Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95897
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱祈榮zh_TW
dc.contributor.advisorChyi-Rong Chiouen
dc.contributor.author饒翊馨zh_TW
dc.contributor.authorYi-Hsin Raoen
dc.date.accessioned2024-09-19T16:15:34Z-
dc.date.available2024-12-27-
dc.date.copyright2024-09-19-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation王鑫、許玲玉、白中科、王曉鴻。(2007)。臺灣劣化土地環境(採礦跡地)之鑑定、整治及復育策略研究(Ⅰ)。行政院國家科學委員會專題研究計畫 成果報告。(計畫編號:NSC 95-2621-Z-002-007)。
呂佳陵(2004)。臺灣北部福山地區亞熱帶雨林喬木小苗短期動態之研究。國立臺灣大學。http://dx.doi.org/10.6342/NTU.2004.00671
李佩吟。(2015)。國有林出租作為礦業用地之現況簡介。臺灣林業,41(6),20-25。
私立東海大學。(2010)。人工林疏伐之地被植物監測與分析。行政院農業委員會林務局委託研究計畫系列(計畫編號:99-00-5-03)
林如怡。(1999)。福山地區林木種子苗更新與微氣候的關係。國立東華大學碩士論文。https://hdl.handle.net/11296/796rt5
林國銓、杜清澤、徐嘉君、黃菊美。(2006)。六龜試驗林亞熱帶天然闊葉林地上部碳貯存量之估算。國立臺灣大學生物資源暨農學院實驗林研究報告,153-164。
邱立文、黃群修、吳俊奇、謝小恬。(2015)。第4次全國森林資源調查成果概要。臺灣林業, 41(4): 3-13. https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A15040943
邱清安、徐憲生。(2015)。面對退化地之抉擇:被動的自生演替恢復vs.主動的人為生態復育。林業研究季刊,37(2),85-98。https://www.airitilibrary.com/Article/Detail?DocID=16068351-201506-201509020009-201509020009-85-98
施信宏。(2014)。淺論礦業法中 [核定礦業用地] 之實質意涵. 臺灣鑛業, 66(4), 11-18。
范素瑋。(2014)。林下的地被層是阻礙?還是幫助森林更新?. 林業研究專訊, 21(5), 25-28。
陳志豪、鄭旭涵、彭心燕、林信輝。(2010)。崩塌地植生復育適用評估因子之分析研究。中華水土保持學報, 41(4): 296-307 (2010)Journal of Chinese Soil and Water Conservation, 41 (4):296-307.
趙國容、李佾儒、宋國彰、趙偉村與江智民。(2022)。水土保持樹種碳存量估算參數之資料庫。中華水土保持學報,53(2),100-110。
劉昌志、李一恒、吳郁棠(2022)。2022年北太平洋西部海域颱風之氣候分析。氣象學報, 46(2), 105-120.交通部中央氣象署https://www.cwa.gov.tw/Data/climate/Watch/ty/ty-monitor_2023-0.pdf
A. Shalaby (2012). Assessment of urban sprawl impact on the agricultural land in the Nile Delta of Egypt using remote sensing and digital soil map. Int. J. Environ. Sci., 1 (2012), pp. 253-262.
Ah Koo, K., & Uk Park, S. (2022). The effect of interplays among climate change, land-use change, and dispersal capacity on plant redistribution. Ecological Indicators, 142, 109192. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.109192
Carabassa, V., Montero, P., Crespo, M., Padró, J.-C., Pons, X., Balagué, J., Brotons, L., & Alcañiz, J. M. (2020). Unmanned aerial system protocol for quarry restoration and mineral extraction monitoring. Journal of Environmental Management, 270, 110717. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110717
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., ... & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99.
Convention on Biological Diversity (CBD), 2017. Green Bonds. https://www.cbd.int/financial/ greenbonds.shtml
Dixon, R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler and J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185-195
Faccion, G., Alves, A. M., do Espírito-Santo, M. M., Silva, J. O., Sanchez-Azofeifa, A., & Ferreira, K. F. (2021). Intra- and interspecific variations on plant functional traits along a successional gradient in a Brazilian tropical dry forest. Flora, 279, 151815. https://doi.org/https://doi.org/10.1016/j.flora.2021.151815
Gatica-Saavedra, P., Echeverría, C. and Nelson, C.R. (2017), Ecological indicators for assessing ecological success of forest restoration: a world review. Restor Ecol, 25: 850-857. https://doi.org/10.1111/rec.12586
Gentili, R., Casati, E., Ferrario, A., Monti, A., Montagnani, C., Caronni, S., & Citterio, S. (2020). Vegetation cover and biodiversity levels are driven by backfilling material in quarry restoration. CATENA, 195, 104839. https://doi.org/https://doi.org/10.1016/j.catena.2020.104839
Holmberg, M., Junttila, V., Schulz, T., Grönroos, J., Paunu, V.-V., Savolahti, M., Minunno, F., Ojanen, P., Akujärvi, A., Karvosenoja, N., Kortelainen, P., Mäkelä, A., Peltoniemi, M., Petäjä, J., Vanhala, P., & Forsius, M. (2023). Role of land cover in Finland’s greenhouse gas emissions. Ambio, 52(11), 1697-1715. https://doi.org/10.1007/s13280-023-01910-8
Király, É., & Borovics, A. (2024). Carbon sequestration of Hungarian forests by management system and protection status. Trees, Forests and People, 15, 100511. https://doi.org/https://doi.org/10.1016/j.tfp.2024.100511
Király, É., & Borovics, A. (2024). Carbon sequestration of Hungarian forests by management system and protection status. Trees, Forests and People, 15, 100511. https://doi.org/https://doi.org/10.1016/j.tfp.2024.100511
Lin, J.-C.; Chiou, C.-R.; Chan, W.-H.; Wu, M.-S. Valuation of Forest Ecosystem Services in Taiwan. Forests 2021, 12, 1694. https://doi.org/10.3390/f12121694
Londe, V., Turini Farah, F., Ribeiro Rodrigues, R., & Roberto Martins, F. (2020). Reference and comparison values for ecological indicators in assessing restoration areas in the Atlantic Forest. Ecological Indicators, 110, 105928. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.105928
Mariye, M., Jianhua, L., Maryo, M., Tsegaye, G., & Aletaye, E. (2024). Remote sensing and GIS-based study of land use/cover dynamics, driving factors, and implications in southern Ethiopia, with special reference to the Legabora watershed. Heliyon, 10(1), e23380. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e23380
McDonald T, Gann GD, Jonson J, and Dixon KW (2016) International standards for the practice of ecological restoration – including principlesand key concepts. Society for Ecological Restoration, Washington, D.C.
Mhaske, S. N., Pathak, K., Dash, S. S., & Nayak, D. B. (2021). Assessment and management of soil erosion in the hilltop mining dominated catchment using GIS integrated RUSLE model. Journal of Environmental Management, 294, 112987. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112987
Monk, C. D., G. I. Child and S. A. Nicholson. 1970. Biomass, litter and leaf surface area estimates of an oak-hickory forest. Oikos 21:138-141.
P. Shrivastava, R. Kumar. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteriaas one of the tools for its alleviation. Saudi J. Biol. Sci., 22 (2015), pp. 123-131, 10.1016/j.sjbs.2014.12.001
Packham, J. R.and D. J. Harding. 1982. Ecology of woodland processes. Edward Arnold. London, England. 262 p
Pidwirny, M. (2006). "Plant Succession". Fundamentals of Physical Geography, 2nd Edition. Date Viewed. http://www.physicalgeography.net/fundamentals/9i.html
Protocol, Monitoring, 2013. Monitoring Protocol for Forest Restoration Programs and Projects [WWW Document]. Pact Restoring Atl. For. http://www.pactomataatlantica.org.br/publicacoes (accessed 10.10.18).
Sala et al., 2000, O.E. Sala, F.S. Chapin, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker, D.H. Wall. Global biodiversity scenarios for the year 2100. Science, 287 (2000), pp. 1770-1774
Seidl, A., Cumming, T., Arlaud, M., Crossett, C., & van den Heuvel, O. (2024). Investing in the wealth of nature through biodiversity and ecosystem service finance solutions. Ecosystem Services, 66, 101601. https://doi.org/https://doi.org/10.1016/j.ecoser.2024.101601
Son, Y., I. H. Park, M. J. Yi, H. O. Jin, D. Y. Kim, R. H. Kim and J. O. Hwang. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecol. Res. 19:21-28
Souza, B. A., & Sánchez, L. E. (2018). Biodiversity offsets in limestone quarries: Investigation of practices in Brazil. Resources Policy, 57, 213-223. https://doi.org/https://doi.org/10.1016/j.resourpol.2018.03.007
Young, R.E., Gann, G.D., Walder, B., Liu, J., Cui, W., Newton, V., Nelson, C.R., Tashe, N., Jasper, D., Silveira, F.A.O., Carrick, P.J., Hägglund, T., Carlsén, S. and Dixon, K. (2022), International principles and standards for the ecological restoration and recovery of mine sites. Restor Ecol, 30: e13771. https://doi.org/10.1111/rec.13771
Yu, L., Fan, L., Ciais, P., Xiao, J., Frappart, F., Sitch, S., Chen, J., Xiao, X., Fensholt, R., Chang, Z., Fang, H., Li, X., Cui, T., Ma, M., & Wigneron, J.-P. (2024). Forest degradation contributes more to carbon loss than forest cover loss in North American boreal forests. International Journal of Applied Earth Observation and Geoinformation, 128, 103729. https://doi.org/https://doi.org/10.1016/j.jag.2024.103729
Z. Dai, X. Feng, C. Zhang, L. Shang, G. Qiu. (2013). Assessment of mercury erosion by surface water in Wanshan mercury mining area. Environ. Res., 125, pp. 2-11, 10.1016/j.envres.2013.03.014
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95897-
dc.description.abstract本研究旨在運用量化指標評估台灣水泥和平礦區的生態復育成果,研究內容分為三大部分:土地利用變遷分析、樣區調查及生態復育評級。第一部分以地理資訊系統技術和InVEST模型分析歷年土地利用變遷及植被恢復情況;其次,以現地調查天然林和復育樣區的組成及植被狀況;第三部分則根據調查結果對應所訂定之生態恢復指標,評估不同階段復育之成效,並提出復育更新之建議。研究結果顯示,礦區土地利用變遷主要以森林面積變化為主,2002年至2024年間,高密度森林則從11.6%增加到88.4%,復育區的土地利用比例從1.0%增加到53.4%,並輔以NDVI判釋之結果顯示,復育之植被之覆蓋面積增加,恢復成效初現。而經過現地調查及生態評級後之結果,與天然林樣區有一定差距,復育區在原生種比例、覆蓋度隨著復育年份增加,結果有顯著增加之趨勢,更新種類、非先驅樹種比例也有隨之增加,然在林木密度、物種多樣性、植相組成階段等方面仍需加強,可以人為介入之方式協助其更新。本研究提出的量化指標和方法可為礦區未來生態復育提供參考,促進其朝向自然正向發展。zh_TW
dc.description.abstractThis study aims to evaluate the ecological restoration results of the Taiwan Cement Hoping Mining Area by using quantitative indicators. The research is divided into three main parts: land use change analysis, sample plot surveys, and ecological restoration assessment. The first part uses GIS technology and the InVEST model to analyze historical land use changes and vegetation recovery. The second part involves on-site surveys of the composition and vegetation conditions of natural forests and restored plots. The third part evaluates the effectiveness of different stages of restoration based on the established ecological restoration indicators and provides suggestions for restoration updates. The results show that the main land use change in the mining area is the change in forest area. From 2002 to 2024, high-density forest increased from 11.6% to 88.4%, and the land use proportion of the restoration area increased from 1.0% to 53.4%. Supplemented by NDVI interpretation results, the vegetation cover area of the restored vegetation has increased, showing initial success in recovery. However, the results of on-site surveys and ecological assessments indicate a significant gap compared to natural forest plots. The proportion of native species and coverage in the restoration area has shown a significant increasing trend with the increase in restoration years, with an increase in the variety of species and the proportion of non-pioneer tree species. Nevertheless, tree density, species diversity, and floristic composition stages still need improvement, and human intervention can be employed to assist in the renewal. The quantitative indicators and methods proposed in this study can serve as references for future ecological restoration in mining areas, promoting their development towards a nature-positive direction.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-19T16:15:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-19T16:15:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
誌謝 i
摘要 ii
Abstract iii
目次 v
壹、前言 1
貳、文獻回顧 3
參、材料與方法 11
一、研究框架流程 11
二、 研究範圍(study area) 12
三、 研究方法 15
(一)土地利用變遷分析 15
1. 土地利用變遷矩陣 15
2. 植生恢復變化 17
3. InVEST生態系功能評估 17
(二)樣區調查及碳匯計算方法 18
(三)生態復育成效評估方法 19
肆、結果與討論 26
一、土地利用變遷分析 26
(一)建立判釋結果資料庫 26
(二)研究區整體變化 27
(三)土地利用類型面積「轉入/轉出」趨勢 32
3. 各年份間「轉入/轉出」轉出趨勢 32
(四)植生恢復變化 43
(五)導入inVEST生態服務價值評估 44
二、樣區調查結果 47
(一)調查點位設置 47
(二)天然林樣區調查結果 48
1. 樣區基本資訊 48
2. 林木蓄積量及碳儲存量 49
(三)復育樣區調查結果 50
1. 樣區基本資訊 50
三、生物多樣性指數計算結果 51
(一)參仿生態系評估結果 52
1. 各項指標評估結果 52
2. 物種重要值指數(importance value index, IVI) 54
(二)復育區評估結果 56
1. 各項指標評估結果 56
2. 物種重要值指數(importance value index, IVI) 66
(三)討論與比較 67
1. 天然林與復育區樣區 67
2. 不同階層復育區 67
伍、結論與建議 71
一、結論 71
(一)土地利用變遷分析 71
(二)生態復育成果評估 72
二、生態指標評估之建議 72
參考文獻 74
柒、附錄 78
-
dc.language.isozh_TW-
dc.subject礦區復育zh_TW
dc.subject生態恢復輪zh_TW
dc.subject植生恢復zh_TW
dc.subject土地利用變遷zh_TW
dc.subjectMining Area Restorationen
dc.subjectLand Use Changeen
dc.subjectVegetation Recoveryen
dc.subjectEcological Restoration Wheelen
dc.title應用量化指標評估礦區生態復育成果—以台灣水泥和平礦區為例zh_TW
dc.titleApplying quantitative indicators to evaluate ecological restoration results in mining areas - A Case Study of Taiwan Cement Hoping Mining Areaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林俊成;董景生zh_TW
dc.contributor.oralexamcommitteeJiunn-Cheng Lin;Gene-Sheng Tungen
dc.subject.keyword土地利用變遷,植生恢復,生態恢復輪,礦區復育,zh_TW
dc.subject.keywordLand Use Change,Vegetation Recovery,Ecological Restoration Wheel,Mining Area Restoration,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202403193-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2029-08-14-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-14
7.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved