請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭富書 | zh_TW |
| dc.contributor.advisor | Fu-Shu Jeng | en |
| dc.contributor.author | 林璋元 | zh_TW |
| dc.contributor.author | Jhang-Yuan Lin | en |
| dc.date.accessioned | 2024-09-25T16:21:34Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] Zhao, Y., Zhu, Z., Liu, W., Zhan, J., & Wu, D. (2023). Application of 3D laser scanning on NATM tunnel deformation measurement during construction. Acta Geotechnica, 18(1), 483-494.
[2] 江金璋, 陳志鴻, 廖嘉安, 劉振雄. (2019). 隧道變位監測之變革—光達(LiDAR)全斷面掃瞄技術之導入與應用. 中華技術, 124, 118-129. [3] Luhmann, T. (2010). Close range photogrammetry for industrial applications. ISPRS journal of photogrammetry and remote sensing, 65(6), 558-569. [4] 王泰典. (2018). 精細三維測繪世代的岩盤工程地質調查展望. 土木水利, 45(3), 57-66. [5] 王泰典, 韓仁毓. (2016). 三維雷射掃瞄在工程地質調查計量化與坐標化技術開發. 行政院科技部產學合作研究計畫. [6] 李紫彤, 陳玟伶, 楊宜蓉, 鄭富書, 王泰典, 劉曉樺, ... & 黃奉琦. (2021). 精細測繪於岩坡脆弱度評估及監測應用. 中國土木水利工程學刊, 33(2), 151-162. [7] Williams, R. (2012). DEMs of difference. Geomorphological Techniques, 2(3.2). [8] Jafari, B., Khaloo, A., & Lattanzi, D. (2017). Deformation tracking in 3D point clouds via statistical sampling of direct cloud-to-cloud distances. Journal of Nondestructive Evaluation, 36, 1-10. [9] Yan, L., Li, P., Hu, J., Li, D., Dan, Y., Bai, X., ... & Dang, W. (2024). Monitoring small-scale mass movement using unmanned aerial vehicle remote sensing techniques. Catena, 238, 107885. [10] Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS journal of photogrammetry and remote sensing, 82, 10-26. [11] Machado, L. B., & Futai, M. M. (2024). Tunnel performance prediction through degradation inspection and digital twin construction. Tunnelling and Underground Space Technology, 144, 105544. [12] Yu, G., Wang, Y., Mao, Z., Hu, M., Sugumaran, V., & Wang, Y. K. (2021). A digital twin-based decision analysis framework for operation and maintenance of tunnels. Tunnelling and underground space technology, 116, 104125. [13] Ye, Z., Ye, Y., Zhang, C., Zhang, Z., Li, W., Wang, X., ... & Wang, L. (2023). A digital twin approach for tunnel construction safety early warning and management. Computers in Industry, 144, 103783. [14] Delaloye, D., Hutchinson, J., & Diederichs, M. (2011). Accuracy issues associated with Lidar scanning for tunnel deformation monitoring. In Proceedings of the 2011 Pan-AM CGS Geotechnical Conference (pp. 1-6). [15] Barton, N., & Choubey, V. (1977). The shear strength of rock joints in theory and practice. Rock mechanics, 10, 1-54. [16] Tse, R., & Cruden, D. M. (1979, October). Estimating joint roughness coefficients. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 16, No. 5, pp. 303-307). Pergamon. [17] Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395. [18] Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific model development discussions, 7(1), 1525-1534. [19] Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688. [20] 李奕辰. (2019). 隧道襯砌變位與裂縫生衍分析模式暨結構異狀診斷平台開發. 國立臺灣大學土木工程學系學位論文, 2019, 1-134. [21] 洪仲孝. (2022). 應用特徵模態法推估隧道襯砌受力暨結構診斷平台開發. 國立臺灣大學土木工程學系學位論文, 2022, 1-112. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95962 | - |
| dc.description.abstract | 施工監測為現代化隧道工法確保地質不確定性造成不利影響重要防線,考慮設備與成本,常採隧道數倍開挖直徑佈置監測斷面,難免疏漏。隨著雷射掃描技術(LiDAR又稱光達)發展成熟,地面光達已可以快速、精準且全面性地蒐集隧道三維空間資訊,透過不同時期點雲差異量分析方法可求得隧道周壁變位,作為監測隧道變位的依據,然隧道掃描結果能補足傳統隧道控制點監測資料不足之現象,其隧道監測變位結果充滿不確定性。
本研究使用地面光達測繪技術應用於山岳隧道蒐集施工階段定期重複掃描之隧道三維空間資訊建立動態隧道數位孿生模型,並透過點雲差異分析建置施工測繪孿生模型,為掌握測繪孿生模型之精度,再透過現地全尺度試驗評估其測繪孿生模型精度,最後建立整合測繪孿生模型與施工開挖數值模擬模型,迅速比較周壁變位以評估施工反應的監測流程,同時選定一案例隧道,透過掃描案例隧道建立點雲模型產製測繪孿生模型,並透過實驗確定其模型精度,最後整合數值模型與測繪模型進行隧道開挖周壁變位評估測試,完善其整合模型應用於隧道工程之流程。 本研究透過將不同資料來源之模型整合至同一平台上,使使用者更直觀地檢視隧道施工資訊,並透過整合模型提供施工反應之參考,有助於其施工決策並減少施工時間成本,並可以利用本研究建立之數位孿生模型進行後續隧道驗收、維護、營運管理。 | zh_TW |
| dc.description.abstract | Construction monitoring is a crucial safeguard against the adverse impacts of geological uncertainties in modern tunnel construction methods. Considering equipment and cost, monitoring sections are often placed several times the tunnel's excavation diameter, inevitably leading to omissions. With the advancement of Light Detection and Ranging (LiDAR) technology, terrestrial LiDAR can now rapidly, accurately, and comprehensively collect three-dimensional spatial information of tunnels. By analyzing the differences between point clouds at different time periods, the deformation of tunnel walls can be determined, serving as a basis for monitoring tunnel deformation. However, while tunnel scanning results can supplement the deficiencies of traditional tunnel control point monitoring data, the deformation monitoring results obtained from tunnel scanning are subject to uncertainties.
This study applies terrestrial LiDAR surveying technology to collect three-dimensional spatial information of mountain tunnels through repeat-pass scanning during the construction phase to establish a dynamic digital twin model of the tunnel. By analyzing the differences between point clouds, a construction surveying digital twin model is constructed. To grasp the accuracy of the surveying digital twin model, full-scale field tests are conducted. Finally, an integrated monitoring process is established by integrating the surveying digital twin model with the numerical simulation model of tunnel excavation to quickly compare the wall deformation and evaluate the construction response. Also, a case tunnel is selected to produce a surveying digital twin model through scanning. The accuracy of the model is determined through experiments. Finally, the numerical model and the surveying model are integrated to evaluate the wall deformation of tunnel excavation By integrating models from different data sources onto the same platform, this study enables users to more intuitively view tunnel construction information. Moreover, the integrated model provides a reference for construction response, aiding in construction decision-making and reducing construction time and costs. Furthermore, the digital twin model established in this study can be used for subsequent tunnel acceptance, maintenance, and operation management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:21:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:21:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii ABSTRACT iii 目次 iv 圖次 vi 表次 x 符號對照表 xi 第一章 前言 1 1.1 研究背景與動機 1 1.2 研究目的與流程 1 1.3 論文架構及主要內容 3 第二章 文獻回顧 4 2.1 山岳隧道施工監測 4 2.2 先進測繪技術 5 2.3 點雲處理與分析 8 2.4 數位孿生模型應用 11 第三章 研究方法 13 3.1 隧道周壁變位孿生模型精度評估 13 3.1.1 點雲誤差不確定性評估 13 3.1.2 點雲資料分析方法 15 3.1.3 現地全尺度試驗設計 19 3.2 山岳隧道施工測繪孿生模型技術開發 25 3.2.1 應用先進測繪技術建置隧道三維點雲模型 25 3.2.2 建置隧道區域工程地質模型 28 3.2.3 建置施工測繪孿生模型 29 3.3 測繪孿生與數值模擬模型整合 31 3.3.1 FLAC3D 31 3.3.2 數值模型 32 3.3.3 模型整合 33 第四章 案例隧道測試應用 34 4.1 孿生模型精度評估成果 34 4.2 案例隧道施工測繪孿生模型 47 4.2.1 案例隧道簡介 47 4.2.2 測繪孿生模型建置結果 49 4.2.3 工程地質模型建置結合孿生模型結果 53 4.3 測繪孿生與數值模擬模型整合應用 56 4.3.1 數值分析 56 4.3.2 模型整合應用 60 第五章 討論 66 5.1 孿生模型精度評估 66 5.2 施工測繪孿生模型 67 5.3 整合測繪孿生與數值模擬模型 67 第六章 結論與建議 68 6.1 孿生模型精度評估 68 6.2 動態數位孿生模型 69 6.3 整合模型應用 69 參考文獻 70 附錄 問題與回覆 72 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 測繪孿生結合數值模擬模型精進山岳隧道施工監測探討 | zh_TW |
| dc.title | Improving Mountain Tunnel Construction Monitoring through Integrated Models of Surveying and Mapping Twins and Numerical Simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王泰典 | zh_TW |
| dc.contributor.coadvisor | Tai-Tien Wang | en |
| dc.contributor.oralexamcommittee | 邱雅筑;李佳翰;陳正勳;趙鍵哲 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Chu Chiu;Chia-Han Lee;Cheng-Hsun Chen;Jen-Jer Jaw | en |
| dc.subject.keyword | 山岳隧道施工監測,雷射掃描技術,孿生模型,數值模擬,模型整合應用, | zh_TW |
| dc.subject.keyword | Monitoring of mountain tunnel construction,Laser scanning,Twin model,Numerical simulation,Integrated model application, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202403814 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2029-08-07 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 11.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
