請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95975完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳政鴻 | zh_TW |
| dc.contributor.advisor | Cheng-Hung Wu | en |
| dc.contributor.author | 沈子傑 | zh_TW |
| dc.contributor.author | Zih-Jie Shen | en |
| dc.date.accessioned | 2024-09-25T16:25:30Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-17 | - |
| dc.identifier.citation | Aivaliotis, P., Arkouli, Z., Georgoulias, K., & Makris, S. (2021). Degradation curves integration in physics-based models: Towards the predictive maintenance of industrial robots. Robotics and Computer-Integrated Manufacturing, 71, 102177.
Allahverdi, A., & Mittenthal, J. (1994). Scheduling on M parallel machines subject to random breakdowns to minimize expected mean flow time. Naval Research Logistics (NRL), 41(5), 677-682. Araz, O. U. (2005). A simulation based multi-criteria scheduling approach of dual-resource constrained manufacturing systems with neural networks. Australasian Joint Conference on Artificial Intelligence, Baras, J., Ma, D.-J., & Makowski, A. (1985). K competing queues with geometric service requirements and linear costs: The μc-rule is always optimal. Systems & control letters, 6(3), 173-180. Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the national Academy of Sciences, 38(8), 716-719. Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503-515. Belouadah, H., Posner, M. E., & Potts, C. N. (1992). Scheduling with release dates on a single machine to minimize total weighted completion time. Discrete applied mathematics, 36(3), 213-231. Chen, Y.-T., Wu, C.-H., Tien, Y.-J., & Yu, C.-J. (2016). PRODUCTION CONTROL UNDER PROCESS QUEUE TIME CONSTRAINTS IN SYSTEMS WITH A COMMON DOWNSTREAM WORKSTATION. International Journal of Industrial Engineering, 23(5). Das, K., Lashkari, R., & Sengupta, S. (2007). Machine reliability and preventive maintenance planning for cellular manufacturing systems. European journal of operational research, 183(1), 162-180. Gao, Y., Feng, Y., Zhang, Z., & Tan, J. (2015). An optimal dynamic interval preventive maintenance scheduling for series systems. Reliability Engineering & System Safety, 142, 19-30. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). freeman San Francisco. Graves, S. C. (1981). A review of production scheduling. Operations Research, 29(4), 646-675. Kao, Y.-T., Dauzère-Pérès, S., Blue, J., & Chang, S.-C. (2018). Impact of integrating equipment health in production scheduling for semiconductor fabrication. Computers & Industrial Engineering, 120, 450-459. Kebarighotbi, A., & Cassandras, C. G. (2011). Optimal scheduling of parallel queues using stochastic flow models. Discrete Event Dynamic Systems, 21(4), 547-576. Kopp, D., Hassoun, M., Kalir, A., & Mönch, L. (2020). SMT2020—A semiconductor manufacturing testbed. IEEE Transactions on Semiconductor Manufacturing, 33(4), 522-531. Lee, J.-H., Zhao, C., Li, J., & Papadopoulos, C. T. (2018). Analysis, design, and control of Bernoulli production lines with waiting time constraints. Journal of Manufacturing Systems, 46, 208-220. Lee, J. H., & Lee, J. M. (2006). Approximate dynamic programming based approach to process control and scheduling. Computers & chemical engineering, 30(10-12), 1603-1618. Li, Y., & Dai, Z. (2019). A two-stage flow-shop scheduling problem with incompatible job families and limited waiting time. Engineering Optimization. Li, Y., Li, X., Gao, L., Zhang, B., Pan, Q.-K., Tasgetiren, M. F., & Meng, L. (2021). A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times. International Journal of Production Research, 59(13), 3880-3899. Lima, A., Borodin, V., Dauzère-Pérès, S., & Vialletelle, P. (2021). A sampling-based approach for managing lot release in time constraint tunnels in semiconductor manufacturing. International Journal of Production Research, 59(3), 860-884. Min, L., & Cheng, W. (1999). A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines. Artificial Intelligence in Engineering, 13(4), 399-403. Nattaf, M., Dauzère-Pérès, S., Yugma, C., & Wu, C.-H. (2019). Parallel machine scheduling with time constraints on machine qualifications. Computers & Operations Research, 107, 61-76. Pan, E., Liao, W., & Xi, L. (2010). Single-machine-based production scheduling model integrated preventive maintenance planning. The International Journal of Advanced Manufacturing Technology, 50, 365-375. Patel, V., ElMaraghy, H., & Ben-Abdallah, I. (1999). Scheduling in dual-resources constrained manufacturing systems using genetic algorithms. 1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA'99 (Cat. No. 99TH8467), Pinedo, M. (2012). Scheduling (Vol. 29). Springer. Powell, W. B. (2019). A unified framework for stochastic optimization. European journal of operational research, 275(3), 795-821. Powell, W. B., George, A., Bouzaiene-Ayari, B., & Simao, H. P. (2005). Approximate dynamic programming for high dimensional resource allocation problems. Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., Ronconi, D. P., & Powell, W. B. (2010). Minimizing total tardiness in a stochastic single machine scheduling problem using approximate dynamic programming. Journal of Scheduling, 13(6), 597-607. Schulz, S., Buscher, U., & Shen, L. (2020). Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices. Journal of Business Economics, 90, 1315-1343. Sha, D., & Lin, H.-H. (2010). A multi-objective PSO for job-shop scheduling problems. Expert Systems with Applications, 37(2), 1065-1070. Su, L.-H. (2003). A hybrid two-stage flowshop with limited waiting time constraints. Computers & Industrial Engineering, 44(3), 409-424. Tadumadze, G., Emde, S., & Diefenbach, H. (2020). Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines. OR Spectrum, 42(2), 461-497. Travers, D. L., & Kaye, R. J. (1998). Dynamic dispatch by constructive dynamic programming. IEEE transactions on Power Systems, 13(1), 72-78. Wang, S., & Liu, M. (2015). Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning. Journal of Manufacturing Systems, 37, 182-192. Wang, S., Liu, M., & Chu, C. (2015). A branch-and-bound algorithm for two-stage no-wait hybrid flow-shop scheduling. International Journal of Production Research, 53(4), 1143-1167. Weichbold, J., & Schiefermayr, K. (2006). The optimal control of a general tandem queue. Probability in the Engineering and Informational Sciences, 20(2), 307-327. Wu, C.-H., Chien, W.-C., Chuang, Y.-T., & Cheng, Y.-C. (2016). Multiple product admission control in semiconductor manufacturing systems with process queue time (PQT) constraints. Computers & Industrial Engineering, 99, 347-363. Wu, C.-H., Lin, J. T., & Chien, W.-C. (2010). Dynamic production control in a serial line with process queue time constraint. International Journal of Production Research, 48(13), 3823-3843. Wu, C.-H., Yao, Y.-C., Dauzère-Pérès, S., & Yu, C.-J. (2020). Dynamic dispatching and preventive maintenance for parallel machines with dispatching-dependent deterioration. Computers & Operations Research, 113, 104779. Xiao, L., Song, S., Chen, X., & Coit, D. W. (2016). Joint optimization of production scheduling and machine group preventive maintenance. Reliability Engineering & System Safety, 146, 68-78. Zhang, Z., & Daigle, J. (2012). Analysis of job assignment with batch arrivals among heterogeneous servers. European journal of operational research, 217(1), 149-161. <台灣積體電路製造股份有限公司 民國一百一十一年度年報 .pdf>. 蔡沂芯 . (2019). 應用多智能體分解與合成之動態派工與保養方法 . | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95975 | - |
| dc.description.abstract | 本研究針對受等候時長限制的串聯生產系統提出動態派工與預防保養方法結合允入控制。本研究考量系統中常見的隨機事件,以最小化等候和報廢成本為目標,利用馬可夫決策過程配合動態規劃,提出動態派工與預防保養模型,同時本研究提出混整數規劃模型,透過產能配置將大維度問題分解為多個小問題,以克服動態規劃模型求解時間過長的問題。由於生產系統的隨機性是違反等候時長限制的主要原因,本研究提出允入控制方法,透過精準的生產控制避免違反等候時長限制衍伸的高額成本。本研究預期能根據所提出之方法進行動態的派工與預防保養決策優化,並通過與允入控制方法的結合,有效避免產品違反等候時長限制,降低整體生產成本。 | zh_TW |
| dc.description.abstract | This study proposes a dynamic dispatch and preventive maintenance method combined with admission control for serial production system under queue time constraint. This study considers common random events in the system, aims at minimizing waiting and scrapping costs, using dynamic programming with Markov decision process, and proposes a dynamic dispatch and preventive maintenance model. To overcome the problem of long solution time for the dynamic programming model, we decompose high-dimensional problems into multiple smaller problems by a mixed integer programming model that allocate production capacity. Since the randomness of the production system is the main reason for violating the queue time constraint, this study proposes an admission control method to avoid the high costs of violating the queue time constraint through precise production control. We expect to optimize dispatching and preventive maintenance decisions dynamically based on the proposed method, and by combining it with the admission control method, we expect our method can effectively prevent products from violating the queue time constraint and reduce overall production costs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:25:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:25:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 目次 iii 圖次 v 表次 vii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究方法 4 1.4 研究流程 5 第二章 文獻回顧 7 2.1 平行機台之派工問題與方法 7 2.1.1 靜態派工方法 7 2.1.2 動態派工方法 9 2.2 預防保養方法 12 2.3 等候時長限制 13 2.4 文獻回顧小結 15 第三章 研究問題與方法 17 3.1 問題描述與假設 17 3.2 動態派工與預防保養方法 22 3.2.1 多產品多機台動態派工與預防保養模型 22 3.2.2 混整數線性規劃分解模型 27 3.2.3 多產品單機台動態派工與預防保養模型 30 3.3 允入控制方法 32 3.3.1 允入控制方法的建構 32 3.3.2 風險係數趨勢探討 35 3.4 上游派工方法和下游派工方法 57 3.4.1 上游派工方法 57 3.4.2 下游派工方法 62 第四章 案例研討 67 4.1 實驗設計 67 4.2 四產品三非等效平行機台系統案例分析 73 4.3 不同機台數量之生產系統案例分析 79 4.4 機台加工率隨健康狀態衰退降低設定下之案例討論 86 第五章 結論與未來研究方向 94 5.1 結論 94 5.2 未來研究方向 94 參考文獻 96 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 等候時長限制下串聯生產系統之動態派工與保養方法 | zh_TW |
| dc.title | Dynamic dispatching and preventive maintenance in serial production system under queue time constraint | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃奎隆;陳文智 | zh_TW |
| dc.contributor.oralexamcommittee | Kwei-Long Huang;Wen-Chih Chen | en |
| dc.subject.keyword | 動態派工,預防保養,等候時長限制,允入控制,馬可夫決策過程, | zh_TW |
| dc.subject.keyword | dynamic dispatch,preventive maintenance,queue time constraint,admission control,Markov decision process, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202404378 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-09-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 6.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
