請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95932完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝舒凱 | zh_TW |
| dc.contributor.advisor | Shu-Kai Hsieh | en |
| dc.contributor.author | 張芳瑜 | zh_TW |
| dc.contributor.author | Fang-Yu Chang | en |
| dc.date.accessioned | 2024-09-25T16:12:13Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-20 | - |
| dc.identifier.citation | Al Maruf, A., Khanam, F., Haque, M. M., Jiyad, Z. M., Mridha, F., & Aung, Z.(2024). Challenges and opportunities of text-based emotion detection: a survey. IEEE Access.
Alm, C. O., Roth, D., & Sproat, R. (2005). Emotions from text: machine learning for text-based emotion prediction. Proceedings of the conference on human language technology and empirical methods in natural language processing, 579–586. Amin, M. M., Mao, R., Cambria, E., & Schuller, B. W. (2024). A wide evaluation of chatgpt on affective computing tasks. IEEE Transactions on Affective Computing. Annamalai, S., & Salam, S. N. A. (2017). Undergraduates’ interpretation on whatsapp smiley emoji. Jurnal Komunikasi, Malaysian Journal of Communication, 33(4), 89–103. Anthropic. (2024). Introducing the next generation of claude. Retrieved March 4,2024, from https://www.anthropic.com/news/claude-3-family Arafah, B., & Hasyim, M. (2019). The language of emoji in social media. KnE Social Sciences, 494–504. Baym, N. K. (2015). Personal connections in the digital age. John Wiley & Sons. Bliss-Carroll, N. L. (2016). The nature, function, and value of emojis as contemporary tools of digital interpersonal communication. Gardner-Webb University. Brown, T. B., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems. Burge, J. (2017). 5 billion emojis sent daily on messenger. Retrieved July 17, 2017, from https://blog.emojipedia.org/5-billion-emojis-sent-daily-on-messenger/ Calvo, R. A., & D’Mello, S. K. (2010). Affect detection: an interdisciplinary review of models, methods, and their applications (Vol. 1). IEEE. Cambria, E., Speer, R., Havasi, C., & Hussain, A. (2010). Senticnet: a publicly available semantic resource for opinion mining. 2010 AAAI fall symposium series. Chen, Z., Cao, Y., Yao, H., Lu, X., Peng, X., Mei, H., & Liu, X. (2021). Emoji-powered sentiment and emotion detection from software developers'communication data. ACM Transactions on Software Engineering and Methodology(TOSEM), 30(2), 1–48.Coyle, M. A., & Carmichael, C. L. (2019). Perceived responsiveness in text messaging: the role of emoji use. Computers in Human Behavior, 99, 181–189. Cramer, H., De Juan, P., & Tetreault, J. (2016). Sender-intended functions of emojis in us messaging. Proceedings of the 18th international conference on human-computer interaction with mobile devices and services, 504–509. Danesi, M. (2017). The semiotics of emoji: the rise of visual language in the age of the internet. Bloomsbury Publishing. Darwin, C. (1872). The expression of the emotions in man and animals. John Murray. Demszky, D., Movshovitz-Attias, D., Ko, J., Cowen, A., Nemade, G., & Ravi, S. (2020). Goemotions: a dataset of fine-grained emotions. arXiv preprint arXiv:2005.00547 . Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. Dixon, S. J. (2024). Most popular emojis on twitter by usage rate 2022. Retrieved May 18, 2024, from https://www.statista.com/statistics/1367508/most-popular-emojis-twitter-usage-rate/ Dresner, E., & Herring, S. C. (2010). Functions of the nonverbal in cmc: emoticons and illocutionary force. Communication theory, 20(3), 249–268. Du Plessis, T. (2020). Interpretation of emojis in organisational computer-mediated communication (cmc) contexts [Doctoral dissertation, Stellenbosch: Stellenbosch University]. Dürscheid, C., & Siever, C. M. (2017). Beyond the alphabet–communcataion of emojis. Kurzfassung eines (auf Deutsch) zur Publikation eingereichten Manuskripts, 1–14. Ekman, P., Freisen, W. V., & Ancoli, S. (1980). Facial signs of emotional experience.Journal of personality and social psychology, 39(6), 1125. Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of personality and social psychology, 17 (2), 124. Engineering, I. (2015). Emojineering part 1: machine learning for emoji trends. Retrieved May 1, 2015, from https://instagram-engineering.com/emojineering-part - 1 - machine - learning - for - emoji - trendsmachine - learning - for - emoji -trends-7f5f9cb979ad Evans, V. (2017). The emoji code: how smiley faces, love hearts and thumbs up are changing the way we communicate. Michael O’Mara Books. Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., & Lehmann, S. (2017). Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. arXiv preprint arXiv:1708.00524. Fellbaum, C. (1998). Wordnet: an electronic lexical database. MIT press. Ganganwar, V., et al. (2021). Sentiment analysis of legal emails using plutchik’s wheel of emotions in quantified format. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), 4979–4987. Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, 3816–3830. George, A. S., George, A. H., & Baskar, T. (2023). Emoji unite: examining the rise of emoji as an international language bridging cultural and generational divides. Partners Universal International Innovation Journal, 1(4), 183–204. Giannoulis, E., & Wilde, L. R. (2019). Emoticons, kaomoji, and emoji: the transformation of communication in the digital age. In Emoticons, kaomoji, and emoji (pp. 1–22). Routledge. Goldberg, Y. (2016). A primer on neural network models for natural language processing. Synthesis Lectures on Human Language Technologies. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Guntuku, S. C., Li, M., Tay, L., & Ungar, L. H. (2019). Studying cultural differences in emoji usage across the east and the west. Proceedings of the international AAAI conference on web and social media, 13, 226–235. Hamilton, W. L., Clark, K., Leskovec, J., & Jurafsky, D. (2016). Inducing domain-specific sentiment lexicons from unlabeled corpora. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 595–605. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media. Hasyim, M. (2019). Linguistic functions of emoji in social media communication. Opcion, 35. Jaeger, S. R., Vidal, L., Kam, K., & Ares, G. (2017). Can emoji be used as a direct method to measure emotional associations to food names? preliminary investigations with consumers in usa and china. Food quality and preference, 56, 38–48. Karjus, A. (2023). Machine-assisted mixed methods: augmenting humanities and social sciences with artificial intelligence. arXiv preprint arXiv:2309.14379. Kerslake, L., & Wegerif, R. (2017). The semiotics of emoji: the rise of visual language in the age of the internet (book review). Media and Communication, 5(4), 75–78. Kim, J., & André, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE transactions on pattern analysis and machine intelligence, 30(12), 2067–2083. Ko, E. E., Kim, D., & Kim, G. (2022). Influence of emojis on user engagement in brand-related user generated content. Computers in Human Behavior, 136,107387. Kralj Novak, P., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of emojis. Lazarus, R. S. (1991). Emotion and adaptation. Oxford University Press. LeCompte, T., & Chen, J. (2017). Sentiment analysis of tweets including emoji data.2017 International Conference on Computational Science and Computational Intelligence (CSCI), 793–798. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. Liang, P., et al. (2022). Holistic evaluation of language models. arXiv preprint arXiv:2204.07285. Liu, C., Fang, F., Lin, X., Cai, T., Tan, X., Liu, J., & Lu, X. (2021a). Improving sentiment analysis accuracy with emoji embedding. Journal of Safety Science and Resilience, 2(4), 246–252. Liu, P., et al. (2021b). Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586. Ljubešić, N., & Fišer, D. (2016). A global analysis of emoji usage, 82–89. Luor, T. T., Wu, L.-l., Lu, H.-P., & Tao, Y.-H. (2010). The effect of emoticons in simplex and complex task-oriented communication: an empirical study of instant messaging. Computers in Human Behavior, 26(5), 889–895. Mahato, S., & Kumar, M. S. (2023). A thorough review of emoji as the emerging communication language. Journal for ReAttach Therapy and Developmental Diversities, 6(1), 799–811. Marchal, M., Scholman, M., Yung, F., & Demberg, V. (2022). Establishing annotation quality in multi-label annotations. Proceedings of the 29th international conference on computational linguistics, 3659–3668. Mehrabian, A. (1971). Nonverbal communication. Nebraska symposium on motivation. Mehrabian, A. (1996). Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Current Psychology, 14, 261–292. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. Proceedings of the International Conference on Learning Representations (ICLR). Miller, H., Thebault-Spieker, J., Chang, S., Johnson, I., Terveen, L., & Hecht, B.(2016). “blissfully happy"or “ready tofight": varying interpretations of emoji. Proceedings of the international AAAI conference on web and social media, 10(1), 259–268. Mohammad, S. (2013). Nrc: a repository for sentiment and emotion analysis tools. Proceedings of the International Conference on Language Resources and Evaluation. Mohammad, S. M. (2015). Sentiment analysis on social media: recent advances and applications. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2277–2283. Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word-emotion association lexicon. Computational Intelligence, 29(3), 436–465. Mohsin, M. A., & Beltiukov, A. (2019). Summarizing emotions from text using plutchik's wheel of emotions. 7th scientific conference on information technologies for intelligent decision making support (ITIDS 2019), 291–294. Mondal, A., & Gokhale, S. S. (2020). Mining emotions on plutchik’s wheel. 2020 seventh international conference on social networks analysis, management and security (snams), 1–6. Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social network analysis and mining, 11(1), 81. OpenAI. (2022). Introducing chatgpt. Retrieved November 30, 2022, from https ://openai.com/index/chatgpt/ OpenAI. (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774. OpenAI. (2024). Chatgpt: optimizing language models for dialogue. Retrieved July 1, 2024, from https://chatgpt.r4wand.eu.org/ Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2), 1–135. Peacock, D. C., & Khan, H. U. (2019). Effectiveness of social media sentiment analysis tools with the support of emoticon/emoji. 16th International Conference on Information Technology-New Generations (ITNG 2019), 491–494. Picard, R. W. (1997). Affective computing. MIT Press. Pichai, S., & Hassabis, D. (2023). Introducing gemini: our largest and most capable ai model. Retrieved December 6, 2023, from https://blog.google/technology/ai/google-gemini-ai/#sundar-note Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In Theories of emotion (pp. 3–33). Elsevier. Prada, M., Rodrigues, D. L., Garrido, M. V., Lopes, D., Cavalheiro, B., & Gaspar, R. (2018). Motives, frequency and attitudes toward emoji and emoticon use. Telematics and Informatics, 35(7), 1925–1934. Qadir, A., & Riloff, E. (2015). Sentiment classification with a novel class of words: are superlatives useful? Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1010–1014. Radford, A., et al. (2021). Learning transferable visual models from natural language supervision. Proceedings of the International Conference on Machine Learning. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training [Technical report]. OpenAI . Raffel, C., et al. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Proceedings of the 37th International Conference on Machine Learning, 6730–6742. Rathje, S., Mirea, D.-M., Sucholutsky, I., Marjieh, R., Robertson, C., & Van Bavel, J. J. (2023). Gpt is an effective tool for multilingual psychological text analysis. Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161. Russell, J. A., & Mehrabian, A. (1977). Evidence for a three-factor theory of emotions. Journal of research in Personality, 11(3), 273–294. Sabour, S., Liu, S., Zhang, Z., Liu, J. M., Zhou, J., Sunaryo, A. S., Li, J., Lee, T., Mihalcea, R., & Huang, M. (2024). Emobench: evaluating the emotional intelligence of large language models. arXiv preprint arXiv:2402.12071. Sasamoto, R. (2023). Perceptual resemblance and the communication of emotion in digital contexts: a case of emoji and reaction gifs. Pragmatics, 33(3), 393–417. Schick, T., & Schütze, H. (2021). It’s not just size that matters: small language models are also few-shot learners. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2339–2352. Strapparava, C., & Mihalcea, R. (2007). Semeval-2007 task 14: affective text. Proceedings of the fourth international workshop on semantic evaluations (SemEval-2007), 70–74. Swartz, M., & Crooks, A. (2020). Comparison of emoji use in names, profiles, and tweets. 2020 IEEE 14th International Conference on Semantic Computing (ICSC), 375–380. Tan, Z., Beigi, A., Wang, S., Guo, R., Bhattacharjee, A., Jiang, B., Karami, M., Li, J., Cheng, L., & Liu, H. (2024). Large language models for data annotation: a survey. arXiv preprint arXiv:2402.13446. Tian, Y., Galery, T., Dulcinati, G., Molimpakis, E., & Sun, C. (2017). Facebook sentiment: reactions and emojis. Proceedings of the fifth international workshop on natural language processing for social media, 11–16. Tigwell, G. W., & Flatla, D. R. (2016). Oh that’s what you meant! reducing emoji misunderstanding. Proceedings of the 18th international conference on human-computer interaction with mobile devices and services adjunct, 859–866. Toma, A.-M. (2021). Emoji use in computer-mediated communication. Unknown (Eds.), Music, Poetry, Language, 175–183. Tromp, E., & Pechenizkiy, M. (2014). Rule-based emotion detection on social media: putting tweets on plutchik’s wheel. arXiv preprint arXiv:1412.4682. Udoudom, U., William, G., Igiri, A., Okon, E., & Aruku, K. (2024). Emojis and miscommunication in text-based interactions among nigerian youths. Journal of Informatics and Web Engineering, 3(1), 226–240. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, J., & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), 5998–6008. https://arxiv.org/abs/1706.03762 Via, S. (2021). Judging a brand by its emoji use. Wang, S., & Manning, C. D. (2012). Baselines and bigrams: simple, good sentiment and topic classification. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017). Current state of text sentiment analysis from opinion to emotion mining. ACM Computing Surveys (CSUR), 50(2), 1–33. Zeng, X., Chen, Q., Fu, X., & Zuo, J. (2021). Emotion wheel attention-based emotion distribution learning. IEEE Access, 9, 153360–153370. Zhang, Z., Zhang, Z., Wang, Y., & Fang, X. (2014). Emotion recognition in real-world conditions from videos and images. Neurocomputing, 145, 226–236. Zhao, P., Jia, J., An, Y., Liang, J., Xie, L., & Luo, J. (2018). Analyzing and predicting emoji usages in social media. Companion Proceedings of the The Web Conference 2018, 327–334. Zhou, Y., Xu, P., Wang, X., Lu, X., Gao, G., & Ai, W. (2024). Emojis decoded: leveraging chatgpt for enhanced understanding in social media communications. arXiv preprint arXiv:2402.01681. Ziems, C., Held, W., Shaikh, O., Chen, J., Zhang, Z., & Yang, D. (2024). Can large language models transform computational social science? Computational Linguistics, 50(1), 237–291 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95932 | - |
| dc.description.abstract | 本論文的主要目標是探索大型語言模型(如 GPT-4o)在社交媒體中對表情符號進行情感檢測的能力,並評估其對表情符號情感的理解是否與人工標註者一致。先前的研究已顯示,大型語言模型在理解表情符號的語義、語用、情感和使用意圖方面取得了顯著成功。然而,針對表情符號情感檢測的研究相對缺乏。本研究使用 Instagram 貼文資料集,並利用重複出現的相同表情符號來區分情緒強度差異,配合 Plutchik 情感輪的固有位置優勢來計算一致性。研究比較了 GPT-4o 和人工標註者在情感標註任務中的表現,以評估模型在情感檢測中取代人類的可行性。本研究使用描述性統計分析來觀察情感檢測結果的分佈和變異性。也通過計算 GPT-4o 在不同表情符號上的精確度、召回率和準確性來評估其效果,並進行誤分類分析。研究結果顯示,人工標註者和 GPT-4o 在識別正面情感方面表現優良。儘管人工標註者表現出更廣泛的二級情感範圍,GPT-4o 則更一致和集中。表情符號本身的外觀也影響了模型的情感檢測判斷。這些研究結果表明,GPT-4o 在情感檢測任務中的表現可與人工標註者相媲美,但在處理情感的細微差異方面仍存在不足。本研究為未來社交媒體情感分析技術的發展提供了重要參考。 | zh_TW |
| dc.description.abstract | The main goal of this thesis is to explore the emotion detection capabilities of large language models, such as GPT-4o, on emojis in social media and to evaluate whether its understanding of emoji emotions aligns with that of human annotators. Previous research has shown that large language models have achieved significant success in understanding the semantics, pragmatics, sentiment, and user intentions of emojis. However, there is a gap in research specifically focused on emotion detection related to emojis. This study aims to fill this gap by using Instagram text datasets and proposing a new annotation scheme based on repeated emoji features and Plutchik's model. This method introduces a way to calculate agreement using the inherent positional advantage of Plutchik's wheel of emotions. The performance of GPT-4o and human annotators in emotion annotation tasks was compared to evaluate the feasibility of the model replacing humans in emotion detection. Descriptive statistical analysis was used to provide insights into the distribution and variability of emotion detection results. Additionally, GPT-4o's performance in terms of precision, recall, and accuracy was calculated to assess its effectiveness with different emojis. Misclassification analysis was also conducted to identify the reasons behind GPT-4o's classification errors. The results showed strong consistency between human annotators and GPT-4o in identifying positive emotions. While human annotators exhibited a broader range of secondary emotions, GPT-4o was more consistent and focused. The appearance of the emoji itself also influenced the model's emotion detection judgment. These findings indicate that GPT-4o's performance in some emotion detection tasks is comparable to that of human annotators, but there are still deficiencies in handling subtler distinctions in emotions. This study provides important references for the development of future social media emotion analysis technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:12:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:12:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ................................................................... i
摘要.................................................................. iii Abstract ................................................................ v List of Figures ............................................................... ix List of Tables ................................................................ xi 1 Introduction .................................................................. 1 1.1 Background .......................................................... 1 1.2 Motivation .......................................................... 4 1.3 Research Purpose ................................................ 5 1.4 Overview ............................................................ 6 2 Literature Review ......................................................... 7 2.1 The Role of Emojis in Communication .................. 8 2.1.1 Historical Development and Integration ........ 8 2.1.2 The Function of Emoji .................................... 9 2.2 Emotion Detection on Text Communication ........ 10 2.2.1 Emotion models ............................................ 11 2.2.2 An Overview of Emotion Detection ............. 15 3 Methodology ............................................................ 19 3.1 Data Collection .................................................... 20 3.1.1 Data Source .................................................... 20 3.1.2 Dataset Design ............................................... 22 3.1.3 Large Language Model Selection and Prompt Design ................................................. 30 3.1.4 Human Annotation and GPT-generated Annotation ....................................................... 35 3.2 Emotional Encoding and Annotator Consensus .... 38 3.2.1 Emotional Encoding ....................................... 38 3.2.2 The Consensus of Annotators ...................... 39 3.3 Evaluation and Analysis Methods ....................... 41 3.3.1 Descriptive Statistics ..................................... 41 3.3.2 Evaluation Metrics .......................................... 42 4 Results and Discussion ................................................. 47 4.1 Descriptive Statistics of Emotion Detection ........ 47 4.1.1 Emotion Frequency Analysis ....................... 47 4.1.2 Ordering of Emotions by Valence ............... 51 4.1.3 Analysis of Emotion Coordinate Distances ... 52 4.2 Evaluation Metrics ................................................ 54 4.2.1 Emoji Performance ........................................ 54 4.2.2 Confusion Matrix Visualization Analysis ...... 56 4.3 Misclassification Analysis ....................................58 4.4 Results Overview .................................................. 63 5 Conclusion ..................................................................... 65 5.1 Summary ................................................................ 65 5.2 Limitation ............................................................... 66 5.3 Future Work .......................................................... 67 References ........................................................................69 | - |
| dc.language.iso | en | - |
| dc.title | 台灣社交媒體上表情符號的情感檢測:基於大型語言模型的提示方法 | zh_TW |
| dc.title | Emotion Detection of Emojis on Taiwan Social Media: A Prompt-Based Approach with Large Language Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 呂佳蓉;施孟賢 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Rung Lu;Meng-Hsien Shih | en |
| dc.subject.keyword | 表情符號,提示工程,情感檢測, | zh_TW |
| dc.subject.keyword | Emoji,Prompt Engineering,Emotion Detection, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202404114 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-20 | - |
| dc.contributor.author-college | 文學院 | - |
| dc.contributor.author-dept | 語言學研究所 | - |
| 顯示於系所單位: | 語言學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
