請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95993完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈湯龍 | zh_TW |
| dc.contributor.advisor | Tang-Long Shen | en |
| dc.contributor.author | 吳孟芯 | zh_TW |
| dc.contributor.author | Meng-Xin Wu | en |
| dc.date.accessioned | 2024-09-25T16:30:53Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 1 Belli, C., Trapani, D., Viale, G., D'Amico, P., Duso, B. A., Della Vigna, P., Orsi, F., & Curigliano, G. (2018). Targeting the microenvironment in solid tumors. Cancer Treatment Reviews, 65, 22-32
2 Bhattacharya, B., Nag, S., Mukherjee, S., Kulkarni, M., Chandane, P., Mandal, D., Mukerjee, N., Mirgh, D., Anand, K., Adhikari, M. D., Gorai, S., & Thorat, N. (2024). Role of Exosomes in Epithelial-Mesenchymal Transition. ACS Appl Bio Mater, 7(1), 44-58 3 Bivin, W. W., Yergiyev, O., Bunker, M. L., Silverman, J. F., & Krishnamurti, U. (2017). GRB7 Expression and Correlation With HER2 Amplification in Invasive Breast Carcinoma. Applied Immunohistochemistry & Molecular Morphology, 25(8), 553-558 4 Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229-263 5 Broad Institute TCGA Genome Data Analysis Center: Firehose VERSION run. . Broad Institute of MIT and Harvard. 6 Bunnell, C. A., & Winer, E. P. (1998). Oral 5-FU analogues in the treatment of breast cancer. Oncology (Williston Park, N.Y.), 12(10 Suppl 7), 39-43 7 Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61-70 8 Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401-404 9 Chu, L., Sutton, L. M., Peterson, B. L., Havlin, K. A., & Winer, E. P. (1996). Continuous infusion 5-fluorouracil as first-line therapy for metastatic breast cancer. Journal of Infusional Chemotherapy, 6(4), 211-216 10 Chu, P.-Y., Tai, Y.-L., Wang, M.-Y., Lee, H., Kuo, W. H., & Shen, T.-L. (2020). EGF-Activated Grb7 Confers to STAT3-Mediated EPHA4 Gene Expression in Regulating Lung Cancer Progression. bioRxiv, 2020.2010.2024.353268 11 Chu, P. Y., Tai, Y. L., & Shen, T. L. (2019). Grb7, a Critical Mediator of EGFR/ErbB Signaling, in Cancer Development and as a Potential Therapeutic Target. Cells, 8(5), 12 Chu, P. Y., Li, T. K., Ding, S. T., Lai, I. R., & Shen, T. L. (2010). EGF-induced Grb7 recruits and promotes Ras activity essential for the tumorigenicity of Sk-Br3 breast cancer cells. J Biol Chem, 285(38), 29279-29285 13 Chu, P. Y., Huang, L. Y., Hsu, C. H., Liang, C. C., Guan, J. L., Hung, T. H., & Shen, T. L. (2009). Tyrosine phosphorylation of growth factor receptor-bound protein-7 by focal adhesion kinase in the regulation of cell migration, proliferation, and tumorigenesis. J Biol Chem, 284(30), 20215-20226 14 Ciriello, G., Gatza, M. L., Beck, A. H., Wilkerson, M. D., Rhie, S. K., Pastore, A., Zhang, H., McLellan, M., Yau, C., Kandoth, C., Bowlby, R., Shen, H., Hayat, S., Fieldhouse, R., Lester, S. C., Tse, G. M., Factor, R. E., Collins, L. C., Allison, K. H., . . . Perou, C. M. (2015). Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 163(2), 506-519 15 Daly, R. J. (1998). The Grb7 family of signalling proteins. Cellular signalling, 10(9), 613-618 16 Department of Statistics. (2023, 2023 Jun 17). National Statistics on causes of death in 112 years. Ministry of Health and Welfare. Retrieved 2024 Jul 27 from https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y112.html 17 Depetris, R. S., Hu, J., Gimpelevich, I., Holt, L. J., Daly, R. J., & Hubbard, S. R. (2005). Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. Molecular cell, 20(2), 325-333 18 Fatma, H., & Siddique, H. R. (2024). Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked? Cancer and Metastasis Reviews, 43(1), 423-440 19 Frantz, J. D., Giorgetti-Peraldi, S., Ottinger, E. A., & Shoelson, S. E. (1997). Human GRB-IRβ/GRB10: splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains. Journal of Biological Chemistry, 272(5), 2659-2667 20 García-Palmero, I., & Villalobo, A. (2012). Calmodulin regulates the translocation of Grb7 into the nucleus. FEBS Letters, 586(10), 1533-1539 21 García-Palmero, I., Shah, N., Ali, N. A., Daly, R. J., Wilce, J. A., & Villalobo, A. (2020). Partners of wild type Grb7 and a mutant lacking its calmodulin-binding domain. Archives of Biochemistry and Biophysics, 687, 108386 22 Giricz, O., Calvo, V., Pero, S. C., Krag, D. N., Sparano, J. A., & Kenny, P. A. (2012). GRB7 is required for triple-negative breast cancer cell invasion and survival. Breast Cancer Research and Treatment, 133(2), 607-615 23 Glynn, R., Miller, N., & Kerin, M. (2010). 17q12-21–The pursuit of targeted therapy in breast cancer. Cancer treatment reviews, 36(3), 224-229 24 Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., & Lander, E. S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645-659 25 Han, D. C., & Guan, J. L. (1999). Association of focal adhesion kinase with Grb7 and its role in cell migration. J Biol Chem, 274(34), 24425-24430 26 Han, D. C., Shen, T. L., & Guan, J. L. (2000). Role of Grb7 targeting to focal contacts and its phosphorylation by focal adhesion kinase in regulation of cell migration. J Biol Chem, 275(37), 28911-28917 27 Han, D. C., Shen, T. L., & Guan, J. L. (2001). The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions. Oncogene, 20(44), 6315-6321 28 Huang, K., Gao, N., Bian, D., Zhai, Q., Yang, P., Li, M., & Wang, X. (2020). Correlation between FAK and EGF-Induced EMT in Colorectal Cancer Cells. Journal of Oncology, 2020, 5428920 29 Janes, P. W., Lackmann, M., Church, W. B., Sanderson, G. M., Sutherland, R. L., & Daly, R. J. (1997). Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7. Journal of biological chemistry, 272(13), 8490-8497 30 Kasus-Jacobi, A., Béréziat, V., Perdereau, D., Girard, J., & Burnol, A.-F. (2000). Evidence for an interaction between the insulin receptor and Grb7. A role for two of its binding domains, PIR and SH2. Oncogene, 19(16), 2052-2059 31 Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275-291 32 Krisenko, M. O., Higgins, R. L., Ghosh, S., Zhou, Q., Trybula, J. S., Wang, W.-H., & Geahlen, R. L. (2015). Syk is recruited to stress granules and promotes their clearance through autophagy. Journal of Biological Chemistry, 290(46), 27803-27815 33 Lüönd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., Santacroce, N., Beisel, C., Ivanek, R., Bürglin, T., Tiede, S., van Rheenen, J., & Christofori, G. (2021). Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell, 56(23), 3203-3221.e3211 34 Leavey, S. F., Arend, L. J., Dare, H., Dressler, G. R., Briggs, J. P., & Margolis, B. L. (1998). Expression of Grb7 growth factor receptor signaling protein in kidney development and in adult kidney. American Journal of Physiology, 275(5), F770-776 35 Ling, Y., Liang, G., Lin, Q., Fang, X., Luo, Q., Cen, Y., Mehrpour, M., Hamai, A., Liu, Z., Shi, Y., Li, J., Lin, W., Jia, S., Yang, W., Liu, Q., Song, E., Li, J., & Gong, C. (2022). circCDYL2 promotes trastuzumab resistance via sustaining HER2 downstream signaling in breast cancer. Molecular Cancer, 21(1), 8 36 Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., & Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715 37 Manser, J., Roonprapunt, C., & Margolis, B. (1997). C. elegansCell Migration Genemig-10Shares Similarities with a Family of SH2 Domain Proteins and Acts Cell Nonautonomously in Excretory Canal Development. Developmental Biology, 184(1), 150-164 38 Paudyal, P., Shrestha, S., Madanayake, T., Shuster, C. B., Rohrschneider, L. R., Rowland, A., & Lyons, B. A. (2013). Grb7 and Filamin‐a associate and are colocalized to cell membrane ruffles upon EGF stimulation. Journal of Molecular Recognition, 26(11), 532-541 39 Pei, Y. Y., Ran, J., Wen, L., Liu, X., Xiang, L., Liu, W., & Wei, F. (2022). Up-regulated GRB7 protein in gastric cancer cells correlates with clinical properties and increases proliferation and stem cell properties. Front Oncol, 12, 1054976 40 Pero, S. C., Oligino, L., Daly, R. J., Soden, A. L., Liu, C., Roller, P. P., Li, P., & Krag, D. N. (2002). Identification of Novel Non-phosphorylated Ligands, Which Bind Selectively to the SH2 Domain of Grb7*. Journal of Biological Chemistry, 277(14), 11918-11926 41 Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, Ø., Pergamenschikov, A., Williams, C., Zhu, S. X., Lønning, P. E., Børresen-Dale, A.-L., Brown, P. O., & Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747-752 42 Priedigkeit, N., Hartmaier, R. J., Chen, Y., Vareslija, D., Basudan, A., Watters, R. J., Thomas, R., Leone, J. P., Lucas, P. C., & Bhargava, R. (2017). Intrinsic subtype switching and acquired ERBB2/HER2 amplifications and mutations in breast cancer brain metastases. JAMA oncology, 3(5), 666-671 43 Qian, L., Bradford, A. M., Cooke, P. H., & Lyons, B. A. (2016). Grb7 and Hax1 may colocalize partially to mitochondria in EGF‐treated SKBR3 cells and their interaction can affect Caspase3 cleavage of Hax1. Journal of Molecular Recognition, 29(7), 318-333 44 Sainz Jr., B., Carron, E., Vallespinós, M., & Machado, H. L. (2016). Cancer Stem Cells and Macrophages: Implications in Tumor Biology and Therapeutic Strategies. Mediators of Inflammation, 2016(1), 9012369 45 Sethy, C., & Kundu, C. N. (2021). 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomedicine and Pharmacotherapy, 137, 111285 46 Shen, T. L., Han, D. C., & Guan, J. L. (2002). Association of Grb7 with phosphoinositides and its role in the regulation of cell migration. J Biol Chem, 277(32), 29069-29077 47 Sherbet, G. V. (2011). Growth factors and their receptors in cell differentiation, cancer and cancer therapy. Elsevier. 48 Sherbet, G. V. (2013). Therapeutic strategies in cancer biology and pathology. Elsevier. 49 Siamakpour-Reihani, S., Argiros, H. J., Wilmeth, L. J., Haas, L. L., Peterson, T. A., Johnson, D. L., Shuster, C. B., & Lyons, B. A. (2009). The cell migration protein Grb7 associates with transcriptional regulator FHL2 in a Grb7 phosphorylation-dependent manner. Journal of Molecular Recognition, 22(1), 9-17 50 Song, J., Wang, W., Wang, Y., Qin, Y., Wang, Y., Zhou, J., Wang, X., Zhang, Y., & Wang, Q. (2019). Epithelial-mesenchymal transition markers screened in a cell-based model and validated in lung adenocarcinoma. BMC Cancer, 19(1), 680 51 Stein, D., Wu, J., Fuqua, S. A., Roonprapunt, C., Yajnik, V., D'Eustachio, P., Moskow, J. J., Buchberg, A. M., Osborne, C. K., & Margolis, B. (1994). The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO Journal, 13(6), 1331-1340 52 Stein, E. G., Gustafson, T. A., & Hubbard, S. R. (2001). The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF1 receptors. FEBS letters, 493(2-3), 106-111 53 Tai, Y.-L., Chen, L.-C., & Shen, T.-L. (2015). Emerging Roles of Focal Adhesion Kinase in Cancer. BioMed Research International, 2015(1), 690690 54 Tanaka, S., Pero, S. C., Taguchi, K., Shimada, M., Mori, M., Krag, D. N., & Arii, S. (2006). Specific Peptide Ligand for Grb7 Signal Transduction Protein and Pancreatic Cancer Metastasis. JNCI: Journal of the National Cancer Institute, 98(7), 491-498 55 Tsai, N. P., Ho, P. C., & Wei, L. N. (2008). Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. EMBO Journal, 27(5), 715-726 56 Tsai, N. P., Ho, P. C., & Wei, L. N. (2008). Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. The EMBO journal, 27(5), 715-726 57 Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., . . . Pontén, F. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419 58 Wang, S. S., Jiang, J., Liang, X. H., & Tang, Y. L. (2015). Links between cancer stem cells and epithelial-mesenchymal transition. OncoTargets and Therapy, 8, 2973-2980 59 Wojcik, J., Girault, J.-A., Labesse, G., Chomilier, J., Mornon, J.-P., & Callebaut, I. (1999). Sequence analysis identifies a ras-associating (RA)-like domain in the N-termini of band 4.1/JEF domains and in the Grb7/10/14 adapter family. Biochemical and biophysical research communications, 259(1), 113-120 60 Yu, W.-L. (2016). The in vivo role of Grb7 in mammary gland development and tumorigenesis [Master's Thesis]. National Taiwan University. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48985 61 Zheng, Y., Pei, Y., Yang, L., Zeng, Z., Wang, J., Xie, G., Wang, L., & Yuan, J. (2020). Upregulated GRB7 promotes proliferation and tumorigenesis of Bladder Cancer via Phospho-AKT Pathway. International Journal of Biological Sciences, 16(16), 3221-3230 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95993 | - |
| dc.description.abstract | 乳癌長久以來佔據全世界女性的癌症死因首位。其中確診 HER2 陽性亞型或三陰性亞型的病患,因為現今治療措施效果有限以及其高復發、高轉移率等特徵,而面臨最差的預後結果。HER2 陽性乳癌的癌細胞因大量表達人類表皮生長因子受體2且具有ErbB2 基因異常擴增而得名。由先前研究得知,位於 ErbB2 基因擴增區段 (ErbB2amplicon)內的 Growth factor Receptor Bound protein7 (Grb7),因為其在細胞功能性試驗與小鼠異種移植試驗中皆呈現與癌細胞惡性度正相關的現象,引起了我們的關注。Grb7是一種不具酵素活性的銜接蛋白,具有多重功能區域結構,可以與多種受體酪胺酸激酶(RTKs)或細胞因子受體結合,開啟或促進生長因子受體與細胞激素受體下游的訊息級聯。Grb7 涉入的訊息途徑包含細胞增殖、遷移、侵襲、抗凋亡與生存等。這些細胞生理功能訊號若在癌細胞內被增強,將會導致腫瘤生長、惡化、轉移、抗藥性與癌復發等可能。為了探討 Grb7 在乳癌惡化中的角色,我們首先利用線上分析程式 cBioPortal 整合來自The Cancer Genome Atlas (TCGA)資料庫中的四組乳癌患者基因原始資料,發現 Grb7 與ErbB2 共同異常突變的病患,有生存率較低、復發時間較早、惡化進程較短的統計結果。接著我們建立了 Grb7 基因剔除(knockout, KO)與具有自發乳腺腫瘤能力的小鼠品系,藉由觀察活體在不同 Grb7 基因背景下,所發展出的乳腺腫瘤生長與惡化進程的差異。我們發現 Grb7 KO 的乳癌小鼠相較於 Grb7 WT 小鼠,表現出腫瘤發展末期體積較大、顆數較少的趨勢,且 Grb7 表現量低的兩個組別診斷出腫瘤後的存活期較短。此結果有別於文獻內細胞試驗結果所推論出 Grb7 正向驅動癌症惡化的假設。令人意外的是,Grb7異質體(heterozygous)組的肺轉移發生率是其餘兩組的 2 至 3 倍。
在細胞功能性試驗中,我們初次探討 Grb7 表現迥異的兩種乳癌細胞株,是否具有不一樣的類球體(spheroid)成形能力與對 5-Fluorouracil (5FU)的抗藥性能力。同時我們也篩選出成功表達 overexpression-Grb7 質體之上皮細胞株,進行相同的試驗,確認非癌細胞在獲得 Grb7 的功能增益後,是否影響其類球體成形與藥物敏感度。我們發現 GRB7高表現的細胞相較於低表現細胞具有更高的 5FU 抗藥性,不論 GRB7 過表達為內生性或是透過誘導產生。在類球體試驗中,我們成功觀察到 3D 培養的細胞相較 2D 平面貼附培養的細胞,減少了表皮細胞標記 E-cadherin 的表現量,顯示此培養過程可以促使細胞進入表皮-間質轉換(EMT)狀態。我們希望未來繼續利用類球體試驗深入解構細胞EMT 狀態與抗藥性及癌幹細胞的關聯,以釐清 Grb7 參與細胞抗藥性能力時,是否亦涉入癌幹細胞幹性的訊息途徑,並解答 Grb7 對乳癌惡化程度的影響。 | zh_TW |
| dc.description.abstract | Breast cancer has long been the universal leading cause of death by cancer among women. Particularly, breast cancer patients diagnosed with HER2-positive subtypes or triple-negative subtypes usually face unfavorable prognoses due to the limited effect of current cancer therapy and higher recurrence and metastasis. HER2-positive breast cancer is defined as the tumor cells over-expressing the human epidermal growth factor receptor 2 (HER2) caused by abnormally increasing gene copies involving the ErbB2 (ErbB2 amplicon). According to the previous studies, Growth factor Receptor Bound Protein7 (Grb7) is among the genes within the ErbB2 amplicon and was correlated with cancer cell malignancy in several cell functional assays and xenograft animal studies. This has drawn our attention because the Grb7 protein, as an adapter protein without catalytic activity, interacts with diverse receptor tyrosine kinases (RTKs) or growth factor receptors to regulate cell survival, invasion, migration, anti-apoptosis, and proliferation signaling cascade. These pathways are of great importance in affecting tumor development progression, metastasis, and therapy failure in cancerous tissues.
To study the implication of Grb7 in breast cancer malignancy, we first used the free online tool cBioPortal to make integrated patient tissue profile analysis from four datasets of The Cancer Genome Atlas (TCGA). We found that patients with mutations in Grb7 and ErbB2 genes had a shorter overall survival and progression-free survival rate, which indicate a bad prognosis and earlier recurrence. We also established a mouse model of Grb7 knockout (KO)/MMTV-PyMT and analyzed the development and progression of mammary tumors in mice with different Grb7 gene backgrounds. Our results reveal that the tumor fate of Grb7 mutant/MMTV-PyMT mice is not consistent with the previous studies referring Grb7 as a pro-tumor role developed from cell assays. Instead, MMTV/PyMT female mice with Grb7 depletion had larger tumor volumes and fewer tumor numbers at the late stage of the cancer course. Meanwhile, the overall survival rates of the Grb7 hetero and KO group were shorter than that of the Grb7 wild-type (WT) group. Far from our prediction, the incidence rate of lung metastasis in the Grb7 heterozygous group was twice to three times the rate in the other two groups. In cell functional assays, we showed that higher expression of Grb7 correlates with stronger resistance to 5FU, regardless of whether GRB7 is intrinsic or acquired. In the spheroid formation assay, we successfully observed the epithelial-mesenchymal transition (EMT) of cells through 3D culturing and demonstrated that spheroids are a good method to decode the EMT state of cancer cells. It has been mentioned that induction of EMT of cancer cells contributes to drug resistance and enrichment of cancer stem cell (CSC) markers. We hope to use spheroid formation assay in the future to decipher the relationships between EMT status, drug resistance, and CSC stemness, thus clarifying whether Grb7 is involved in these cellular pathways, and explaining the position of Grb7 in breast cancer malignancy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:30:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:30:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT III TABLE OF CONTENT V LIST OF TABLES VIII LIST OF FIGURES VIII INTRODUCTION 1 1. Breast cancer 1 2. ErbB2 Amplicon and GRB7 2 3. Growth Factor Receptor Bound Protein 7 (Grb7) 3 3-1. Structure, phosphorylation, and localization of Grb7 4 3-1-1. PR domain-mediated signaling and functions 5 3-1-2. Central GM domain-mediated signaling and functions 6 3-1-3. SH2 domain-mediated signaling and functions 7 3-2. Grb7’s role in cancers 8 4. Epithelial-Mesenchymal Transition (EMT) 9 4-1. Drug resistance 11 4-2. Cancer stem cell 11 MATERIALS AND METHODS 14 1. Antibodies and Plasmids 14 2. Cell cultures 14 3. Formalin-fixed paraffin-embedded mouse tissue 15 4. Immunohistochemistry(IHC) 16 5. Mouse mammary tumor size measurement and lung metastasis nodules counting 17 6. Transfection and establishment of GRB7 stably expressed cell lines 18 7. 5-FU drug-resistance assay 18 8. Mammosphere and spheroid formation assay 19 9. Western Blotting 21 10. Statistical Analysis (by Excel and GraphPad Prism 10.3) 22 RESULTS 23 Grb7 overexpression is correlated to higher metastasis rate and poor prognosis in breast cancer patients 23 Construction of Grb7 WT/MMTV-PyMT and Grb7 KO/MMTV-PyMT mouse model 24 Depletion of the Grb7 allele results in a slight increase in lung metastasis incidence rate and shortens MMTV-PyMT female mice life span 26 Grb7-overexpression of an invasive breast cancer cell line and an epithelial cell line exhibited stronger resistance to 5FU 29 Grb7 expression seemed uncorrelated with the EMT process 31 DISCUSSION 33 FIGURES AND FIGURE LEGENDS 37 SUPPLEMENT FIGURES 56 REFERENCE 62 LIST OF TABLES Table 1. A table of conclusions and reflections on this research 36 LIST OF FIGURES Figure 1. GRB7 overexpression is correlated to higher metastasis rate and poor prognosis in breast cancer patients 39 Figure 2. Construction and identification of successful generation of Grb7 knockout mice and MMTV-PyMT transgenic mice 43 Figure 3. Depletion of GRB7 allele raises lung metastasis incidence and shortens MMTV-PyMT mice's life span 48 Figure 4. GRB7-overexpression in an invasive breast cancer cell line and an epithelial cell line exhibited stronger resistance to 5FU 52 Figure 5. Grb7 expression seemed uncorrelated with the EMT process 55 Supplement Figure 1. Representative images of lung metastasis in MMTV-PMT female mice 56 Supplement Figure 2. Successful plasmid working in CHO-K1 cells was validated by fluorescent light detection after one month of selective culturing by 400μg/ml G418 antibiotics. 57 Supplement Figure 3. A schematic illustration of the Hanging drop method. 58 Supplement Figure 4. Mammosphere growing process by hanging drop through 24 hours to 192 hours of incubation. 58 Supplement Figure 5. Visualization of tumor numbers and tumor size growth of MMTV-PyMT mice. 59 Supplement Figure 6. Additional analysis of animal data by grouping mice into Grb7 WT group and Grb7 Low (hetero and KO) group. 61 | - |
| dc.language.iso | en | - |
| dc.title | 以動物模型研究 Grb7 在乳癌惡性度中的角色 | zh_TW |
| dc.title | Study on the role of Grb7 in breast cancer malignancy using an animal model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李財坤;周涵怡;朱俐潔 | zh_TW |
| dc.contributor.oralexamcommittee | Tsai-Kun Li;Han-Yi E. Chou;Li-Chieh Julie Chu | en |
| dc.subject.keyword | 生長因子受體連接蛋白7,Grb7基因剔除小鼠,乳癌,抗藥性,表皮-間質轉換, | zh_TW |
| dc.subject.keyword | Growth factor receptor bound protein 7(Grb7),Grb7 knockout mice,breast cancer,drug resistance,epithelial-mesenchymal transition (EMT), | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202404052 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2026-08-08 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
