Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95994
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻zh_TW
dc.contributor.advisorCheng-Hung Wuen
dc.contributor.author王乙湘zh_TW
dc.contributor.authorYi-Xiang Wangen
dc.date.accessioned2024-09-25T16:31:11Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-09-11-
dc.identifier.citationAlhaidari, F., & Balharith, T. Z. (2021). Enhanced round-robin algorithm in the cloud computing environment for optimal task scheduling. Computers, 10(5), 63.
Alworafi, M. A., Dhari, A., Al-Hashmi, A. A., & Darem, A. B. (2016). An improved SJF scheduling algorithm in cloud computing environment. 2016 International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT),
Baras, J. S., Dorsey, A., & Makowski, A. M. (1985). Two competing queues with linear costs and geometric service requirements: The μc-rule is often optimal. Advances in Applied Probability, 17(1), 186-209.
Beaumont, O., Legrand, A., Marchal, L., & Robert, Y. (2005). Independent and divisible tasks scheduling on heterogeneous star-shaped platforms with limited memory. 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing,
Błażewicz, J., Drozdowski, M., & Markiewicz, M. (1999). Divisible task scheduling–concept and verification. Parallel computing, 25(1), 87-98.
Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 1655-1674.
Chen, L., Zhou, S., & Xu, J. (2018). Computation peer offloading for energy-constrained mobile edge computing in small-cell networks. IEEE/ACM Transactions on Networking, 26(4), 1619-1632.
Chen, M., & Hao, Y. (2018). Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3), 587-597.
Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2018). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005-4018.
Chen, Y., Liu, Z., Zhang, Y., Wu, Y., Chen, X., & Zhao, L. (2020). Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things. IEEE Transactions on Industrial Informatics, 17(7), 4925-4934.
Cheng, N., Lyu, F., Quan, W., Zhou, C., He, H., Shi, W., & Shen, X. (2019). Space/aerial-assisted computing offloading for IoT applications: A learning-based approach. IEEE Journal on Selected Areas in Communications, 37(5), 1117-1129.
Duke, D., Wallace, M., Borgo, R., & Runciman, C. (2006). Fine-grained visualization pipelines and lazy functional languages. IEEE Transactions on Visualization and Computer Graphics, 12(5), 973-980.
Ercan, M. F., & Oğuz, C. (2005). Performance of local search heuristics on scheduling a class of pipelined multiprocessor tasks. Computers & Electrical Engineering, 31(8), 537-555.
Ertl, M. A., & Krall, A. (1992). Instruction scheduling for complex pipelines. Compiler Construction: 4th International Conference, CC'92 Paderborn, FRG, October 5–7, 1992 Proceedings 4,
Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of cleaner production, 252, 119869.
Hajam, S. S., & Sofi, S. A. (2021). Fog task scheduling using clustering based randomized round robin. Scalable Computing: Practice and Experience, 22(3), 294-301.
Hamayun, M., & Khurshid, H. (2015). An optimized shortest job first scheduling algorithm for CPU scheduling. J. Appl. Environ. Biol. Sci, 5(12), 42-46.
Han, Z., Tan, H., Li, X.-Y., Jiang, S. H.-C., Li, Y., & Lau, F. C. (2019). Ondisc: Online latency-sensitive job dispatching and scheduling in heterogeneous edge-clouds. IEEE/ACM Transactions on Networking, 27(6), 2472-2485.
Huang, J., Wan, J., Lv, B., Ye, Q., & Chen, Y. (2023). Joint computation offloading and resource allocation for edge-cloud collaboration in internet of vehicles via deep reinforcement learning. IEEE Systems Journal, 17(2), 2500-2511.
Jiang, J., Ananthanarayanan, G., Bodik, P., Sen, S., & Stoica, I. (2018). Chameleon: scalable adaptation of video analytics. Proceedings of the 2018 conference of the ACM special interest group on data communication,
Krishnasamy, S., Arapostathis, A., Johari, R., & Shakkottai, S. (2018). On learning the cμ rule in single and parallel server networks. 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
Lipovac, I., & Babac, M. B. (2024). Developing a data pipeline solution for big data processing. International Journal of Data Mining, Modelling and Management, 16(1), 1-22.
Liu, C.-F., Bennis, M., Debbah, M., & Poor, H. V. (2019). Dynamic task offloading and resource allocation for ultra-reliable low-latency edge computing. IEEE Transactions on Communications, 67(6), 4132-4150.
