Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95968
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭修偉zh_TW
dc.contributor.advisorHsiu-Wei Chengen
dc.contributor.author蔡承翰zh_TW
dc.contributor.authorCheng-Han Tsaien
dc.date.accessioned2024-09-25T16:23:23Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-09-24-
dc.identifier.citationRolf E Hummel. Understanding materials science: history, properties, applications. Springer, 1998.
YF Ye, Q Wang, J Lu, CT Liu, and Y Yang. The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics, 59:75–80, 2015.
YangYang, LiannaDang, MelindaJShearer, Hongyuan Sheng, Wenjie Li, Jie Chen, Peng Xiao, Yunhuai Zhang, Robert J Hamers, and Song Jin. Highly active trimetallic nifecr layered double hydroxide electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 8(15):1703189, 2018.
Katie Lutton, Junsoo Han, Hung M Ha, Debashish Sur, Elena Romanovskaia, and John R Scully. Passivation of ni-cr and ni-cr-mo alloys in low and high ph sulfate solutions. Journal of The Electrochemical Society, 170(2):021507, 2023.
Kuo-Min Hsu, Sz-Han Chen, and Chao-Sung Lin. Microstructure and corrosion behavior of fecrnicomnx (x= 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 m h2so4. Corrosion Science, 190:109694, 2021.
Chenghuang Tang, Haimei Ye, and Yongzhong Zhan. Mechanism of fcc structure formation in nicofecumn equiatomic high-entropy alloys. Arabian Journal for Science and Engineering, 44:6637–6644, 2019.
Ruei-Sung Yu, Chueh-Jung Huang, Rong-Hsin Huang, Chung-Hsing Sun, and Fuh Sheng Shieu. Structure and optoelectronic properties of multi-element oxide thin film. Applied surface science, 257(14):6073–6078, 2011.
AkeemDamilola Akinwekomi and Farid Akhtar. Bibliometric mapping of literature on high-entropy/multicomponent alloys and systematic review of emerging applications. Entropy, 24(3):329, 2022.
Xiaomei Wang, Weiguang Ma, Chunmei Ding, Zhiqiang Xu, Hong Wang, Xu Zong, and CanLi. Amorphousmulti-elements electrocatalysts with tunable bifunctionality toward overall water splitting. ACS Catalysis, 8(11):9926–9935, 2018.
Shiqi Wang, Bangli Xu, Wenyi Huo, Hanchen Feng, Xuefeng Zhou, Feng Fang, ZonghanXie,JianKuShang,andJianqingJiang. Efficient feconicupd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Applied CatalysisB: Environmental, 313:121472, 2022.
Siang-Yun Li, Thi Xuyen Nguyen, Yen-Hsun Su, Chia-Chun Lin, Yan-Jia Huang, Yun-Hwei Shen, Chuan-Pu Liu, Jr-Jeng Ruan, Kao-Shuo Chang, and Jyh-Ming Ting. Sputter-deposited high entropy alloy thin film electrocatalyst for enhanced oxygen evolution reaction performance. Small, 18(39):2106127, 2022.
Lu Li, Xianjun Cao, Juanjuan Huo, Junpeng Qu, Weihua Chen, Chuntai Liu, Yufei Zhao, Hao Liu, and Guoxiu Wang. High valence metals engineering strategies of fe/ co/ni-based catalysts for boosted oer electrocatalysis. Journal of Energy Chemistry, 76:195–213, 2023.
Kexin Zhang and Ruqiang Zou. Advanced transition metal-based oer electrocatalysts: current status, opportunities, and challenges. Small, 17(37):2100129, 2021.
Khadijah M Emran and Hanaa Al-Refai. Resistivity and passivity characterization of ni-base glassy alloys in naoh media. Metals, 8(1):64, 2018.
Jianying Wang, Wenhao Li, Hailin Yang, Hua Huang, Shouxun Ji, Jianming Ruan, and Zhilin Liu. Corrosion behavior of cocrni medium-entropy alloy compared with 304 stainless steel in h2so4 and naoh solutions. Corrosion Science, 177:108973, 2020.
Annica Wetzel, Marcus von der Au, Paul M Dietrich, Jörg Radnik, Ozlem Ozcan, and Julia Witt. The comparison of the corrosion behavior of the crconi medium entropy alloy and crmnfeconi high entropy alloy. Applied Surface Science, 601:154171, 2022.
NE Benaioun, I Maafa, Alban Florentin, Emmanuel Denys, NE Hakiki, N Moulayat, and Jean-Luc Bubendorff. Time dependence of the natural passivation process on aisi 304 in an alkaline medium: Atomic force microscopy and scanning kelvin probe force microscopy as additional tools to electrochemical impedance spectroscopy. Applied Surface Science, 436:646–652, 2018.
Dominik Dworschak, Marina Bishara, Hsiu-Wei Cheng, and Markus Valtiner. Com- bining afm imaging and elementally resolved spectroelectrochemistry for under- standing stability and quality of passive films formed on alloy 600. Materials and Corrosion, 73(6):842–850, 2022.
Julia Klemm, Sebasian Oliver Klemm, Maria Jazmin Duarte, Lisa Rossrucker, Karl Johann Jakob Mayrhofer, and Frank Uwe Renner. Multi-element-resolved electro- chemical corrosion analysis. part i. dissolution behavior and passivity of amorphous fe50cr15mo14c15b6. Corrosion science, 89:59–68, 2014.
Dominik Dworschak, Ko-Kai Tseng, Jien-Wei Yeh, Hsiu-Wei Cheng, and Markus Valtiner. Bottom-up characterization of electrochemical passivity from simple binary alloys to high entropy alloys. Electrochimica Acta, 405:139804, 2022.
S Choudhary, Y Qiu, S Thomas, and N Birbilis. Element-resolved electrochemical analysis of transpassive dissolution and repassivation behavior of the multi-principal element alloy altivcr. Electrochimica Acta, 362:137104, 2020.
Olga Kasian, Simon Geiger, Karl JJ Mayrhofer, and Serhiy Cherevko. Electrochem- ical on-line icp-ms in electrocatalysis research. The chemical record, 19(10):2130– 2142, 2019.
Judith Monnier, Solenn Réguer, Eddy Foy, Denis Testemale, François Mirambet, Mandana Saheb, Philippe Dillmann, and Ivan Guillot. Xas and xrd in situ character- isation of reduction and reoxidation processes of iron corrosion products involved in atmospheric corrosion. Corrosion science, 78:293–303, 2014.
Annemie Adriaens, Mark Dowsett, Gareth Jones, Karen Leyssens, and Sergey Nikitenko. An in-situ x-ray absorption spectroelectrochemistry study of the response of artificial chloride corrosion layers on copper to remedial treatment. Journal of Analytical Atomic Spectrometry, 24(1):62–68, 2009.
Harri Ali-Löytty, Mary W Louie, Meenesh R Singh, Lin Li, Hernan G Sanchez Casa- longue, Hirohito Ogasawara, Ethan J Crumlin, Zhi Liu, Alexis T Bell, Anders Nils- son, et al. Ambient-pressure xps study of a ni–fe electrocatalyst for the oxygen evolution reaction. The Journal of Physical Chemistry C, 120(4):2247–2253, 2016.
Jia-Xing Zheng, Sheng-Qiang OuYang, Lei Feng, Jian-Jun Sun, Zhi-Wei Xuan, and Jian-Hui Fang. In-situ raman spectroscopic studies on electrochemical oxidation behavior of chromium in alkaline solution. Journal of Electroanalytical Chemistry, 921:116682, 2022.
JC Hamilton, JC Farmer, and RJ Anderson. In situ raman spectroscopy of anodic films formed on copper and silver in sodium hydroxide solution. Journal of the Electrochemical Society, 133(4):739, 1986.
Yanping Zhu, Jiali Wang, Hang Chu, You-Chiuan Chu, and Hao Ming Chen. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Letters, 5(4):1281–1291, 2020.
Kai-Chi Chuang, Yu-Yen Chang, Ching-Yu Chiang, Yun-Chung Liu, Hao-Hsuan Hung, Ko-Kai Tseng, Jien-Wei Yeh, and Hsiu-Wei Cheng. Corrosion of plasma sput- tering medium entropy alloy thin film: A multidisciplinary perspective. Corrosion Science, 216:111020, 2023.
Frank MF de Groot, JC Fuggle, BT Thole, and GA Sawatzky. 2p x-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field. Physical Review B, 42(9):5459, 1990.
Mark C Biesinger, Brad P Payne, Andrew P Grosvenor, Leo WM Lau, Andrea R Gerson, and Roger St C Smart. Resolving surface chemical states in xps analysis of first row transition metals, oxides and hydroxides: Cr, mn, fe, co and ni. Applied Surface Science, 257(7):2717–2730, 2011.
Mark C Biesinger. Advanced analysis of copper x-ray photoelectron spectra. Surface and Interface Analysis, 49(13):1325–1334, 2017.
K Ogle and S Weber. Anodic dissolution of 304 stainless steel using atomic emission spectroelectrochemistry. Journal of The Electrochemical Society, 147(5):1770, 2000.
Eleni C Mazarakioti, Anastasios Zotos, Anna-Akrivi Thomatou, Achilleas Kontoge- orgos, Angelos Patakas, and Athanasios Ladavos. Inductively coupled plasma-mass spectrometry (icp-ms), a useful tool in authenticity of agricultural products'and foods'origin. Foods, 11(22):3705, 2022.
Cody Cushman, Shiladitya Chatterjee, GH Major, NJ Smith, Adam Roberts, and MR Linford. Trends in advanced xps instrumentation. 1. overview of the tech- nique, automation, high sensitivity, imaging, snapshot spectroscopy, gas cluster ion beams, and multiple analytical techniques on the instrument. Vacuum Technology & Coating, 11(01), 2016.
Giovanna Pintori and Elti Cattaruzza. Xps/esca on glass surfaces: A useful tool for ancient and modern materials. Optical Materials: X, 13:100108, 2022.
Kaiyue Zhu, Xuefeng Zhu, and Weishen Yang. Application of in situ techniques for the characterization of nife-based oxygen evolution reaction (oer) electrocatalysts. Angewandte Chemie International Edition, 58(5):1252–1265, 2019.
Nour Beydoun, Yann Niberon, Laurent Arnaud, Julien Proust, Komla Nomenyo, Shuwen Zeng, Gilles Lerondel, and Aurelien Bruyant. Stabilization of copper-based biochips with alumina for biosensing application. Biosensors, 12(12):1132, 2022.
Robert M Powell, Robert W Puls, Sharon K Hightower, and David A Sabatini. Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environmental Science & Technology, 29(8):1913–1922, 1995.
Barbara Zydorczak, Peter M May, Danielle P Meyrick, David Bátka, and Glenn Hefter. Dissolution of cr2o3 (s) and the behavior of chromium in concentrated naoh solutions. Industrial & engineering chemistry research, 51(51):16537–16543, 2012.
Teguh Handoyo and Jun Kondoh. Development of gold thin-film for optical-based biosensor. AIP Conference Proceedings, 2230(1), 2020.
HA Al-Jawhari. A review of recent advances in transparent p-type cu2o-based thin film transistors. Materials Science in Semiconductor Processing, 40:241–252, 2015.
Thomas J Richardson, Jonathan L Slack, and Michael D Rubin. Electrochromism in copper oxide thin films. Electrochimica Acta, 46(13-14):2281–2284, 2001.
