Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世芳zh_TW
dc.contributor.advisorShih-Fang Chenen
dc.contributor.author林煒翔zh_TW
dc.contributor.authorWei-Hsiang Linen
dc.date.accessioned2024-09-18T16:20:28Z-
dc.date.available2024-09-19-
dc.date.copyright2024-09-18-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation江裕春(2010)。龍潭椪風茶文化研究-在地知識的傳承(碩士論文)。國立高雄餐旅學院台灣飲食文化產業研究所。
經濟部(2023)。工業產銷存動態調查:茶類飲料銷售量統計(102年-112年)。經濟部統計處。
鄭混元(2010)。行政院農業部茶及飲料作物改良場101年度科技計畫研究報告。茶園新栽培管理模式之研究。
劉秋芳(2019)。行政院農業部茶及飲料作物改良場101年度科技計畫研究報告。茶園新栽培管理模式之研究。
劉瑋婷(1993)。利用溫度單位劃分水稻生育期之可行性研究。花蓮區農業改良場研究彙報(9), 109-127。
Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea. Symmetry, 11(2), 240.
Bojie, Z., Dong, W., Weizhong, S., Yu, L., & Ke, W. (2019). Research on tea bud identification technology based on HSI/HSV color transformation. In 2019 6th International Conference on Information Science and Control Engineering (ICISCE), 511-515.
Cao, M., Fu, H., Zhu, J., & Cai, C. (2022). Lightweight tea bud recognition network integrating GhostNet and YOLOv5. Mathematical Biosciences and Engineering: MBE, 19(12), 12897-12914.
Costa, L., Ampatzidis, Y., Rohla, C., Maness, N., Cheary, B., & Zhang, L. (2021). Measuring pecan nut growth utilizing machine vision and deep learning for the better understanding of the fruit growth curve. Computers and Electronics in Agriculture, 181, 105964.
Chen, P., Yuan, H., & Shu, X. (2008). Forecasting crime using the arima model. In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 5, 627-630.
Chen, Y. T., & Chen, S. F. (2020). Localizing plucking points of tea leaves using deep convolutional neural networks. Computers and Electronics in Agriculture, 171, 105298.
Chimmula, V. K. R., & Zhang, L. (2020). Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals, 135, 109864.
De Wit, C. T. (1965). Photosynthesis of Leaf Canopies (Agricultural Research Report No. 663). Pudoc, Wageningen.
Food and Agriculture Organization Statistical Database. (2022). Available at: https://www.fao.org/3/cc0238en/cc0238en.pdf. (Accessed on 11 June 2023).
Guo, S., Yoon, S.-C., Li, L., Wang, W., Zhuang, H., Wei, C., Liu, Y., & Li, Y. (2023). Recognition and positioning of fresh tea buds using YOLOv4-lighted+ ICBAM model and RGB-D sensing. Agriculture, 13(3), 518.
Gao, Z., Gao, W., & Chang, N. B. (2011). Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. International Journal of Applied Earth Observation and Geoinformation, 13(3), 495-503.
Hanley, M., Fenner, M., Whibley, H., & Darvill, B. (2004). Early plant growth: identifying the end point of the seedling phase. New Phytologist, 163(1), 61-66.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Horie, T., Yajima, M., & Nakagawa, H. (1992). Yield forecasting. Agricultural Systems, 40(1-3), 211-236.
Holzman, M. E., Rivas, R., & Piccolo, M. C. (2014). Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28, 181-192.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).
Jiang, W. (2021). Applications of deep learning in stock market prediction: recent progress. Expert Systems with Applications, 184, 115537.
Kang, M., Ting, C.M., Ting, F. F., & Phan, R. (2023). CST-YOLO: A Novel Method for Blood Cell Detection Based on Improved YOLOv7 and CNN-Swin Transformer. arXiv preprint arXiv:2306.14590.
Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2017). LSTM fully convolutional networks for time series classification. IEEE Access, 6, 1662-1669.
Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., & Zalidis, G. (2018). Contribution of remote sensing on crop models: a review. Journal of Imaging, 4(4), 52.
Liu, F., Wang, S., Pang, S., & Han, Z. (2024). Detection and recognition of tea buds by integrating deep learning and image-processing algorithm. Journal of Food Measurement and Characterization, 18(4), 2744-2761.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115-133.
Monteith, J. L. (1986). How do crops manipulate water supply and demand?. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 316(1537), 245-259.
Permanasari, A. E., Hidayah, I., & Bustoni, I. A. (2013). SARIMA (Seasonal ARIMA) implementation on time series to forecast the number of Malaria incidence. In 2013 International Conference on Information Technology and Electrical Engineering (ICITEE), 203-207.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788).
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 91-99.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
Shao, P., Wu, M., Wang, X., Zhou, J., & Liu, S. (2018). Research on the tea bud recognition based on improved k-means algorithm. In MATEC Web of Conferences, 232, 03050.
Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040-53065.
Smith, R., Harvey, F., & Cannell, M. (1990). Pattern of tea shoot growth. Experimental Agriculture, 26(2), 197-208.
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018). A comparison of ARIMA and LSTM in forecasting time series. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1394-1401). IEEE.
Sharma, A. (2022). Economic crises and plantation labour: Changing contours of women’s work in the tea sector. In T. Sinha & A. Sharma (Eds.), Gendered inequalities in paid and unpaid work of women in India (pp. 255-277). Springer. https://doi.org/10.1007/978-981-16-9383-6_13
Tang, X., Wu, X., Zhang, F., & Gu, J. (2013). Study on tea bud recognition based on threshold segmentation. Agricultural Equipment & Technology, 39(6), 10-14. https://doi.org/10.16768/j.issn.1004-874X.2022.07.007
Tjørve, K. M., & Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PloS One, 12(6), e0178691. https://doi.org/10.1371/journal.pone.0178691
Tzutalin. (2015). LabelImg (version 1.8.1). Git https://github.com/tzutalin/labelImg; 2020 (accessed 25 January 2021).
Vagropoulos, S. I., Chouliaras, G. I., Kardakos, E. G., Simoglou, C. K., & Bakirtzis, A. G. (2016). Comparison of SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting. In 2016 IEEE International Energy Conference (ENERGYCON) (pp. 1-6).
Welch, G., & Bishop, G. (1995). An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill, Department of Computer Science.
Wang, T., Zhang, K., Zhang, W., Wang, R., Wan, S., Rao, Y., Jiang, Z., & Gu, L. (2021). Tea picking point detection and location based on Mask-RCNN. Information Processing in Agriculture, 10(2), 267-275.
Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7464-7475).
Wang, C. Y., Yeh, I. H., & Liao, H. Y. M. (2024). YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv preprint arXiv:2402.13616.
Xu, W., Zhao, L., Li, J., Shang, S., Ding, X., & Wang, T. (2022). Detection and classification of tea buds based on deep learning. Computers and Electronics in Agriculture, 192, 106547.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95846-
dc.description.abstract茶葉是臺灣重要的農產品之一,飲料市場的蓬勃發展更促進茶產業的持續成長。農產業近年來面臨嚴重缺工的困境,茶產業亦深受衝擊。結合感測器、物聯網、影像判別的智慧農業技術開發,可協助農民更便利及有效率地管理場域及生長狀況。對茶農來說,若可即時監測茶樹生長狀態即可減少巡園人力;而準確地判斷重要的生長期及可能的採收時機,更對給水、給肥、防治管理,或採收人力安排更是大有幫助。因此本研究旨在開發茶芽生長關鍵期預測模型,結合田間監測模組以蒐集茶樹影像及環境資訊,並利用深度學習模型識別茶芽數量。透過生長預測模型來推估未來茶樹生長趨勢,以判別茶樹的生長階段,快速生長期及最佳採收期。
本研究主要分為三個部分組成:田間IoT監測模組、茶芽識別模型及茶芽生長預測模型。首先,IoT感測模組由溫濕度感測器、Raspberry Pi 和Raspberry Pi camera組成。透過模組蒐集 2020 年至 2023 年桃園、南投、屏東等三區域茶園中,臺茶12號、臺茶18號與青心烏龍三品種之生長影像約3000餘張。接續則應用深度學習方法開發茶芽識別模型,辨識影像中之茶芽數量。透過取得多組完整茶季之茶樹生長數據,搭配茶芽識別結果,與在地氣象站預報資訊,即可採用時間序列模型建立茶芽生長預測模型。利用生長曲線中的趨勢特徵,以Gompertz模型擬合曲線後,則可進一步預測關鍵的快速生長日期與最佳採收日期。
試驗結果顯示,茶芽識別模型以YOLOv9 (You Only Look Once v9)架構於驗證集mAP達到0.878,於測試集達到0.562較佳。針對六季不同品種茶樹進行茶芽識別與計數,預測與實際值間數量之平均絕對誤差分別為春茶 6.55、夏茶 5.99,與秋茶7.89。此結果在數量的誤差少於10,已具有可取代的應用潛力。茶芽生長預測模型則以LSTM-FCN (Long Short-Term Memory Fully Convolutional Network) 表現最佳,於三季測試中,快速生長期及最佳採收期之預測誤差均在± 2天內。透過茶芽生長模型預測出的未來生長趨勢,亦可瞭解採收時的茶芽數量,於三季測試中,預測與實際數量的誤差皆在10個茶芽內,此結果可為日後農民的採收作業提供產量評估參考。本研究結果成功基於YOLOv9模型架構建立茶芽識別與計數模型,並透過識別出的茶芽數量建立生長預測模型,實現茶樹生長關鍵期預測。同時該模型也提供產量預測的客觀參考,期望有助於提高茶農的管理效率和收益。
zh_TW
dc.description.abstractTea is one of Taiwan’s essential agricultural products, and the booming development of the beverage market has promoted the continued growth of the tea industry. However, the agricultural industry has faced serious labor shortages in recent years, significantly affecting the tea industry. The development of smart agricultural technology that integrates sensors, the Internet of Things, and image recognition can help farmers manage fields and monitor growth conditions more conveniently and efficiently. For tea farmers, real-time monitoring of tea growth can reduce the labor required for patrolling the plantation. Accurately identifying critical growth periods and potential harvest times can also improve arrangements for water supply, fertilization, pest control, and harvesting labor. This study aims to develop an auxiliary system combining field monitoring modules to collect tea images and environmental information, using a deep learning model to identify the number of tea buds. The growth predictive model estimates the future growth trend of tea to determine their growth stage, rapid growth period, and optimal harvest day.
The study is divided into three parts: the field IoT monitoring module, the tea bud detection model, and the tea bud growth predictive model. The IoT sensing module includes a temperature and humidity sensor, a Raspberry Pi, and a Raspberry Pi camera. This module collected more than 3,000 images of the growth of TTES No. 12, TTES No. 18, and Chin-Shin Oolong from tea plantations in Taoyuan, Nantou, and Pingtung from 2020 to 2023. The deep learning method developed a tea bud recognition model to identify the number of tea buds in the images. By obtaining multiple sets of tea growth data for complete tea seasons and combining these with tea bud identification results and local weather station forecasts, a time series model was used to establish a tea bud growth predictive model. The trend characteristics in the growth curve were analyzed and fitted with reciprocal exponential and Gompertz models to predict critical rapid growth period and optimal harvest days.
The experimental results of this study demonstrate that the tea bud detection model, utilizing the YOLOv9 (You Only Look Once v9) architecture, achieved a mAP of 0.878 on the verification set and 0.562 on the testing set. For tea bud detection and counting of different tea varieties in six seasons, the mean absolute error (MAE) between the predicted and actual tea bud counts was 6.55 for spring tea, 5.99 for summer tea, and 7.89 for autumn tea. With a count error of less than 10, this model demonstrates potential for practical application. The tea bud growth predictive model performed best with LSTM-FCN (Long Short-Term Memory Fully Convolutional Network). In the three-season test, the prediction errors for the rapid growth day and the optimal harvest day were within ± 2 days. The future growth trend predicted by the growth predictive model also closely matched the actual number of tea buds at harvest, with an error of within 10 tea buds in the three-season test. This result can guide farmers’ harvesting operations and provide a reference for yield evaluation. This study successfully established a tea bud identification and counting model based on the YOLOv9 model architecture and a growth prediction model based on the identified tea bud counts. The models accurately predicted the critical periods of tea tree growth and provided an objective reference for yield prediction, potentially improving the management efficiency and profitability of tea farmers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:20:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-18T16:20:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
ABBREVIATIONS xi
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Objectives 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Introduction to Tea Plantation Management 4
2.2 Application of Tea Bud Identification 5
2.2.1 Image Processing Methods 5
2.2.2 Deep Learning Methods 6
2.2.3 Deep Learning Algorithm 9
2.2.4 Object Detection 10
2.3 Growth Pattern Development 11
2.3.1 Tea Tree Production Forecasting Methods 11
2.3.2 Growth Predictive Model 13
2.3.3 Analysis of Crop Growth 14
CHAPTER 3 MATERIALS AND METHODS 15
3.1 Field Image Collection and Dataset 15
3.2 Image Annotation 18
3.3 Tea Bud Detection Models Architecture 20
3.3.1 Faster R-CNN 20
3.3.2 YOLOv7 21
3.3.3 YOLOv9 23
3.3.4 Data Augmentation Method 24
3.3.5 Experimental Environment and Training Parameters 25
3.3.6 Evaluation Metrics for Tea Bud Detection Models 26
3.4 Growth Curve Predictive Models 28
3.4.1 Predictive Models Dataset 28
3.4.2 Missing Data Imputation 31
3.4.3 SARIMAX 33
3.4.4 LSTM 35
3.4.5 LSTM-FCN 36
3.4.6 Evaluation Metrics for Growth Curve Predictive Models 38
3.5 Determination of the Critical Period for Tea 39
CHAPTER 4 RESULTS AND DISCUSSION 41
4.1 Tea Bud Detection Model Performance 41
4.1.1 Discussion on Tea Buds Identification 43
4.1.2 Data Analysis of Tea Bud Recognition 46
4.2 Missing Value Compensation Results for Tea Bud Growth Curve 49
4.3 Results for the Earliest Appropriate Forecast Day 50
4.4 Growth Curve Predictive Model Performance 52
4.5 Discussion on Critical Days Errors 58
4.6 Production Forecast during Harvest Day 60
CHAPTER 5. CONCLUSION AND FUTURE WORK 62
5.1 Conclusion 62
5.2 Future Work 64
REFERENCES 65
-
dc.language.isoen-
dc.title應用深度學習演算法於茶芽生長監測與關鍵期預測zh_TW
dc.titleApplication of Deep Learning Algorithm in Tea Bud Growth Monitoring and Critical Date Predictionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林達德;林書妍;林秀橤zh_TW
dc.contributor.oralexamcommitteeTa-Te Lin;Shu-Yen Lin;Shiou-Ruei Linen
dc.subject.keyword茶芽識別,YOLOv9,LSTM-FCN,生長監測,採收期預測,zh_TW
dc.subject.keywordtea bud identification,YOLOv9,LSTM-FCN,growth monitoring,harvest day prediction,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202403972-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2029-08-08-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved