請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96000
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許少瑜 | zh_TW |
dc.contributor.advisor | Shao-Yiu Hsu | en |
dc.contributor.author | 胡傑 | zh_TW |
dc.contributor.author | Jie Hu | en |
dc.date.accessioned | 2024-09-25T16:33:05Z | - |
dc.date.available | 2024-09-26 | - |
dc.date.copyright | 2024-09-25 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-09-06 | - |
dc.identifier.citation | Adachi, S. (2007). Agricultural technologies of terraced rice cultivation in the Ailao Mountains, Yunnan, China. Asian and African area studies 6(2), 173-196.
Archie, GE. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62. Arnáez , J., Lana-Renault, N., Lasanta, T., Ruiz-Flaño, P., Castroviejo, J. (2015). Effects of farming terraces on hydrological and geomorphological processes. A review. Catena, 128 (2015) 122–134. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109. Anderson, M.G., Burt TP (1990). Process studies in hillslope hydrology. John Wiley and Sons Ltd., Chichester. Boselli,V ,Ouallali, A, Briak, H, Houssni, M, Kassout, J, Ouahrani, A.E. and Maria Michailidi, E (2020). System Dynamics Applied to Terraced Agroecosystems: The Case Study of Assaragh (Anti-Atlas Mountains, Morocco). Water 2020, 12(6), 1693. Besson A, Cousin I, Bourennane H, Nicoullaud B, Pasquier C, Richard G et al (2010). The spatial and temporal organization of soil water at the field scale as described by electrical resistivity measurements. Eur J Soil Sci 61(1):120–132. Chen S. K. and Liu C. W. (2002). Analysis of Water Movement in the Paddy Rice Fields, (I) Experimental Study., Journal of Hydrology, 260, pp206-215. Chen S.K., Liu C.W., Huang H.C. (2002). Analysis of water move-ment in paddy rice fields (II) simulation studies. J Hydrol 268(1):259–271. Chien, C., Fang, W., (2012). Modeling irrigation return flow for the return flow reuse system in paddy fields. Paddy Water Environ. 10 (3), 187–196. Chen B, Garré S, Liu H, Yan C, Liu E, Gong D, Mei X (2019). Two-dimensional monitoring of soil water content in fields with plastic mulching using electrical resistivity tomography. Comput Electron Agric 159:84–91. Chukwudi C (2011). Geoelectrical studies for estimating aquifer hydraulic properties in Enugu State. Nigeria Int J Phys Sci 6(14):3319–3329. Darcy.H (1856). Les fontaines publiques de la ville de Dijon: exposition et application. Dey, A. and Morrison, H.J.G.P. (1979). Resistivity modelling for arbitrarily shaped two‐dimensional structures. 27(1), 106-136. Fitriyah, A., Fatikhunnada, A., Okura, F., Nugroho, B.D.A. and Kato, T. (2019). Analysis of the drought mitigated mechanism in terraced paddy fields using CWSI and TVDI indices and hydrological monitoring. Sustainability 11(24), 6897. Fukue, M., Minato, T., Horibe, H., & Taya, N. J. E. g. (1999). The micro-structures of clay given by resistivity measurements. 54(1-2), 43-53. Fox, R. W., D. Gilbert (1830), XXV. On the electro-magnetic properties of metalliferous veins in the mines of Cornwall, Philosophical Transactions of the Royal Society of London(120), 399-414. Gatot, I., Perez, P., & Duchesne, J. (2001). Modelling the influence of irrigated terraces on the hydrological response of a small basin. Environmental Modelling & Software, 16(1), 31-36. Gatot Sumarjo, I. (1999). Modelisation de la transformation pluie-debit et de l'influence de l'amenagement de terrasses sur les crues de mousson. (Doctoral), ENSA, Rennes, France. Garré S, Günther T, Diels J, Vanderborght J (2012). Evaluating experimental design of ERT for soil moisture monitoring in contour hedgerow intercropping systems. Vadose Zone J. Gouet-Kaplan M, Arye G, Berkowitz B (2012). Interplay between resident and infiltrating water: estimates from transient water flow and solute transport. J Hydrol 458:40–50. Hakamata, T., Hirata, T. and Muraoka, K. (1992). Evaluation of land use and river water quality of the Tsukuba Mountains ecosystem, Japan. Catena 19(5), 427-439. Huang H.C., Liu C.W., Chen S.K. , Chen J.S. (2003). Analysis of percolation and seepage through paddy bunds, Journal of Hydrol. 284, pp13-25. Huang, Q.Z., Hsu, S.Y., Hu, J., Chang, Y.C. (2024). Observations of electrical resistivity tomography and groundwater level under an irrigated terraced paddy field in northern Taiwan. Paddy and Water Environment(2024). Hamada K, Inoue H, Mochizuki H, Miyamoto T, Asakura M, Shimizu Y, (2021). Effect of hardpan on the vertical distribution of water stress in a converted paddy field, Soil and Tillage Research, Volume 214, 2021, 105161, ISSN 0167-1987. Horn, M.A., (2002).“User's Manual for the New England Water-Use Data System (NEWUDS),” U. S. Geological Survey Open-File Report 01-328, New Hampshire, USA, 392 p, 2002. Hezarjaribi A, Sourell H (2007). Feasibility study of monitoring the total available water content using non-invasive electromagnetic induction-based and electrode-based soil electrical conductivity measurements. Irrig Drain 56(1):53–65. Hübner R, Heller K, Günther T, Kleber A (2015). Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements. Hydrol Earth Syst Sci 19(1):225–240. Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied engineering in agriculture, 1(2), 96-99. Jensen, M. E., & Allen, R. G. (2016). Evaporation, evapotranspiration, and irrigation water requirements. Janssen, M., and Lennartz, B. (2007). Horizontal and vertical water and solute fluxes in paddy rice fields. Soil & Tillage Research 94, 133–141. Kim HK, Jang TI, Im SJ, Park SW (2009). Estimation of irrigation return flow from paddy fields considering the soil moisture. Agric Water Manag 96(5):875–882. Kurozumi T, Mori Y, Somura H, O-How M., (2020). Organic Matter Clogging Results in Undeveloped Hardpan and Soil Mineral Leakage in the Rice Terraces in the Philippine Cordilleras. Water. 2020; 12(11):3158. Liu, C.-W., Huang, H.-C., Chen, S.-K., & Kuo, Y.-M. (2004). subsurface return flow and ground water recharge of terrace fields in northern taiwan1. JAWRA Journal of the American Water Resources Association, 40(3), 603-614. Liu C-W, Chen S-K, Jang C-S (2004a). Modelling water infiltration in cracked paddy field soil. Hydrol Process 18(13):2503–2513. Loke, M.H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys. In. Lesschen, J. P., Cammeraat, L. H. and Nieman, T. (2008). Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf. Process. Landforms 33, 1574–1584 (2008). Lo, J. H., Huang, Q. Z., Hsu, S. Y., Tsai, Y. Z., & Lin, H. Y. (2022). Evaluating Spatial-Temporal Clogging Evolution in a Meso-Scale Lysimeter. Land, 11(9). Article. Meyer de Stadelhofen, C. (1991). Applications de la géophysique aux recherches d’eau, Paris: Tech. Doc. Lavoisier. Michot D, Benderitter Y, Dorigny A, Nicoullaud B, King D, Tabbagh ,A (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using electrical resistivity tomography. Water Resour Res 39:1138. McCarter, W. J. G. (1984). The electrical resistivity characteristics of compacted clays. 34(2), 263-267. Michot, D., Dorigny, A., Benderitter, Y. J. C. R. d. l. A. d. S.-S. I.-E., & Science, P. (2001). Mise en evidence par resistivité electrique des ecoulements préférentiels et de l'assèchement par le maıs d'un calcisol de Beauce irrigué. 332(1), 29-36. Mori Y, Sasaki M, Morioka E, Tsujimoto K (2019). When do rice terraces become rice terraces? Paddy Water Environ, 17(3):323– 330. Nakagiri T, Kato H, Maruyama S, Hashimoto S, Horino H, Sakurai S (2019). Possibility of quantitative assessment of the contribution of paddy irrigation and caldera lakes to river water in Bali Island using water isotopic physics. Paddy Water Environ 17(3):463–473. Nash, J. (1957). The form of the instantaneous unit hydrograph. International Association of Scientific Hydrology, Publ, 3, 114-121. Onishi, T., Horino, H., Nakamura, K., & Mitsuno, T. (2003). Evaluation of groundwater properties in terraced paddy fields using transient unsaturated-saturated water flow analysis. Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering (Japan). Onishi, T., Horino, H., Mitsuno, T. (2004). A Case Study on Storage Property of Terraced Paddy Fields. Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering (Japan). Onishi, T., Nakamura, K., Horino,H. ,Adachi, T., Mitsuno, T., (2012). Evaluation of the denitrification rate of terraced paddy fields, Journal of Hydrology, vol. 436, pp.111-119, 2012. Pracilio, G., Smettem, K.R.J., Bennett, D. et al. Site assessment of a woody crop where a shallow hardpan soil layer constrained plant growth. Plant Soil 288, 113–125 (2006). Parr JF, Bertrand AR (1960). Water infiltration into soils. In: Normax AG (ed) Advances in agronomy, vol 12. Academic Press, Amsterdam, pp 311–363. Reynolds, J.M. (2011). An Introduction to Applied and Environmental Geophysics. Richards, L.A. (1931). Capillary conduction of liquids through porous mediums. Physics-J Gen Appl P 1(1), 318-333. Song, J.H., Ryu, J.H., Park, J., Jun, S.M., Song, I., Jang, J., Kim, S.M. and Kang, M.S. (2016). Paddy field modeling system for water quality management. Irrigation and Drainage 65, 131-142. Samouëlian, A., I. Cousin, A. Tabbagh, A. Bruand, G. Richard (2005). Electrical resistivity survey in soil science: a review, Soil and Tillage Research, 83(2), 173-193. Sikandar P, Christen EW (2012). Geoelectrical sounding for the estimation of hydraulic conductivity of alluvial aquifers. Water Resour Manag 26(5):1201–1215. Sahoo, B., Walling, I., Deka, B. C., & Bhatt, B. P. (2012). Standardization of reference evapotranspiration models for a subhumid valley rangeland in the Eastern Himalayas. Journal of irrigation and drainage engineering, 138(10), 880-895. Tsai W-N (2021). Relationships between variations in electrical resistivity and precipitation and their implications for landslides: case study in the lantai area, Ilan Taiping Mountain, Northeast Taiwan. Master’s dissertation, National Central University, Taiwan. van Genuchten, M.T. (1980). A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci Soc Am J 44(5), 892-898. Vereecken H, Huisman JA, Bogena H, Vanderborght J, Vrugt JA, Hopmans JW (2008). On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour Res 44(4):W00D06. Wu R-S, Lin K-M, Lee J-F (1999b). Study on returen flow in the rice paddy field. J Chinese Agric Eng 45(1):72–82 Wu, L., & Pan, L. (1997). A generalized solution to infiltration from single‐ring infiltrometers by scaling. Soil Science Society of America Journal, 61(5), 1318-1322. Wopereis, M.C.S., Bouman, B.A.M., Kropf, M.J., ten Berge, H.F.M., Maligaya, A.R. (1994). Water use efficiency of flooded rice fields I. Validation of the soil-water balance model SAWAH. Agricultural Water Management 26 (1994) 277-289 李俊霖, 王思樺, 陳維斌 (2013) 水圳及梯田受威脅點保育策略及文化景觀保存區保育與永續經營管理之研究(一), 中國文化大學數位地球研究中心, 陽明山國家公園管理處. 楊証傑, & 林志平. (2004) ERT 在地工調查應用之問題評析與空間解析度探討. (碩士), 國立交通大學. 陳榮松 (2007) 坡地水田區休耕前後土壤沖蝕量之比較, 國立中興大學土木工程學系. 陳榮松 (2008) 土壤流失公式對水稻梯田土壤沖蝕量之適用性分析, 國立中興大學土木工程學系. 蔡義誌 (2008) 不飽和土壤水力傳導度與介質孔隙分佈關係之研究, 國立中興大學水土保持學系博士論文. 謝傳鎧 (2017) 貢寮水梯田耕作社群之傳統生態知識變遷: 以灌溉水管理為例, 國立臺灣大學. 郭功偉 (2017) 集水區水梯田地表下水流況及地下水補注分析-現地實驗與模擬, 國立台北科技大學土木工程系土木與防災碩士班碩士學位論文. 高振程 (2003) 水田坵塊系統之回歸水量推估, 國立中央大學土木工程研究所碩士 論文. 甘俊二. (2001) 灌溉排水營運管理: 行政院農業委員會. 劉振宇 (2004) 梯田對地下水涵養補注及水土保持之綜合評估,行政院農業委員會. 蔡玉娟 (2010) 梯田保育意識與制度之建置-日本經驗之介紹, 年海峽兩岸土地學術研討會, 國立政治大學綜合院館. 李承嘉, 洪鴻智, 詹士樑 (2010) 水梯田濕地生態保存及復育補貼政策之研究,行政院農業委員會林務局補助研究計(計畫編號:99林發-08.2-保-5). 洪鴻智, 李承嘉, 詹士樑 (2012) 水梯田濕地生態保存及復育補貼政策研究計畫(四),行政院農業委員會林務局補助研究計畫(計畫編號:102 林發-07.2-保-2l). 洪鴻智, 李承嘉, 詹士樑, 林華慶, 蕭婷允, 文嬿翔 (2013) 水梯田濕地生態與景觀之保育與價值評估, 台灣土地研究, 第16卷第2期, 第1-22頁. 陳世楷, 黃漢誠, 鄭世尉, 劉振宇 (2001) 山坡地水稻梯田之水土保育功能初探, 農業工程學報, 第47卷第1期, 第1-11頁. 陳世楷 (2014) 水梯田水土保持功能調查評估, 行政院農業委員會林務局補助研究計畫(計畫編號:103林發-7.2-保-17). 陳世楷 (2018) 集水區水梯田優勢流機制/地表下水流型態對水資源涵養之影響, 科技部補助專題研究計畫(計畫編號:MOST107-2221-E-027-013-). 張國欽, 葉信富, 林榮潤, 陳耐錦, 柯建仲, & 陳榮俊. (2019) 結合鑽探與地球物理方法調查八寶寮崩塌地之水文地質特性. Journal of Chinese Soil and Water Conservation, 50(2), 73-88. 簡傳彬 (2011) 農業回歸水暨餘水再利用可行性研究-以彰化地區為例. 行政院經濟建設委員會. 蔡武男 (2021) 電阻率變化與降雨間關係及其對於山崩的影響: 以宜蘭太平山蘭台地區為例, 國立中央大學地球科學學系碩士論文. 殷祥玲 (2023) 利用田間試驗與模式模擬探討灌溉策略對於水稻田灌溉用水、土壤水分與地下水位變化的影響, 國立臺灣大學生物環境系統工程學研究所碩士論文. 蘇昱豪 (2021) 探討入滲池內高電阻率邊界對於地電阻量測與土壤含水量推估之影響, 國立台灣大學生物環境系統工程研究所碩士論文. 鄭世楠 (2013) 應用多重電極排列與感應極化法調查砂礫質地層污染之研究, 行政院環境保護署102 年度土壤及地下水污染整治基金補助研究與模場試驗專案. 吳瑞賢, 林癸妙, 李俊福. (1999) 水田回歸水量之研究. 農業工程學報, 45(1), 72-82. 行政院農業委員會 (1991) 雲林灌區迴歸水有效利用調查研究. 駱安華. (1960). 迴歸水之計算和運用. 台灣水利, 8(2), 47-56. 林癸妙, 吳瑞賢 (1998) 水田迴歸水量之研究 第九屆水利工程研討會論文集 第G51-G59頁. 簡傳彬 (2003) 水稻田入滲及回歸水之試驗及模擬, 碩士論文, 國立中央大學. 蔡承勳 (2015) 水梯田聚落環境變遷回復力之研究:社會-生態理論之應用, 國立臺北大學都市計劃研究所碩士班碩士學位論文. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96000 | - |
dc.description.abstract | 有鑑於梯田的多功能性,近年來台灣水梯田的復育逐漸受到重視。由於水梯田受地形影響,灌溉與地下水流相較於平地水田有著更複雜的機制。然而過往研究對於水梯田地表下水流情形有不同的看法,尤其暗回歸水的存在與否尚未有共識。
因此,本研究透過COMSOL Mutiphysics®數值模擬的方式,探討水梯田暗回歸水的形成條件與機制,以及地勢對暗回歸水的影響。同時,本研究以台北市士林區平等里之鵝尾山水梯田作為研究場域,透過地電阻影像探測與鑽井岩心、觀測地下水位、量測水力傳導係數等現地調查的方式,觀測灌溉與降雨對水梯田地下水流的影響,並調查現地之暗回歸水的存在。此外,本研究以水平衡計算灌溉需水,針對鵝尾山水梯田現地提出灌溉建議。 模擬結果顯示,田間暗回歸水的形成條件為地下水位面抬升至地表,而當系統達到穩態而有暗回歸水產生時,平均約有53~55%的灌溉水成為暗回歸水,並且入滲率顯著減少;當坡度越緩、土層水力傳導係數越大、土層厚度越小及地下水位離地表越近時,越有利於暗回歸水的產生。現地調查結果顯示,灌溉可以維持地下水位至一定高度,然而難以抬升至地表形成暗回歸水。因此,不用考慮暗回歸水於鵝尾山水梯田灌溉水分規劃中,只需解決配水不均的問題。 | zh_TW |
dc.description.abstract | Given the multifunctionality of terraces, the restoration of terraced paddy fields in Taiwan has gradually received attention in recent years. Due to the impact of topography, irrigation and groundwater flow of terraced paddy fields have a more complex mechanism than flat paddy fields. However, previous studies have different views on the subsurface flow in terraced paddy fields, and in particular, there is no consensus on the existence of subsurface return flow.
Therefore, this study used numerical simulation by COMSOL Mutiphysics® to explore the formation conditions and mechanisms of subsurface return flow in terraced paddy fields, as well as the impact of relief on subsurface return flow. At the same time, this study took the Ewei Mountain Terraces in Pingdeng Vil, Shilin District, Taipei City as the research site, using electrical resistivity tomography (ERT) and on-site investigation, such as drilling cores, observing groundwater levels, and measuring hydraulic conductivity, to investigate the effect of irrigation and rainfall on the groundwater flow under terraced paddy field and the existence of on-site subsurface return flow. In addition, this study used water balance to calculate irrigation water requirement and gave irrigation suggestions for the Ewei Mountain Terraces. The simulation results show that the occurrence of subsurface return flow is conditional on the groundwater reaching the soil surface. Once the system reaches a steady state and the subsurface return flow occurs, an average of about 53~55% of the irrigation water becomes subsurface return flow, and the infiltration rate considerably reduces. The condition of subsurface return flow is prone to be achieved with a gentle relief, large-hydraulic-conductivity formation, thin soil layer, and high groundwater level. On-site investigation results show that irrigation maintained the groundwater level to a certain height. Nevertheless, the critical condition of the subsurface return flow was not found. Therefore, there is no need to consider the subsurface return flow in the irrigation water planning of the Ewei Mountain Terraces, and only need to solve the problem of the uneven water distribution. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:33:05Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-25T16:33:05Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 ix 表次 xiv 第1章、 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究架構 5 1.4 文獻回顧 7 1.4.1 水梯田之水力特性 7 1.4.2 灌溉回歸水 8 1.4.3 暗回歸水之探討 10 第2章、 相關理論與原理 13 2.1 水梯田水平衡 13 2.2 潛能蒸發散推估 15 2.3 地下水流相關理論 17 2.3.1 達西定律(Darcy’s law) 17 2.3.2 理查方程式(Richards’ Equation) 18 2.4 地電阻 20 2.4.1 地電阻背景介紹 20 2.4.2 地電組探測原理 22 第3章、 研究方法 26 3.1 研究區域 26 3.1.1 鵝尾山水梯田概述 26 3.1.2 氣象資料 27 3.2 高程測量—RTK 28 3.3 保水曲線試驗 29 3.4 地表下水流模擬 31 3.4.1 COMSOL Multiphysics®簡介 31 3.4.2 模擬方法 32 3.5 地下水位監測井、水位計 34 3.6 水力傳導係數量測 36 3.6.1 實驗室落水頭試驗 36 3.6.2 現地單環入滲筒 38 3.7 地電阻探測 39 3.7.1 測線介紹 39 3.7.2 施測方法 40 3.7.3 地電阻資料反演 42 3.8 灌溉需水量推估 43 第4章、 結果與討論 44 4.1 鵝尾山水梯田現地田間觀察與氣象特性 44 4.2 RTK測量結果 46 4.3 保水曲線 47 4.4 地表下水流模擬 49 4.4.1 穩態模擬設定 49 4.4.2 穩態模擬結果 50 4.4.3 暫態模擬設定 58 4.4.4 暫態模擬結果 59 4.4.5 犁底層情境模擬設定 63 4.4.6 犁底層情境模擬結果 64 4.5 鑽井岩心與井內地下水資訊 68 4.5.1 鑽井岩心 68 4.5.2 井內地下水資訊 69 4.6 水力傳導係數Ks 71 4.7 地電阻探測結果 75 4.7.1 A測線(2021年) 75 4.7.2 A測線(2022年) 80 4.7.3 C、D、E測線(2023年) 81 4.7.4 入滲型態與地下水流探討 84 4.8 灌溉需水量推估與鵝尾山水梯田灌溉建議 85 4.8.1 模擬情境水分需求 85 4.8.2 現地水分需求 86 4.8.3 鵝尾山水梯田灌溉建議 88 4.9 水梯田暗回歸水研究之統整 89 第5章、 結論與建議 92 5.1 結論 92 5.2 建議 93 參考文獻 94 附錄 103 | - |
dc.language.iso | zh_TW | - |
dc.title | 水梯田地勢對灌溉暗回歸水的影響與鵝尾山梯田現地調查 | zh_TW |
dc.title | Effect of Terraced Paddy Fields Relief on the Irrigation Subsurface Return Flow and On-site Investigation in Ewei Mountain Terraces | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張煜權;郭欽慧;王聖瑋 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Chuan Chang;Ching-Huei Kuo;Sheng-Wei Wang | en |
dc.subject.keyword | 水梯田,暗回歸水,地電阻探測,地勢,灌溉, | zh_TW |
dc.subject.keyword | terraced paddy field,subsurface return flow,electrical resistivity tomography,relief,irrigation, | en |
dc.relation.page | 110 | - |
dc.identifier.doi | 10.6342/NTU202404357 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-09-06 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物環境系統工程學系 | - |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 10.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。