Xiaoqing Qiu, Masahiro Miyauchi, Huogen Yu, Hiroshi Irie, and Kazuhito Hashimoto. Visible-light-driven cu (ii)-(sr1- y na y)(ti1- x mo x) o3 photocata- lysts based on conduction band control and surface ion modification. Journal of the American Chemical Society, 132(43):15259–15267, 2010.
M Yeganeh and M Saremi. A comparison between the corrosion behavior of nanos- tructured copper thin films deposited on oxidized silicon and copper sheet in alkaline media. Surface and Coatings Technology, 205(7):2218–2224, 2010.
Mohamed Rozali Othman et al. Electrosynthesis and characterization of cu (oh) 2 nanoparticle using cu and cu-pvc electrodes in alkaline solution. International Journal of Electrochemical Science, 10(6):4911–4921, 2015.
Yannick Cudennec and André Lecerf. The transformation of cu (oh) 2 into cuo, revisited. Solid state sciences, 5(11-12):1471–1474, 2003.
LMM De Souza, FP Kong, FR McLarnon, and RH Muller. Spectroscopic ellipsom- etry study of nickel oxidation in alkaline solution. Electrochimica acta, 42(8):1253– 1267, 1997.
D Gall, R Gampp, HP Lang, and P Oelhafen. Pulsed plasma deposition of chromium oxide/chromium-cermet coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14(2):374–379, 1996.
H Bode, K Dehmelt, and JJEA Witte. Zur kenntnis der nickelhydroxidelektrode—i. über das nickel (ii)-hydroxidhydrat. Electrochimica Acta, 11(8):1079–1087, 1966.
Eloise P Rodrigues, Leiva C Oliveira, Maria LF Silva, Cleumar S Moreira, and Anto- nio MN Lima. Surface plasmon resonance sensing characteristics of thin copper and gold films in aqueous and gaseous interfaces. IEEE Sensors Journal, 20(14):7701– 7710, 2020.
Geng-Hong Li, Yu-Yen Chang, Valentina Wieser, and Hsiu-Wei Cheng. Decipher- ing the interplay between cr and fe during interfacial electrochemical processes: A complementary analysis using haxpes and icp-ms. Corrosion Science, 237:112278, 2024.
Mary W Louie and Alexis T Bell. An investigation of thin-film ni–fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society, 135(33):12329–12337, 2013.
Stefan Loos, Ivelina Zaharieva, Petko Chernev, Andreas Lißner, and Holger Dau. Electromodified nife alloys as electrocatalysts for water oxidation: Mech- anistic implications of time-resolved uv/ vis tracking of oxidation state changes. ChemSusChem, 12(9):1966–1976, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95968-
dc.description.abstract近年來,多元素薄膜的新材料設計策略已廣泛應用於各個領域。隨著多元素材料的蓬勃發展,鑑定材料的表面反應性以及反應機制變得致關重要。傳統上常用的表面分析儀器往往需要在真空下進行測量,需要除去表面的溶液,導致觀察結果與實際的界面反應只有間接關係。此外,隨著系統中混合元素增加,鑑定材料將變得更加困難。同時各元素之間的交互作用也更加複雜。因此,我們開發一個具有一系列原位技術的分析平台,以識別材料表面實際發生的反應。透過整合多種即時分析方法,我們不僅成功鑑定出鎳、鉻、鐵、銅甚至多元素薄膜的電化學行為,並提出元素之間可能存在的協同效應。最後,透過可見光譜在氧化與還原之間的跳躍電位下追蹤鎳氧化還原動力學,證實鐵的存在不僅會抑制羥基氧化鎳的生成量,還會降低羥基氧化鎳的生成速率。zh_TW
dc.description.abstractIn recent, a new material design strategy of multi-principal elements (MPE) thin films have been widely applied in various fields. With the rising development of MPE materials, it is essential to characterize the surface reactivity and reaction mechanism on the materials. Conventionally, the commonly used surface analysis instruments often sholud be measured under vacuum, it is necessary to remove the solution on the surface, causing the observation is indirectly related to the actual interfacial reaction. Besides, with the increasing elements mixed in the system, it will become harder and harder to characterize the material. Meanwhile, the interaction between each element is also more complex. Therefore, we develop an analytical platform with series of in-situ techniques to identify the actual reaction occurring on the material’s surface. Through multiple combinatorial real-time analytical approaches, we successfully not only investigate the electrochemical behavior of Ni, Cr, Fe, Cu, even MPE thin film, but also propose the possible synergistic effect among the elements. Finally, Ni redox kinetics are monitored by visible spectroscopy under the sudden potential jumps between oxidation and reduction, we confirm that the presence of Fe species not only inhibits the amount of NiOOH formation, but also reduces the formation rate of NiOOH.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:23:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:23:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xv
Denotation xvii
Chapter 1 Introduction 1
1.1 The development of multi-principle element (MPE) system 1
1.2 The challenge for predicting the electrochemical behavior in MPE system 3
1.3 The evolution of analytical techniques from ex-situ to in-situ 4
1.4 Multiple perspectives for comprehensive understanding the interfacial reaction 7
1.5 The analytical technique in this study 9
1.6 The Highlight of this study 11
Chapter 2 Experimental Section 13
2.1 Materials and Chemicals 13
2.2 Sample preparation 14
2.3 Polarization sequence 16
2.4 The construction of electrochemical flow cell 17
2.5 In-situ optical microscopy and visible spectroscopy 18
2.5.1 Transmitted light intensity analysis 19
2.6 Inductively coupled plasma mass spectrometry (ICP-MS) 19
2.7 X-ray photoelectron spectroscopy (XPS) 22
2.7.1 The principle of XPS 22
2.7.2 XPS measurement parameter settings 23
2.7.3 Fitting parameter for elemental analysis 24
2.7.4 XPS data analysis 25
2.8 Atomic force microscopy (AFM) 25
2.9 Angle-resolved surface plasmon resonance 26
2.10 in-situ Raman spectroscopy 28
Chapter 3 Results 31
3.1 Transmitted light analysis of studied thin film systems 31
3.2 Optical characterization of thin films by in-situ visible spectroscopy 32
3.3 The interfacial reaction between MPE and Au thin film 36
3.4 The multi-elements dissolution analysis of MPE thin films 39
3.5 Surface morphology of the polarized surfaces 41
3.6 The identification of surface compositions of thin films 42
3.6.1 Ex-situ XPS elemental analysis 42
3.6.2 The deeper region of perspective in post-electrochemical chemical states in Ni 46
Chapter 4 Discussion 49
4.1 The disintegration of chromium (III) oxide layer 49
4.2 The behavior of Cu species in MPE thin films 50
4.3 The oxidation mechanism of Ni in alkaline environment 52
4.4 Investigation of interfacial reaction in MPE systems 53
4.5 The reaction kinetics study in MPE thin films 57
4.6 The double edge of the Fe in MPE systems 59
Chapter 5 Conclusion 61
References 63
Chapter 6 Supporting information 71
6.1 XPS spectra 71
-
dc.language.isoen-
dc.title原位光譜研究多元素薄膜中的界面電化學反應zh_TW
dc.titleIn-situ spectroscopic investigation the interfacial electrochemical reaction in multi-principal element thin filmsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳俊顯;詹揚祥;陳重佑zh_TW
dc.contributor.oralexamcommitteeChun-Hsien Chen;Yang-Hsiang Chan;Chong-You Chenen
dc.subject.keyword多元素薄膜,原位測量,表面分析,可見光光譜,協同作用,zh_TW
dc.subject.keywordmulti-principal element thin film,in-situ measurement,surface analysis,visible spectroscopy,synergistic effect,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202404393-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-24-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf17.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved