請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95911完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌 | zh_TW |
| dc.contributor.advisor | Po-Huang Liang | en |
| dc.contributor.author | 鄭緁玲 | zh_TW |
| dc.contributor.author | Chieh-Ling Cheng | en |
| dc.date.accessioned | 2024-09-24T16:11:36Z | - |
| dc.date.available | 2024-09-25 | - |
| dc.date.copyright | 2024-09-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-09 | - |
| dc.identifier.citation | Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, Wang J, Wang M, Jin Q. Crystal structure of human enterovirus 71 3C protease. J Mol Biol. 2011 May 6;408(3):449-61. doi: 10.1016/j.jmb.2011.03.007. Epub 2011 Mar 17. PMID: 21396941; PMCID: PMC7094522.
Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W, Steinmetzer T, Böttcher-Friebertshäuser E. 2020. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 3, e202000786. Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. 2012. RNA 3’-end mismatch excision by the severe acute respiratory syndrome oronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl Acad. Sci. U.S.A. 109, 9372–9377. Butler, D. 2012. Clusters of coronavirus cases put scientists on alert. Nature 492, 166–167. Chen CN, Lin CP, Huang KK, Chen WC, Hsieh HP, Liang PH, Hsu JT. 2005. Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3'-digallate (TF3). Evid Based Complement Alternat Med 2, 209–215. Chen W, Shao Y, Peng X, Liang B, Xu J, Xing D. 2022. Review of preclinical data of PF-07304814 and its active metabolite derivatives against SARS-CoV-2 infection. Front Pharmacol. 13, 1035969. Chen YW, Lee MS, Lucht A, Chou FP, Huang W, Havighurst TC, Kim K, Wang JK, Antalis TM, Johnson MD, Lin CY. 2010. TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am. J. Pathol. 176, 2986–2996. Cho SY, Kang JM, Ha YE, Park GE, Lee JY, Ko JH, Lee JY, Kim JM, Kang CI, Jo IJ, Ryu JG, Choi JR, Kim S, Huh HJ, Ki CS, Kang ES, Peck KR, Dhong HJ, Song JH, Chung DR, Kim YJ. 2016. MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study. Lancet 388, 994–1001. Chowdhury AR, Mandal S, Mittra B, Sharma S, Mukhopadhyay S, Majumder HK. 2002. Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives". Medical Science Monitor. 8, BR254–65. Fraser BJ, Beldar S, Seitova A, Hutchinson A, Mannar D, Li Y, Kwon D, Tan R, Wilson RP, Leopold K, Subramaniam S, Halabelian L, Arrowsmith CH, Bénard F. 2022. Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nature Chem. Biol. 18, 963–971. Freitas BT, Durie IA, Murray J, Longo JE, Miller HC, Crich D, Hogan RJ, Tripp RA, Pegan SD. 2020. Characterization and Noncovalent Inhibition of the Deubiquitinase and deISGylase Activity of SARS-CoV-2 Papain-Like Protease. ACS Infect Dis. 6, 2099-2109. Gandhi S, Klein J, Robertson AJ, Peña-Hernández MA, Lin MJ, Roychoudhury P, Lu P, Fournier J, Ferguson D, Mohamed Bakhash SAK, Catherine Muenker M, Srivathsan A, Wunder EA, Jr, Kerantzas N, Wang W, Lindenbach B, Pyle A, Wilen CB, Ogbuagu O.; Greninger AL, Iwasaki A, Schulz WL, Ko AI. 2022. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nat Commun. 13, 1547. Goc A, Sumera W, Rath M, Niedzwiecki A. 2021. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS One 16, e0253489. Heyer A, Günther T, Robitaille A, Lütgehetmann M, Addo MM, Jarczak D, Kluge S, Aepfelbacher M, Schulze Zur Wiesch J, Fischer N, Grundhoff A. 2022. Remdesivir-induced emergence of SARS-CoV2 variants in patients with prolonged infection. Cell Rep Med. 3, 100735. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8. Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: 2020. New treatment option for COVID-19. Antimicrob Agents Chemother. 64, e00754-20. Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA, Gajiwala KS, He M, Hogan RJ, Kozminski K, Li LY, Lockner JW, Lou J, Marra MT, Mitchell LJ Jr, Murray BW, Nieman JA, Noell S, Planken SP, Rowe T, Ryan K, Smith GJ 3rd, Solowiej JE, Steppan CM, Taggart B. 2020. Discovery of ketone-based covalent inhibitors of Coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. J Med Chem. 63, 12725–12747. Hu Y, Lewandowski E, Tan H, Zhang X, Morgan RT, Zhang X, Jacobs LMC, Butler SG, Gongora MV, Choy J, Deng X, Chen Y, Wang J. 2023. Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. ACS Cent Sci. 9, 1658-1669. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. Ip JD, Wing-Ho Chu A, Chan WM, Cheuk-Ying Leung R, Umer Abdullah SM, Sun Y, Kai-Wang To K. 2023. Global prevalence of SARS-CoV-2 3CL protease mutations associated with nirmatrelvir or ensitrelvir resistance. EBioMedicine. 104559. Ivanov, K. A., Thiel, V., Dobbe, J. C., Van Der Meer, Y., Snijder, E. J., & Ziebuhr, J. (2004). Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. Journal of virology, 78(11), 5619-5632. Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, Park J. 2020. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med 5630838. Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT. 2022. Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review. Phytother Res. 10.1002/ptr.7671. Joyce RP, Hu VW, Wang J. 2022. The history, mechanism, and perspectives of nirmatrelvir (PF-07321332): an orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19-related hospitalizations. Med Chem Res. 31, 1637-1646. Kirchdoerfer RN, Ward AB. 2019. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10, 2342. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Eng J Med 348, 1953–1966. Kumar V, Shin JS, Shie JJ, Ku KB, Kim C, Go YY, Huang KF, Kim M, Liang PH. 2017. Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CLPro inhibitors. Antiviral Res. 141, 101-106. Kuo CJ, Chao TL, Kao HC, Tsai YM, Liu YK, Wang LH, Hsieh MC, Chang SY, Liang PH. 2021. Kinetic Characterization and Inhibitor Screening for the Proteases Leading to Identification of Drugs against SARS-CoV-2. Antimicrob Agents Chemother. 65, e02577-20. Kuo CJ, Liang PH. 2022. SARS-CoV-2 3CLpro displays faster self-maturation in vitro than SARS-CoV 3CLpro due to faster C-terminal cleavage. FEBS Lett. 596, 1214-1224. Kuo CJ, Shie JJ, Fang JM, Yen GR, Hsu JT, Liu HG, Tseng SN, Chang SC, Lee CY, Shih SR, Liang PH. Design, synthesis, and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents. Bioorg Med Chem. 2008 Aug 1;16(15):7388-98. Lei J, Kusov Y, Hilgenfeld R. 2018. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 149, 58–74. Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, Liu HT, Wu CY. 2020. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol 92, 693–697. Marín-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, Flórez-Álvarez L, Yepes LM, Rugeles MT, Zapata-Builes W, Hernandez JC, Taborda NA. 2021. Curcumin inhibits in vitro SARS-CoV-2 infectionin Vero E6 cells through multiple antiviral mechanisms. Molecules 26, 6900. Munafo F., Donati E., Brindani N., Ottonello G., Armirotti A., De Vivo M. 2022. Quercetin and luteolin are single-digit micromolar inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase. Sci. Rep. 12, 10571. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, SARS study group. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325. Rauf A, Imran M, Abu-Izneid T, Iahtisham-Ul-Haq, Patel S, Pan X, Naz S, Sanches Silva A, Saeed F, Rasul Suleria HA. 2019. Proanthocyanidins: A comprehensive review. Biomed Pharmacother 116, 108999. Qin B, Craven GB, Hou P, Chesti J, Lu X, Child ES, Morgan RML, Niu W, Zhao L, Armstrong A, Mann DJ, Cui S. 2022. Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3C and SARS-CoV-2 main protease. Acta Pharm Sin B. 12, 3924-3933. Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, Jager M, Désilets A, Gao G, Martins M, Vandal T, Thompson CAH, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, Diel DG, Van de Walle GR, August A, Whittaker GR, Boudreault PL, Leduc R, Aguilar HC, Jean F. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. 2022. Nature 605, 340–348. Song B, Shen X, Tong C, Zhang S, Chen Q, Li Y, Li S. 2023. Gossypin: A flavonoid with diverse pharmacological effects. Chem Biol Drug Des. 101, 131-137. Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE, Decroly E, Snijder EJ, Canard B, Imbert I. 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl Acad. Sci. U.S.A. 111, E3900–E3909. Tan J, George S, Kusov Y, Perbandt M, Anemüller S, Mesters JR, Norder H, Coutard B, Lacroix C, Leyssen P, Neyts J, Hilgenfeld R. 2013. 3C protease of enterovirus 68: structure-based design of Michael acceptor inhibitors and their broad-spectrum antiviral effects against picornaviruses. J Virol. 87, 4339-51. V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155-170. Wang SC, Chen Y, Wang YC, Wang WJ, Yang CS, Tsai CL, Hou MH, Chen HF, Shen YC, Hung MC. 2020. Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease. Am J Cancer Res 10, 4538–4546. Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, Hou CC, Hsiao PW, Chien SC, Shyur LF, Yang NS. 2007. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 50, 4087–4095. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. 2020. Risk factors associated with acute respiratory syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Inter Med. 180, 934-943. Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, Hsu HH, Huang HC, Wu D, Brik A, Liang FS, Liu RS, Fang JM, Chen ST, Liang PH, Wong CH. 2004. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA 101, 10012–10017. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. Xiao T, Cui M, Zheng C, Wang M, Sun R, Gao D, Bao J, Ren S, Yang B, Lin J, Li X, Li D, Yang C, Zhou H. 2021. Myricetin inhibits SARS-CoV-2 viral replication by targeting M(pro) and ameliorates pulmonary inflammation. Front Pharmacol, 12, 669642. Yamamoto M, Kiso M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Takeda M, Kinoshita N, Ohmagari N, Gohda J, Semba K, Matsuda Z, Kawaguchi Y, Kawaoka Y, Inoue JI. 2020. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 12, 629. Yi L., Li Z., Yuan K., Qu X., Chen J., Wang G., Zhang H., Luo H., Zhu L., Jiang P., et al. 2004. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol. 78, 11334–11339. Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, Zhao Y, Lin G, Chen H, Chen L, Zhang J. 2021. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine. 85, 153364. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814–1820. Zhao MM, Yang WL, Yang FY, Zhang L, Huang WJ, Hou W, Fan CF, Jin RH, Feng YM, Wang YC, Yang JK. 2021. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther. 6, 134. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N Eng J Med 382, 727–733. DANA, Dibyendu; PATHAK, Sanjai K. A review of small molecule inhibitors and functional probes of human cathepsin L. Molecules, 2020, 25.3: 698. Dorsch D, Schadt O, Stieber F, Meyring M, Grädler U, Bladt F, Friese-Hamim M, Knühl C, Pehl U, Blaukat A. Identification and optimization of pyridazinones as potent and selective c-Met kinase inhibitors. Bioorg Med Chem Lett. 2015 Apr 1;25(7):1597-602. doi: 10.1016/j.bmcl.2015.02.002. Epub 2015 Feb 16. PMID: 25736998. Chen R, Gao Y, Liu H, Li H, Chen W, Ma J. Advances in research on 3C-like protease (3CLpro) inhibitors against SARS-CoV-2 since 2020. RSC Med Chem. 2022 Oct 27;14(1):9-21. doi: 10.1039/d2md00344a. PMID: 36760740; PMCID: PMC9890616.4 Li CW, Chao TL, Lai CL, Lin CC, Pan MY, Cheng CL, Kuo CJ, Wang LH, Chang SY, Liang PH. Systematic Studies on the Anti-SARS-CoV-2 Mechanisms of Tea Polyphenol-Related Natural Products. ACS Omega. 2024 May 17;9(22):23984-23997. doi: 10.1021/acsomega.4c02392. PMID: 38854515; PMCID: PMC11154727 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95911 | - |
| dc.description.abstract | 腸病毒71型(EV71)曾在台灣引發多次疫情,過去造成數千名兒童死亡,目前仍無有效藥物治療。在EV71中,3C蛋白酶(3Cpro)是一種高度保守的半胱氨酸蛋白酶,具有非典型的Cys-His-Glu催化三聯體,對病毒複製過程中的多蛋白加工至關重要。SARS-CoV-2中的3C樣蛋白酶(3CLpro)負責將病毒多蛋白裂解為成熟的非結構蛋白(NSPs)。3CLpro因其結構類似於小RNA病毒的3C蛋白酶(3Cpro)而得名。在本論文中,我們旨在從已知的3CLpro抑制劑中識別3Cpro抑制劑,因此在本研究中,我首先建立3C蛋白酶的活性量測系統來篩選3C樣蛋白酶的抑制劑及測量他們對3C樣蛋白酶及3C蛋白酶的半抑制常數。 然而,篩選出一些含鋅配合物的胜肽類似抑制劑能同時有效抑制3CLpro和3Cpro。最後,電腦模擬用來釐清他們的結合樣式。 | zh_TW |
| dc.description.abstract | Enterovirus 71 (EV71) that caused outbreaks in Taiwan and killed thousands of children in the past, and currently, there is no effective drug against it. In EV71, 3C protease (3Cpro) is a highly conserved cysteine protease, featuring a non-canonical Cys-His-Glu catalytic triad essential for polyprotein processing during virus replication. The 3C-like protease (3CLpro) in SARS-CoV-2 is responsible to cleave the viral polyproteins into mature non-structural protein (NSPs). 3CLpro got its name as analogous to the picornavirus 3C protease (3Cpro) in structures. In this thesis, we aimed to identify 3Cpro inhibitors from the known 3CLpro inhibitors. I set up assay for 3Cpro to screen known 3CLpro inhibitors and measured their IC50 values against 3CLpro and 3Cpro. However, I screen out some peptide-like inhibitors with Zinc complexes that could effectively inhibit both 3CLpro and 3Cpro. Finally, computer modeling was used to rationalized their binding modes | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-24T16:11:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-24T16:11:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………i
誌謝…………………………………………………………………………ii 中文摘要……………………………………………………………………iii Abstract……………………………………………………………………xi Abbreviations………………………………………………………………xii 1. Introduction………………………………………………………………1 2. Materials and Methods……………………………………………………3 2.1 Materials……………………………………………………………3 2.2 EV71 3Cpro plasmid construction………………………………………4 2.3 SARS-CoV-2 3CLpro plasmid construction………………………………5 2.4 EV71 3Cpro expression and purification…………………………………5 2.5 SARS-CoV-2 3CLpro expression and purification………………………6 2.6 Kinetic and inhibition assays of EV71 3Cpro and SARS-CoV-2 3CLpro……8 2.7 Centrifugation