Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95819
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor安形高志zh_TW
dc.contributor.advisorTakashi Angataen
dc.contributor.author白雁蔓zh_TW
dc.contributor.authorBayarmaa Enkhbayaren
dc.date.accessioned2024-09-18T16:12:30Z-
dc.date.available2026-01-01-
dc.date.copyright2024-09-18-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation1. International Agency for Research on Cancer, W.H.O., Edn. 2021 (International Agency for Research on Cancer, World Health Organization, 2021).
2. Institute, T.S.E.a.E.R.S.P.o.t.N.C., Edn. 2022 (The Surveillance Epidemiology and End Results (SEER) Program of the National Cancer Institute; 2022).
3. Hallek, M., Shanafelt, T.D. & Eichhorst, B. Chronic lymphocytic leukaemia. Lancet 391, 1524-1537 (2018).
4. Bosch, F. & Dalla-Favera, R. Chronic lymphocytic leukaemia: from genetics to treatment. Nat Rev Clin Oncol 16, 684-701 (2019).
5. Hamblin, T.J., Davis, Z., Gardiner, A., Oscier, D.G. & Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848-1854 (1999).
6. Stevenson, F.K., Krysov, S., Davies, A.J., Steele, A.J. & Packham, G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood 118, 4313-4320 (2011).
7. Krysov, S. et al. Surface IgM of CLL cells displays unusual glycans indicative of engagement of antigen in vivo. Blood 115, 4198-4205 (2010).
8. Thompson, P.A. et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 127, 303-309 (2016).
9. Rossi, D. et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood 126, 1921-1924 (2015).
10. Kipps, T.J. et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers 3, 16096 (2017).
11. Powell, L.D., Sgroi, D., Sjoberg, E.R., Stamenkovic, I. & Varki, A. Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem 268, 7019-7027 (1993).
12. Gasparrini, F. et al. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J 35, 258-280 (2016).
13. Gross, A.J., Lyandres, J.R., Panigrahi, A.K., Prak, E.T. & DeFranco, A.L. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. J Immunol 182, 5382-5392 (2009).
14. Chen, J. et al. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat Immunol 5, 651-657 (2004).
15. Payelle-Brogard, B. et al. Abnormal levels of the alpha chain of the CD22 adhesion molecule may account for low CD22 surface expression in chronic lymphocytic leukemia. Leukemia 20, 877-878 (2006).
16. Yang, X., Yu, Q., Xu, H. & Zhou, J. Upregulation of CD22 by Chidamide promotes CAR T cells functionality. Sci Rep 11, 20637 (2021).
17. Tirtakusuma, R. et al. Epigenetic regulator genes direct lineage switching in MLL/AF4 leukemia. Blood 140, 1875-1890 (2022).
18. John, B. et al. The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J Immunol 170, 3534-3543 (2003).
19. Lajaunias, F. et al. Differentially regulated expression and function of CD22 in activated B-1 and B-2 lymphocytes. J Immunol 168, 6078-6083 (2002).
20. Andersson, K.B. et al. Characterization of the expression and gene promoter of CD22 in murine B cells. Eur J Immunol 26, 3170-3178 (1996).
21. Wilson, G.L. et al. Genomic structure and chromosomal mapping of the human CD22 gene. J Immunol 150, 5013-5024 (1993).
22. Hu, Y. et al. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia. Clin Cancer Res 27, 2764-2772 (2021).
23. Tuscano, G.A.B.D.P.V.W.J.M.J. Bispecific anti-CD22 T-cell engager efficiently promotes cell-mediated cytotoxicity of lymphoma, leukemia and sarcoma targets. The Journal of Immunology 204 (2020).
24. Pongubala, J.M. et al. PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3' enhancer activity. Mol Cell Biol 12, 368-378 (1992).
25. Brass, A.L., Kehrli, E., Eisenbeis, C.F., Storb, U. & Singh, H. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Dev 10, 2335-2347 (1996).
26. Escalante, C.R. et al. Crystallization and characterization of PU.1/IRF-4/DNA ternary complex. J Struct Biol 139, 55-59 (2002).
27. Pang, S.H. et al. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia 30, 1375-1387 (2016).
28. Mittrucker, H.W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540-543 (1997).
29. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol 7, 773-782 (2006).
30. Di Bernardo, M.C. et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet 40, 1204-1210 (2008).
31. Nadeu, F. et al. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia 32, 645-653 (2018).
32. Havelange, V. et al. IRF4 mutations in chronic lymphocytic leukemia. Blood 118, 2827-2829 (2011).
33. Solomon, L.A., Li, S.K., Piskorz, J., Xu, L.S. & DeKoter, R.P. Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line. BMC Genomics 16, 76 (2015).
34. Su, G.H. et al. Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J 16, 7118-7129 (1997).
35. Ray, D. et al. Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol Cell Biol 12, 4297-4304 (1992).
36. Care, M.A. et al. SPIB and BATF provide alternate determinants of IRF4 occupancy in diffuse large B-cell lymphoma linked to disease heterogeneity. Nucleic Acids Res 42, 7591-7610 (2014).
37. Sokalski, K.M. et al. Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic leukemia. Blood 118, 2801-2808 (2011).
38. Lu, R., Medina, K.L., Lancki, D.W. & Singh, H. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev 17, 1703-1708 (2003).
39. Yongzhen Xia, W.C., Qingsheng Qi, Luying Xun New insights into the QuikChange™ process guide the use of Phusion DNA polymerase for site-directed mutagenesis. Nucleic Acids Research 43 (2015).
40. Reinert, J. et al. Loss of CD22 expression and expansion of a CD22(dim) subpopulation in adults with relapsed/refractory B-lymphoblastic leukaemia after treatment with Inotuzumab-Ozogamicin. Ann Hematol 100, 2727-2732 (2021).
41. Robin R Frank, B., Sucheta Jagan, MS, Laura A Paganessi, MA, Melissa L Larson, M.D., Reem Karmali, MD, Parameswaran Venugopal, MD, Stephanie A. Gregory, MD, Kent W Christopherson, II, PhD CD20, CD22, CD23, but Not CD37 Expression on CD19+ B-Cells Is Altered by Exogenous Factors in a Sub-Population of Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia (CLL/SLL) Patients. Blood 118 (2011).
42. Rogers, J.H. et al. Modeling IKZF1 lesions in B-ALL reveals distinct chemosensitivity patterns and potential therapeutic vulnerabilities. Blood Adv 5, 3876-3890 (2021).
43. van der Stoep, N., Quinten, E., Marcondes Rezende, M. & van den Elsen, P.J. E47, IRF-4, and PU.1 synergize to induce B-cell-specific activation of the class II transactivator promoter III (CIITA-PIII). Blood 104, 2849-2857 (2004).
44. Rao, S., Matsumura, A., Yoon, J. & Simon, M.C. SPI-B activates transcription via a unique proline, serine, and threonine domain and exhibits DNA binding affinity differences from PU.1. J Biol Chem 274, 11115-11124 (1999).
45. Escalante, C.R. et al. Crystal structure of PU.1/IRF-4/DNA ternary complex. Mol Cell 10, 1097-1105 (2002).
46. Yang, Y. et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 21, 723-737 (2012).
47. Shukla, V., Ma, S., Hardy, R.R., Joshi, S.S. & Lu, R. A role for IRF4 in the development of CLL. Blood 122, 2848-2855 (2013).
48. Willis, S.N. et al. Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nat Commun 8, 1426 (2017).
49. Yee, A.A. et al. Cooperative interaction between the DNA-binding domains of PU.1 and IRF4. J Mol Biol 279, 1075-1083 (1998).
50. Pongubala, J.M. et al. Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation. Science 259, 1622-1625 (1993).
51. Eisenbeis, C.F., Singh, H. & Storb, U. PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer. Mol Cell Biol 13, 6452-6461 (1993).
52. Himmelmann, A. et al. PU.1/Pip and basic helix loop helix zipper transcription factors interact with binding sites in the CD20 promoter to help confer lineage- and stage-specific expression of CD20 in B lymphocytes. Blood 90, 3984-3995 (1997).
53. Shah, P.C., Bertolino, E. & Singh, H. Using altered specificity Oct-1 and Oct-2 mutants to analyze the regulation of immunoglobulin gene transcription. EMBO J 16, 7105-7117 (1997).
54. Song, S. et al. OBF1 and Oct factors control the germinal center transcriptional program. Blood 137, 2920-2934 (2021).
55. Shakya, A., Kang, J., Chumley, J., Williams, M.A. & Tantin, D. Oct1 is a switchable, bipotential stabilizer of repressed and inducible transcriptional states. J Biol Chem 286, 450-459 (2011).
56. Ochiai, K. et al. Zinc finger-IRF composite elements bound by Ikaros/IRF4 complexes function as gene repression in plasma cell. Blood Adv 2, 883-894 (2018).
57. Muljo, S.A. & Schlissel, M.S. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat Immunol 4, 31-37 (2003).
58. Krishnamoorthy, V. et al. The IRF4 Gene Regulatory Module Functions as a Read-Write Integrator to Dynamically Coordinate T Helper Cell Fate. Immunity 47, 481-497 e487 (2017).
59. Willis, S.N. et al. Transcription factor IRF4 regulates germinal center cell formation through a B cell-intrinsic mechanism. J Immunol 192, 3200-3206 (2014).
60. Lutge, A. et al. Subgroup-specific gene expression profiles and mixed epistasis in chronic lymphocytic leukemia. Haematologica 108, 2664-2676 (2023).
61. Yun Dai, Y.S., Shaji K. Kumar, Wei Wu, Fengyan Jin IRF4 Is Reciprocally Dysregulated Via NF-Κb-Dependent Expression and Loss-of-Function Mutations in Multiple Myeloma. Blood 134, 687 (2019).
62. Shu Horiuchi, T.K.T.K., Hirofumi Takebuchi,Hirofumi Takebuchi,Katsuaki Hoshino,Katsuaki Hoshino,Izumi SasakiIzumi Sasaki,Yuri Fukuda-Ohta,Yuri Fukuda-Ohta,Tsuneyasu Kaisho,Tsuneyasu Kaisho,Daisuke Kitamura,Daisuke Kitamura SpiB regulates the expression of B-cell-related genes and increases the longevity of memory B cells. Frontiers in Immunology 14, 1250719 (2023).
63. Tuscano, J.M., Riva, A., Toscano, S.N., Tedder, T.F. & Kehrl, J.H. CD22 cross-linking generates B-cell antigen receptor-independent signals that activate the JNK/SAPK signaling cascade. Blood 94, 1382-1392 (1999).
64. Allan, J.M. et al. Variant IRF4/MUM1 associates with CD38 status and treatment-free survival in chronic lymphocytic leukaemia. Leukemia 24, 877-881 (2010).
65. Ma, S. et al. Accelerated development of chronic lymphocytic leukemia in New Zealand Black mice expressing a low level of interferon regulatory factor 4. J Biol Chem 288, 26430-26440 (2013).
66. Nitschke, L., Carsetti, R., Ocker, B., Kohler, G. & Lamers, M.C. CD22 is a negative regulator of B-cell receptor signalling. Curr Biol 7, 133-143 (1997).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95819-
dc.description.abstractCD22 是一種唾液酸結合免疫球蛋白樣凝集素, 摘要 是B 細胞受體 (BCR) 訊號傳 導的抑 制性輔助受體。CD22受到激化後,會招募 SHP-1 磷酸酶並抑制 BCR 參與引起的鈣流入。先前的研究指出CD22 在慢性淋巴球白血病 (CLL) 患者的 B 細胞中減少。慢性淋巴球白血 病是一種 B 細胞起源的白血病, 其特徵是細胞死 亡的累積血液、骨髓和次級淋巴組織中的抗藥性 B 細胞。一個公開的CLL 患者轉錄組顯示,CD22的低表達與患者預後不良 有關。在CLL 中,一些異常表 達轉錄因子會導致促進癌症的基因異常表達細胞存活、增殖和 對治療的抵抗力。 例如,IRF4已被鑑定作為一種 CLL 抑制基因,在小鼠體內剔 除該基因會導致 CLL 的發生。在這個計畫中,我們探討了 B 細胞中 CD22 的轉錄調節 因子, 以探究CLL B 細胞中 CD22可能失調的機制。雖然之前的研究已鑑定了 CD22 基因的啟動子區域,然而有關其轉錄的知識有限。我們首先證實了B細胞上CD22蛋白的表現量在台灣CLL患者的比例低於健康的人。我們測試了 CD22 mRNA CLL 和非 CLL B 細胞系中的蛋白質表現量,證實了CLL 細胞株的 CD22的表達較低。 透過使用一系列截短 的 CD22 啟動子區域分析,我們鑑定出 CD22基因轉錄起始 位點下游的〜90個鹼基對區域 是最小啟動子。這個最小區 域包含保守的轉錄 因子結合位點(GC 盒和 E 盒),這些位點對於CD22 的轉錄可能是必需的調節 區域。為了確定控制 CD22 表現的主要轉錄因子, 我們使用合成誘餌DNA 進行 DNA 親和蛋白質體學,鎖定最小啟動子 區域和GC盒/E盒 突變體。使用合成的 誘餌DNA從 CLL 和非 CLL 細胞株的 核提取物中釣出幾個有顯著差異 轉錄因子, 並透過染色質免疫沉澱、定量 PCR 和EMSA交叉驗證。這些調節因子中,B 細胞系株中的基因分析顯示 SPIB 和 PU.1 是正向調節因子,而IRF4則是CD22的潛 在轉錄 抑制因子。這項研究揭示了 人類 CD22基因轉錄調控的基本機制,以及在 CLL的 B 細胞中失調的可能機制。 本次研究中所獲得的知識將有利於患者分類策 略和發展針對慢性淋巴球白血病 CD22 的標靶治療。zh_TW
