.3.1 X光繞射儀(X-ray diffractometer; XRD) 45 2.3.2 掃描式電子顯微鏡(scanning electron microscope; SEM) 46 2.3.3 穿透式電子顯微鏡 (transmission electron microscope; TEM) 48 2.3.4 拉曼光譜儀(Raman spectroscopy) 50 2.3.5 X光吸收光譜(X-ray absorption spectroscopy; XAS) 51 2.3.6 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 53 2.3.7 線性掃描伏安圖(linear sweep voltammetry; LSV) 54 2.3.8 電化學阻抗譜(electrical impedance spectroscopy; EIS) 55 2.3.9 庫爾特粒徑分析(Coulter particle size analysis) 58 2.3.10 對稱電池測試儀(symmetrical batteries test machine) 59 2.3.11 充放電測試儀(cycling test machine) 60 第三章 結果與討論 61 3.1雙摻雜鹵化物型Li3−xIn1−xZrxCl6−yFy之鑑定 61 3.1.1 Li3−xIn1−xZrxCl6−yFy之X光繞射圖譜鑑定 61 3.1.2 Li3−xIn1−xZrxCl6−yFy之掃描式電子顯微鏡鑑定 62 3.1.3 Li3−xIn1−xZrxCl6−yFy之X光吸收光譜鑑定 65 3.1.4 Li3−xIn1−xZrxCl6−yFy之電化學阻抗譜鑑定 70 3.1.5 Li3−xIn1−xZrxCl6−yFy之線性掃描伏安圖鑑定 74 3.1.6 Li3−xIn1−xZrxCl6−yFy之對稱電池測試 75 3.2磷酸鋰包裹鎳錳酸鋰陰極之鑑定 76 3.2.1 X光繞射圖譜鑑定 77 3.2.2 掃描式電子顯微鏡鑑定 78 3.2.3穿透式電子顯微鏡鑑定 81 3.2.3 庫爾特粒徑分析 81 3.2.4 X射線光電子能譜儀鑑定 83 3.3 全固態電池鑑定 85 3.3.1 臨界電流密度測試 85 3.3.2 LCO陰極充放電測試 86 3.3.3 LNMO陰極充放電測試 88 第四章 結論 90 參考文獻 91 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用於鋰離子電池之雙摻雜鹵化物型固態電解質 | zh_TW |
dc.title | Co-doped Halide-Type Solid-State Electrolyte for Lithium-Ion Batteries | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉如熹;王復民;黃瑞雄 | zh_TW |
dc.contributor.oralexamcommittee | Ru-Shi Liu;Fu-Ming Wang;Rui-Xiong Huang | en |
dc.subject.keyword | 鹵化物固態電解質,鋰銦氯固態電解質,鋰離子全固態電池, | zh_TW |
dc.subject.keyword | Halide Solid Electrolyte,Li3InCl6,All-Solid-State Lithium-Ion Battery, | en |
dc.relation.page | 102 | - |
dc.identifier.doi | 10.6342/NTU202404346 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-09-05 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 5.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。