experiments…………………………………………10 2.8 Molecular docking…………………………………………………10 3. Results…………………………………………………………………12 3.1 Expression and purification of the recombinant EV71 3Cpro……………12 3.2 Expression and purification of the recombinant SARS-CoV-2 3CLpro……12 3.3 Measurements of the kinetic constants for SARS-CoV-2 3CLpro and EV71 3Cpro…………………………………………………………………13 3.4 3CLpro peptidomimetic inhibitor nirmatrelvir failed to inhibit EV71 3Cpro…………………………………………………………………13 3.5 Inhibition of SARS-CoV-2 3CLpro by the compounds from Dr. Jiun-Jie Shie with aldehyde or α,β-unsaturated ester warhead……………………………14 3.6 Inhibition of SARS-CoV-2 3CLpro by the compounds from Dr. Jiun-Jie Shie with β-keto ester warhead………………………………………………15 3.7 Inhibition of SARS-CoV-2 3CLpro by the compounds from Dr. Jiun-Jie Shie with zinc cyclic complex ………………………………………………………16 3.8 Inhibition of EV71 3Cpro by the compounds from Dr. Jiun-Jie Shie with different warheads…………………………………………………16 3.9 Binding modes of JJS394 with EV71 3Cpro and SARS-CoV-2 3CLpro……17 3.10 Time-dependent inhibition of JJS394 against EV71 3Cpro and SARS-CoV-2 3CLpro…………………………………………………………………17 3.11 Activities of EV71 3Cpro and SARS-CoV-2 3CLpro after adding the inhibitor and being centrifuged……………………………………………………18 3.12 Screening of the FDA-approved drugs on inhibiting SARS-CoV-2 3CLpro and/or EV71 3Cpro………………………………………………………19 3.13 Binding mode of Tepotinib with EV71 3Cpro…………………………20 3.14 Identification of SARS-CoV-2 3CLpro inhibitors by virtual screening……21 3.15 Screening the polyphenols and the related natural products for inhibiting SARS-CoV-2 3CLpro and/or EV71 3Cpro…………………………………21 3.16 Binding mode of Theaflavin-3'-gallate with the substrate-binding pockets of EV71 3Cpro and SARS-CoV-2 3CLpro……………………………………23 3.17 Comparing binding modes of Theaflavin-3'-gallate, Theaflavin-3-gallate and TF3 with the substrate-binding pocket of SARS-CoV-2 3CLpro………………24 3.18 Screening other natural products on inhibiting SARS-CoV-2 3CLpro and/or EV71 3Cpro……………………………………………………………24 4. Discussion………………………………………………………………25 5. Tables……………………………………………………………………30 Table 1. IC50 value of nirmatrelvir (a positive control) against SARS-CoV-2 3CLpro but not EV71 3Cpro………………………………………………30 Table 2. IC50 values of the synthetic compounds from Dr. Jiun-Jie Shie against SARS-CoV-2 3CLpro and/or EV71 3Cpro…………………………………32 Table 3. The percentages of EV71 3Cpro/ SARS-CoV-2 3CLpro activities left after adding JJS394 before and after centrifugation . …………………………………33 Table 4. None of the FDA-approved drugs previously identified to inhibit SARS-CoV-2 3CLpro against EV71 3Cpro..………………………………………………34 Table 5. IC50 values of FDA-approved drugs from GOLDEN_LIB database after virtual screening against SARS-CoV-2 3CLpro or EV71 3Cpro …………………35 Table 6. Inhibition of SARS-CoV-2 3CLpro by other compounds obtained by virtual screening . ………………………………………………………………36 Table 7. IC50 values of tea polyphenols and related natural products against SARS-CoV-2 3CLpro and/or EV71 3Cpro ………………………………………………37 Table 8. IC50 values of the natural products against SARS-CoV-2 3CLpro ………39 6.Figures …………………………………………………………………40 Figure 1. Cloning plasmid and the amino acid sequence of the recombinant EV71 3Cpro…………………………………………………………………40 Figure 2. Construction of the SARS-CoV-2 3CLpro expression plasmid………43 Figure 3. The polyprotein compositions of 3Cpro and 3CLpro…………………44 Figure 4. The assay protocol for monitoring activities of 3Cpro and 3CLpro……46 Figure 5. Illustration of the centrifuge experimental procedure………………47 Figure 6. The crystal structure of EV71 3Cpro (PDB: 5BPE) …………………48 Figure 7. The crystal structure of SARS-CoV-2 3CLpro (PDB: 7P35) …………49 Figure 8. SDS-PAGE analysis for the NiNTA purification of the recombinant EV71 3Cpro……………………………………………………………50 Figure 9. Gel filtration column chromatography of EV71 3Cpro………………51 Figure 10. SDS-PAGE analysis for purification of the recombinant SARS-CoV-2 3CLpro…………………………………………………………………52 Figure 11. SDS-PAGE analysis for the purification of the tag-free SARS-CoV-2 3CLpro…………………………………………………………………53 Figure 12. Gel filtration column chromatography of SARS-CoV-2 3CLpro……54 Figure 13. Determination of the kinetic constants for the recombinant EV71 3Cpro and SARS-CoV-2 3CLpro…………………………………………………55 Figure 14. The chemical structure of nirmatrelvir and its SARS-CoV-2 3CLpro inhibitory profile………………………………………………………57 Figure 15. Inhibition of SARS-CoV-2 3CLpro by the inhibitors from Dr. Jiun-Jie Shie……………………………………………………………………58 Figure 16. Inhibition potency for SARS-CoV-2 3Cpro and structures of JJS compounds……………………………………………………………61 Figure 17. Inhibition of EV71 3Cpro by the compounds from Dr. Jiun-Jie Shie…63 Figure 18. No time-dependent inhibition of JJ394 on 3Cpro and 3CLpro…………64 Figure 19. No time-dependent inhibition of JJ386 on 3CLpro…………………66 Figure 20. The remained activity of EV71 3Cpro inhibited by 1 μM JJS394……67 Figure 21. The remained activity of SARS-CoV-2 3CLpro inhibited by 400 nM JJS394…………………………………………………………………68 Figure 22. The remained activity of SARS-CoV-2 3CLpro inhibited by 50 nM JJS386…………………………………………………………………69 Figure 23. Molecular Docking of JJS394 in EV71 3Cpro and SARS-CoV-2 3CLpro…………………………………………………………………70 Figure 24. Sennoside B inhibited SARS-CoV-2 3CLpro……………………71 Figure 25. Tepotinib inhibited EV71 3Cpro…………………………………72 Figure 26. Binding modes of Tepotinib……………………………………73 Figure 27. Inhibition of SARS-CoV-2 3CLpro by other compounds obtained from virtual screening………………………………………………………75 Figure 28. Chemical structures of the selected natural products tested ………77 Figure 29. Inhibition of SARS-CoV-2 3CLpro by the tea polyphenol-related nature products………………………………………………………………81 Figure 30. Inhibition of EV71 3Cpro by Theaflavin-3’-gallate………………82 Figure 31. Molecular docking of Theaflavin-3'-gallate in EV71 3Cpro and SARS-CoV-2 3CLpro and 2D graphs of the binding modes of Theaflavin-3'-gallate, Theaflavin-3-gallate, and TF3 in 3CLpro……………………………………83 Figure 32. Inhibition of SARS-CoV-2 3CLpro by other nature products…………85 Reference …………………………………………………………………86 | - |
| dc.language.iso | en | - |
| dc.title | 從新冠病毒的3C樣蛋白酶抑制劑來發現71型腸病毒的3C蛋白酶抑制劑 | zh_TW |
| dc.title | Identification of enterovirus 71 3C protease inhibitors from SARS-CoV-2 3C-like protease inhibitors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張淑媛;謝俊結 | zh_TW |
| dc.contributor.oralexamcommittee | Sui-Yuan Chang;Jiun-Jie Shie | en |
| dc.subject.keyword | 新冠病毒,71型腸病毒,3C樣蛋白酶,3C蛋白酶,抑制劑, | zh_TW |
| dc.subject.keyword | Coronavirus,Human enterovirus 71,3C-like protease,3C protease,inhibitor, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202401554 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-09 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科學研究所 | - |
| dc.date.embargo-lift | 2027-07-31 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