Luo, J., Yang, Z., Li, S., & Wu, Y. (2021). FPCB surface defect detection: A decoupled two-stage object detection framework. IEEE Transactions on Instrumentation and Measurement, 70, 1-11.
Luo, Q., Hu, S., Li, C., Li, G., & Shi, W. (2021). Resource scheduling in edge computing: A survey. IEEE communications surveys & tutorials, 23(4), 2131-2165.
Ma, X., Zhou, A., Zhang, S., Li, Q., Liu, A. X., & Wang, S. (2021). Dynamic task scheduling in cloud-assisted mobile edge computing. IEEE Transactions on Mobile Computing, 22(4), 2116-2130.
Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE communications surveys & tutorials, 19(4), 2322-2358.
Meng, J., Tan, H., Li, X.-Y., Han, Z., & Li, B. (2019). Online deadline-aware task dispatching and scheduling in edge computing. IEEE Transactions on Parallel and Distributed Systems, 31(6), 1270-1286.
Ning, Z., Dong, P., Wang, X., Wang, S., Hu, X., Guo, S., Qiu, T., Hu, B., & Kwok, R. Y. (2020). Distributed and dynamic service placement in pervasive edge computing networks. IEEE Transactions on Parallel and Distributed Systems, 32(6), 1277-1292.
Patsias, V., Amanatidis, P., Karampatzakis, D., Lagkas, T., Michalakopoulou, K., & Nikitas, A. (2023). Task allocation methods and optimization techniques in edge computing: A systematic review of the literature. Future Internet, 15(8), 254.
Qiao, G., Leng, S., Maharjan, S., Zhang, Y., & Ansari, N. (2019). Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks. IEEE Internet of Things Journal, 7(1), 247-257.
Qiu, X., Liu, L., Chen, W., Hong, Z., & Zheng, Z. (2019). Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Transactions on Vehicular Technology, 68(8), 8050-8062.
Ren, Z., Fang, F., Yan, N., & Wu, Y. (2022). State of the art in defect detection based on machine vision. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(2), 661-691.
Robertazzi, T. G. (2003). Ten reasons to use divisible load theory. Computer, 36(5), 63-68.
Saeed, F., Javaid, N., Zubair, M., Ismail, M., Zakria, M., Ashraf, M. H., & Kamal, M. B. (2019). Load balancing on cloud analyst using first come first serve scheduling algorithm. Advances in Intelligent Networking and Collaborative Systems: The 10th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2018),
Schütze, A., Helwig, N., & Schneider, T. (2018). Sensors 4.0–smart sensors and measurement technology enable Industry 4.0. Journal of Sensors and Sensor systems, 7(1), 359-371.
Schwenzer, M., Ay, M., Bergs, T., & Abel, D. (2021). Review on model predictive control: An engineering perspective. The International Journal of Advanced Manufacturing Technology, 117(5), 1327-1349.
Schwiegelshohn, U., & Yahyapour, R. (1998). Analysis of first-come-first-serve parallel job scheduling. SODA,
Shi, L., Ma, Z., Fan, Y., Shi, Y., Ding, X., & Li, Z. (2022). Online Task Scheduling Algorithm with Complex Dependencies in Edge Computing. Procedia Computer Science, 202, 158-163.
Tan, H., Han, Z., Li, X.-Y., & Lau, F. C. (2017). Online job dispatching and scheduling in edge-clouds. IEEE INFOCOM 2017-IEEE Conference on Computer Communications,
Wang, J., Liu, K., & Pan, J. (2019). Online UAV-mounted edge server dispatching for mobile-to-mobile edge computing. IEEE Internet of Things Journal, 7(2), 1375-1386.
Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., & Shen, X. (2019). Delay-aware microservice coordination in mobile edge computing: A reinforcement learning approach. IEEE Transactions on Mobile Computing, 20(3), 939-951.
Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer networks, 101, 158-168.
Xu, J., Chen, L., & Ren, S. (2017). Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Transactions on Cognitive Communications and Networking, 3(3), 361-373.
Youn, J., & Han, Y.-H. (2022). Intelligent task dispatching and scheduling using a deep q-network in a cluster edge computing system. Sensors, 22(11), 4098.
Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J., & Yang, X. (2017). A survey on the edge computing for the Internet of Things. IEEE access, 6, 6900-6919.
Yuan, H., Tang, G., Li, X., Guo, D., Luo, L., & Luo, X. (2021). Online dispatching and fair scheduling of edge computing tasks: A learning-based approach. IEEE Internet of Things Journal, 8(19), 14985-14998.
Zhang, Q., Gui, L., Hou, F., Chen, J., Zhu, S., & Tian, F. (2020). Dynamic task offloading and resource allocation for mobile-edge computing in dense cloud RAN. IEEE Internet of Things Journal, 7(4), 3282-3299.
Zhang, Y., Liu, J.-H., Wang, C.-Y., & Wei, H.-Y. (2020). Decomposable intelligence on cloud-edge iot framework for live video analytics. IEEE Internet of Things Journal, 7(9), 8860-8873.
Zhang, Y., & Wei, H.-Y. (2021). Risk-aware cloud-edge computing framework for delay-sensitive industrial IoTs. IEEE Transactions on Network and Service Management, 18(3), 2659-2671.
Zhou, C., Wu, W., He, H., Yang, P., Lyu, F., Cheng, N., & Shen, X. (2020). Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN. IEEE Transactions on Wireless Communications, 20(2), 911-925.
李冠臻. (2020). 大型生產系統之多智能體動態派工與預防保養架構 國立臺灣大學工業工程學研究所學位論文.
蔡沂芯. (2019). 應用多智能體分解與合成之動態派工與與保養方法 國立臺灣大學工業工程學研究所學位論文.
蔡佩穎. (2022). 運用 MILP 分解之邊緣運算動態任務分配決策研究 國立臺灣大學工業工程學研究所學位論文.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95994-
dc.description.abstract由於工業4.0的發展,工廠中運算密集(computation-intensive)且具有延遲敏感(delay-sensitive)特性的運算任務,如影像辨識、預防保養等運用深度學習技術的任務日益增加,需仰賴外部處理器如邊緣伺服器及雲端伺服器執行。此類任務擁有可分解(decomposable)的特性,能夠將任務分解並於不同伺服器處理。為了有效管理任務及運算資源,本研究針對含有可分解任務的邊緣運算系統,提出動態任務分配(allocation)以及任務卸載(offloading)的方法,在提升系統之運算效率的同時降低系統運算成本。
動態任務分配方法對於擁有延遲敏感特性的運算任務來說至關重要。由於運算系統狀態變化快速,若無法根據系統狀態改變任務分配方法,將使運算任務面臨等候時間過長的窘境,最終導致系統之服務品質(Quality of Service, QoS)降低。另外,適當的動態選擇任務處理模式也十分重要。若在運算需求低時使用雲端伺服器,可能會使運算成本增加;在運算需求高時使用邊緣伺服器,則可能延長任務的等候時間,進而導致任務延遲時間增加。
因此,本研究考量一個擁有多個邊緣伺服器及雲端伺服器的運算系統,運用可分解任務的特性,提出一個可以動態決定任務運算模式,以及決定優先被處理任務種類的方法。本研究採用馬可夫決策過程(Markov Decision Process, MDP)建立模型,運用混整數規劃分解模型(Mixed Integer Programming Decomposition, MILPD)分配運算資源,再利用動態規劃概念及反向歸納法(Backward Induction)求得任務分配及卸載方法的最佳解,最小化任務延遲時間所產生之時間成本與運算成本。
透過模擬證實本研究之動態任務分配與卸載方法於不同規模之運算系統中,皆能有效降低任務延遲成本以及運算成本,且優於其他任務分配與卸載方法。
zh_TW
dc.description.abstractWith the development of Industry 4.0, demand on deep-learning related tasks that are computation-intensive and delay-sensitive in the factories such as image recognition and predictive maintenance have been increasing. Thus, external processors such as edge and cloud servers are required to successfully complete the tasks. These tasks possess a decomposable feature which can be divided and processed across different servers. To effectively manage tasks and computational resources, this study proposes methods for dynamic task allocation and offloading in edge computing systems with decomposable tasks, aiming to enhance computational efficiency while reducing system costs.
In terms of tasks that are delay-sensitive, dynamic task allocation plays an important role. Due to the rapid changes in system states, failure to adapt task allocation methods can lead to excessive waiting times for computational tasks, ultimately decreasing the system's Quality of Service (QoS). Moreover, appropriately selecting the service placement is also important. If cloud servers are selected when the computational demand is low, the computational costs would increase. On the other hand, selecting edge servers when the computational demand is high would lead to great queuing time for completing tasks, which would also increase task delays.
This study includes a computational system with multiple edge and a cloud servers, and proposed a model that dynamically determines the server for task computation by utilizing the decomposable feature, while the types of tasks that are required to be prioritized can also be determined. A Markov Decision Process (MDP)-based model is constructed, and the Mixed Integer Linear Programming Decomposition (MILPD) is applied to allocate computational resources. The optimal solutions for task allocation and offloading are obtained through dynamic programming and backward induction, minimizing the combined time costs resulting from task delays and computational costs.
With simulations demonstrated in this work to show that he proposed dynamic task allocation and offloading methods effectively reduce the overall task delay, furthermore, computational costs in systems can also be reduced under different scales of computation systems. The results also outperform other task allocation and offloading methods.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:31:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:31:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
英文摘要 III
第一章 緒論 1
1.1 研究背景與動機 1
1.1.1 工業4.0 對運算資源需求的影響 1
1.1.2 雲端與邊緣運算之優缺點 2
1.1.3 動態分配運算任務 2
1.1.4 可分解的運算任務 3
1.2 研究目的 5
1.3 研究方法 6
1.4 研究流程 7
第二章 文獻回顧 8
2.1 邊緣運算系統架構 8
2.2 邊緣運算之任務管理方法 8
2.2.1 運算任務之派工法則 9
2.2.2 邊緣運算之動態任務分配方法 9
2.3 可分解運算任務之管理方法 12
2.4 文獻回顧小結14
第三章 問題描述與模型建構 15
3.1 研究問題 15
3.1.1 研究問題描述 15
3.1.2 研究問題假設 16
3.2 多任務多處理器之動態任務分配及任務卸載模型 17
3.2.1 模型參數與決策變數符號定義 17
3.2.2 多任務多處理器任務分配模型 18
3.2.3 求解複雜度解釋 21
第四章 動態任務分配及卸載方法求解流程 22
4.1 動態任務分配及卸載方法求解流程圖 22
4.2 混整數規劃分解(MILPD)模型 22
4.2.1 模型參數與決策變數符號定義 23
4.2.2 混整數規劃分解模型 23
4.2.3 分解結果與應用方法 24
4.2.4 三任務一邊緣伺服器之求解方法 28
第五章 模擬結果與數據分析 30
5.1 求解程式與模擬系統介紹 30
5.1.1 MILPD 及 DDCO 求解程式工具 30
5.1.2 模擬系統介紹 31
5.2 考量任務可分解性質之模擬實驗 33
5.2.1 六可分解任務五邊緣伺服器實驗 33
5.2.1.1 實驗設計 33
5.2.1.2 實驗結果 34
5.2.2 三可分解任務實驗 35
5.2.2.1 實驗設計 35
5.2.2.2 實驗結果 36
5.3 未考量任務可分解性質之模擬實驗 37
5.3.1 欲比較之其他方法 37
5.3.2 三任務兩邊緣伺服器實驗 39
5.3.2.1 實驗設計 39
5.3.2.2 模擬結果與數值分析 40
5.3.3 多任務多邊緣伺服器實驗 48
5.3.3.1 實驗設計 49
5.3.3.2 實驗結果 49
5.3.3.3 實驗分析–表現顯著性假設檢定 66
5.3.3.4 實驗分析–多因子迴歸分析 69
5.3.3.5 實驗分析–邊緣伺服器數量以及任務種類數量之敏感度分析 72
5.3.4 各種任務持有成本不同之實驗 74
5.3.4.1 實驗設計 74
5.3.4.2 實驗結果 74
5.4 模擬結果與數據分析小結 75
第六章 結論與未來展望 76
6.1 結論 76
6.2 未來研究方向 77
參考文獻 78
附錄 82
-
dc.language.isozh_TW-
dc.title含有可分解任務的邊緣運算之動態任務分配zh_TW
dc.titleDynamic Task Allocation for Edge Computing with Decomposable Tasken
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪一薰;周育樂zh_TW
dc.contributor.oralexamcommitteeI-Hsuan Hong;Ywh-Leh Chouen
dc.subject.keyword可分解運算任務,動態任務分配,動態任務卸載,邊緣運算,zh_TW
dc.subject.keywordDecomposable Task,Dynamic Task Allocation,Dynamic Cloud Offloading,Edge Computing,en
dc.relation.page116-
dc.identifier.doi10.6342/NTU202404365-
dc.rights.note未授權-
dc.date.accepted2024-09-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
3.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved