請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95976完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳光鐘 | zh_TW |
| dc.contributor.advisor | Kuang-Chong Wu | en |
| dc.contributor.author | 羅偉誠 | zh_TW |
| dc.contributor.author | Wei-Cheng Lo | en |
| dc.date.accessioned | 2024-09-25T16:25:47Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-14 | - |
| dc.identifier.citation | [1] T. Huang, T. Zhang, and J. Gao. Targeted mitochondrial delivery: a therapeutic new era for disease treatment. Journal of Controlled Release, 343:89–106, 2022.
[2] M. P. Murphy and R. A. J. Smith. Drug delivery to mitochondria: the key to mito- chondrial medicine. Advanced Drug Delivery Reviews, 41(2):235–250, 2000. [3] S. A. Durazo and U. B. Kompella. Functionalized nanosystems for targeted mito- chondrial delivery. Mitochondrion, 12(2):190–201, 2012. [4] M. Choi, S. H. Lee, W. B. Kim, V. Gujrati, D. Kim, J. Lee, J.-I. Kim, H. Kim, P. E. Saw, and S. Jon. Intracellular delivery of bioactive cargos to hard-to-transfect cells using carbon nanosyringe arrays under an applied centrifugal g-force. Advanced Healthcare Materials, 5(1):101–107, 2016. [5] D. Kim, Y. J. Lee, C. M. Rausch, and M. J. Borrelli. Electroporation of extraneous proteins into cho cells: increased efficacy by utilizing centrifugal force and microsec- ond electrical pulses. Experimental Cell Research, 197(2):207–212, 1991. [6] S. Marrache and S. Dhar. Engineering of blended nanoparticle platform for deliv- ery of mitochondria-acting therapeutics. Proceedings of the National Academy of Sciences, 109(40):16288–16293, 2012. [7] Z. Mao, R. Cartier, A. Hohl, F. Faraji, S. Jiang, and G. Liu. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell mem- branes. Journal of Nanoparticle Research, 14(10):1–15, 2012. [8] A. Hirao, K. Yamasaki, K. Sakamoto, and Y. Ikeda. Electroporation-mediated gene transfer, pages 73–85. Springer, Tokyo, 2016. [9] O. W. Merten and M. Hebben. Viral vector production and regulatory issues, pages 377–390. Springer, New York, NY, 2011. [10] R. W. Malone, P. L. Felgner, and I. M. Verma. Cationic liposome-mediated rna transfection. Proceedings of the National Academy of Sciences, 86(16):6077–6081, 1989. [11] S. Tan, T. Wu, D. Zhang, and Z. Zhang. Cell or cell membrane-based drug delivery systems. Theranostics, 5(8):863, 2015. [12] W Peng, T Polajžer, C Yao, and D Miklavčič. Dynamics of cell death due to elec- troporation using different pulse parameters as revealed by different viability assays. Annals of biomedical engineering, 52(1):22–35, 2024. [13] J A VanderBurgh, T N Corso, S L Levy, and H G Craighead. Scalable continuous- flow electroporation platform enabling t cell transfection for cellular therapy manu- facturing. Scientific Reports, 13(1):6857, 2023. [14] C. A. Jordan, E. Neumann, and A. E. Sowers. Electroporation and electrofusion in cell biology. Springer Science & Business Media, 2013. [15] E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. Hofschneider. Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO Journal, 1(7):841–845, 1982. [16] U. Zimmermann. Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology, Biochemistry and Pharmacology, 105:175–256, 1986. [17] T. Y. Tsong. Electroporation of cell membranes. Biophysical Journal, 60(2):297– 306, 1991. [18] P. Marszalek, D.-S. Liu, and T. Tsong. Schwan equation and transmembrane potential induced by alternating electric field. Biophysical Journal, 58(4):1053–1058, 1990. [19] H. P. Schwan. Biophysics of the Interaction of Electromagnetic Energy with Cells and Membranes, volume 49, pages 213–231. Springer, 1983. [20] J Pan, X Wang, C Chiang, Y Ma, J Cheng, P Bertani, W Lu, and L J Lee. Joule heating and electroosmotic flow in cellular micro/nano electroporation. Lab on a Chip, 24(4):819–831, 2024. [21] M Scuderi, J Dermol-Černe, T Batista Napotnik, S Chaigne, O Bernus, D Benoist, D C Sigg, L Rems, and D Miklavčič. Characterization of experimentally observed complex interplay between pulse duration, electrical field strength, and cell orienta- tion on electroporation outcome using a time-dependent nonlinear numerical model. Biomolecules, 13(5):727, 2023. [22] J. Shi, Y. Ma, J. Zhu, Y. Chen, Y. Sun, Y. Yao, Z. Yang, and J. Xie. A review on electroporation-based intracellular delivery. Molecules, 23(11):3044, 2018. [23] M. Punjiya, H. R. Nejad, J. Mathews, M. Levin, and S. Sonkusale. A flow through device for simultaneous dielectrophoretic cell trapping and ac electroporation. Sci- entific Reports, 9(1):1–11, 2019. [24] A de Caro, E Bellard, J Kolosnjaj-Tabi, M Golzio, and M P Rols. Gene electro- transfer efficiency in 2d and 3d cancer cell models using different electroporation protocols: A comparative study. Pharmaceutics, 15(3):1004, 2023. [25] W Milestone, C Baker, A L Garner, and R P Joshi. Electroporation from mito- chondria to cell clusters: Model development toward analyzing electrically driven bioeffects over a large spatial range. Journal of Applied Physics, 133(24), 2023. [26] L. Chang, L. Li, J. Shi, Y. Sheng, W. Lu, D. Gallego-Perez, and L. J. Lee. Micro-/ nanoscale electroporation. Lab on a Chip, 16(21):4047–4062, 2016. [27] Y.-C. Lin, C.-M. Jen, M.-Y. Huang, C.-Y. Wu, and X.-Z. Lin. Electroporation mi- crochips for continuous gene transfection. Sensors and Actuators B: Chemical, 79(2- 3):137–143, 2001. [28] F Ekstrand, M Mapar, S Ruhrmann, K Bacos, C Ling, and C N Prinz. Achieving efficient clonal beta cells transfection using nanostraw/nanopore-assisted electropo- ration. RSC advances, 14(31):22244–22252, 2024. [29] H. Huang, Z. Wei, Y. Huang, D. Zhao, L. Zheng, T. Cai, M. Wu, W. Wang, X. Ding,Z. Zhou, Q. Du, and Z. Li. An efficient and high-throughput electroporation mi- crochip applicable for sirna delivery. Lab on a Chip, 11(2):163–172, 2011. [30] Y. T. Lin, S. T. Chen, J. C. Chang, R. J. Teoh, C. S. Liu, and G. J. Wang. Green extraction of healthy and additive free mitochondria with a conventional centrifuge. Lab on a Chip, 19(22):3862–3869, 2019. [31] R. S. Verma, D. Giannola, W. Shlomchik, and S. G. Emerson. Increased efficiency of liposome-mediated transfection by volume reduction and centrifugation. Biotech- niques, 25(1):46–49, 1998. [32] J. Pan, C. Chiang, X. Wang, P. Bertani, Y. Ma, J. Cheng, V. Talesara, L. J. Lee, and W. Lu. Cell membrane damage and cargo delivery in nano-electroporation. Nanoscale, 15(8):4080–4089, 2023. [33] X. Chen, Y. Zhang, L. Wang, and H. Li. Epigenetic regulation of drug resistance in hl-60 cells: implications for targeted therapies. Cancer Research, 84(2):342–355, 1 2024. [34] Z. Liu, M. Winters, M. Holodniy, and H. Dai. sirna delivery into human t cells and primary cells with carbon-nanotube transporters. Angewandte Chemie-International Edition in English, 46(12):2023, 2007. [35] Z. Chen, M. A. Akenhead, X. Sun, H. Sapper, H. Y. Shin, and B. J. Hinds. Flow- through electroporation of hl-60 white blood cell suspensions using nanoporous membrane electrodes. Advanced Healthcare Materials, 5(16):2105–2112, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95976 | - |
| dc.description.abstract | 本研究旨在探討處於離心環境下,利用微流道將粒線體遞送至細胞內部之可行性。離心環境和微流控技術在生物醫學領域中具有廣泛應用,如在細胞分離、細胞培養和藥物篩選等方面。近十年來,細胞內粒線體遞送已成為生物醫學領域的熱門議題。
本研究冀望能建立一個完善的實驗平台,在將細胞進行必要的離心步驟時,我們可以透過電穿刺將粒線體傳遞至細胞內部。為了驗證該方法的成功率,我們選定HL-60(人類白血病細胞)進行研究,此細胞在細胞實驗中較為常見。我們預設將在50mL的離心管內利用半導體製程製作微流道與微電極系統(以下簡稱微流道電穿刺系統)。 微流道電穿刺系統的設計和製作過程包括光阻、蝕刻等步驟,以實現高精度的細微結構。將此系統放置在市售離心機中,透過微流道導向細胞,以實現在離心環境下對細胞進行電穿刺。 為驗證實驗方法的有效性,我們調整了不同的參數,如離心機轉速、電訊號頻率等,並比較該方法之成功率。實驗結果發現,在其他參數相同的情況下,使用10Vpp、10kHz、200g、5分鐘之參數可以有最佳的穿刺效果。在後續測試中,我們發現再離心500g、5分鐘,可以有最佳的粒線體遞送效率。 本研究的特點在於,設計一個適合在離心環境下運行的微流道電穿刺系統。未來研究可以進一步優化微流道電穿刺系統和離心條件,以實現更高效、安全的細胞內物質遞送,以求能遞送除粒線體以外之其他物質。 綜上所述,本實驗已建立一個完善的流程與步驟,讓細胞成功在離心環境下完成粒線體遞送,對於在微流道中提高電穿刺的進一步發展具有重要的指導意義。 | zh_TW |
| dc.description.abstract | This study explores the feasibility of delivering mitochondria into cells using microchannels in a centrifugal environment. Centrifugal environments and microfluidic technology have extensive applications in the biomedical field, including cell separation, cell culture, and drug screening. Over the past decade, intracellular mitochondrial delivery has become a prominent topic in biomedical research.
The study aims to establish an experimental platform to deliver mitochondria into cells through electroporation during centrifugation steps. HL-60 (human leukemia cells) were selected for their common use in cell experiments. A microchannel and microelectrode system (microchannel electroporation system) will be created using semiconductor processes within a 50mL centrifuge tube. The design and fabrication of the microchannel electroporation system involve photolithography and etching to achieve high-precision microstructures. This system is placed in a commercial centrifuge, guiding cells through the microchannels to achieve electroporation in a centrifugal environment. To validate the method, various parameters such as centrifuge speed and electrical signal frequency were adjusted, and the success rates were compared. The best electroporation results were achieved with parameters of 10Vpp, 10kHz, 200g, and 5 minutes. The highest mitochondrial delivery efficiency was achieved at 500g for 5 minutes. The study's main feature is the design of a microchannel electroporation system for operation in a centrifugal environment. Future research can optimize the system and conditions to achieve more efficient and safer intracellular substance delivery, including other substances besides mitochondria. In summary, this experiment establishes a comprehensive procedure for successful mitochondrial delivery in cells within a centrifugal environment, providing important guidance for further development of electroporation efficiency in microchannels. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:25:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:25:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Page
口試委員審定書 i 致謝 iii 摘要 v Abstract vii 目次 ix 圖次 xiii 表次 xvii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 章節大綱 4 第二章 文獻探討 5 2.1 細胞轉染方法 5 2.2 細胞電穿刺(Cell Electroporation) 7 2.2.1 細胞膜 (Cell membrane) 7 2.2.2 電穿刺(Electroporation) 8 2.3 細胞離心分離技術 16 2.3.1 細胞離心分離技術 16 2.3.2 離心提取與傳遞粒線體技術 17 2.4 文獻探討總結 18 第三章 研究方法 19 3.1 細胞培養與染色 19 3.1.1 細胞培養 19 3.1.1.1 配置培養液及緩衝溶液 20 3.1.1.2 細胞解凍培養 21 3.1.1.3 細胞繼代培養 23 3.1.1.4 粒線體提取 25 3.1.2 細胞染色方法 26 3.2 實驗裝置之設計與製程 30 3.2.1 實驗裝置之設計 30 3.2.2 實驗裝置 31 3.2.3 實驗裝置之製程 31 3.2.3.1 微流道之製程 31 3.2.3.2 微電極之製程 35 3.3 離心機裝置 37 3.3.1 離心管 37 3.3.2 離心機裝置 38 3.4 光學系統 39 3.4.1 訊號產生器 42 3.4.2 示波器 42 3.5 細胞計數與存活率測定 43 第四章 實驗結果與討論 45 4.1 細胞介電性質 46 4.2 細胞離心電穿刺結果 47 4.2.1 Calcein 鈣黃綠素 47 4.2.1.1 純電穿刺 47 4.2.1.2 離心電穿刺結果 50 4.2.1.3 離心電穿刺之細胞存活率 51 4.3 粒線體遞送結果 53 4.4 細胞存活率(Cell Viability) 57 4.5 細胞增殖率(Cell Proliferation Rate) 58 第五章 結論與未來展望 61 5.1 結論 61 5.2 未來展望 62 參考文獻 63 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 結合電穿刺與離心力以評估細胞之粒線體遞送 | zh_TW |
| dc.title | Combining Electroporation and Centrifugal Force for the Evaluation of Mitochondrial Delivery in Cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 沈弘俊 | zh_TW |
| dc.contributor.coadvisor | Horn-Jiunn Sheen | en |
| dc.contributor.oralexamcommittee | 范育睿;謝函芸 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Jui Fan;Han-Yun Hsieh | en |
| dc.subject.keyword | 細胞離心,細胞轉染,微電極,微流道,可逆式細胞電穿刺,粒線體, | zh_TW |
| dc.subject.keyword | Cell Centrifugation,Cell Transfection,Microelectrode,Microfluidics,Reversible Cell Electroporation,Mitochondria, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202403564 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 142.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