dc.description.abstractCD22 is a sialic acid-binding immunoglobulin-like lectin serving as an inhibitory coreceptor for B-cell receptor (BCR) signaling. It recruits SHP-1 phosphatase upon activation and suppresses the calcium influx elicited by BCR engagement. Previous studies reported that CD22 is downregulated in the B cells of chronic lymphocytic leukemia (CLL) patients. CLL is a type of leukemia of B cell origins and is characterized by the accumulation of cell death-resistant B cell clones in blood, bone marrow, and secondary lymphoid tissues. A publicly available transcriptomic dataset for CLL patients indicated that low CD22 expression level is associated with a poor prognosis of patients. In CLL, aberrant expression of some transcription factors is known to lead to abnormal expression of genes that promote cancer cell survival, proliferation, and resistance to treatment. For example, IRF4 has been identified as a CLL suppressor gene, whose deletion in mice leads to the development of CLL. In this project, we explored the transcription regulator of CD22 in B-cells to decipher possible mechanisms by which CD22 is dysregulated in CLL B cells. Although a previous study identified the promoter region of the CD22 gene, the knowledge regarding its transcriptional regulators is limited. We first confirmed that CD22 protein expression levels on the B cells of Taiwanese CLL patients are lower than those of healthy donors. We then tested CD22 mRNA and protein levels in CLL and non-CLL B cell lines, confirming the lower expression of CD22 in CLL cell lines. The minimal promoter region of the CD22 gene was identified through reporter assays using a series of truncated CD22 promoter regions, revealing that a ~90-base pair region located downstream of the previously reported transcription start site is the minimal promoter. This minimal region contains conserved transcription factor binding sites (GC box and E box), indicating that these sites could be essential for transcriptional regulation of CD22. To identify the major transcription factors controlling CD22 expression, we conducted DNA-affinity proteomics analyses using synthetic bait DNA corresponding to the minimal promoter region and GC box/E box mutants. Several transcription factors were significantly enriched from the nuclear extracts of CLL and non-CLL cell lines with the bait DNA, and further characterized by functional reporter assays, such as chromatin immunoprecipitation with quantitative PCR and electrophoretic mobility shift assay. Among those regulators, genetic manipulation in B cell lines demonstrated that SPIB and PU.1 are positive regulators and IRF4 is a potential transcriptional repressor of CD22. This study revealed the basic mechanism of transcriptional regulation of the human CD22 gene and a possible mechanism of its dysregulation in CLL B cells. The knowledge gained in this study may benefit the development of patient stratification strategies and CD22-targeting therapies for CLL.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:12:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-18T16:12:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement i
摘要 ii
Abstract iv
Table of Contents vi
List of Figures x
List of Tables xii
List of Supplementary Tables xii
List of Supplementary Figures xii
Introduction 1
Chronic lymphocytic leukemia 1
Cluster of differentiation 22 (CD22) 3
IRF4 5
E26 transformation-specific (ETS) family transcription factors 6
Aim of the study 8
Materials and Methods 9
Cell lines 9
Preparation of transcription factor expression constructs 9
HA-tagged PU.1 plasmid construct preparation 9
Flag-tagged PAX5 plasmid construct preparation 9
Flag-tagged IKZF1 plasmid construct preparation 10
HA-tagged IKZF3 plasmid construct preparation 10
Myc-tagged POU2F1 plasmid construct preparation 10
Myc-tagged SPIB lentiviral plasmid construct preparation 11
Myc-tagged RUNX3 lentiviral plasmid construct preparation 11
HA-tagged IRF4 lentiviral plasmid construct preparation 11
Flag-tagged IRF4 lentiviral plasmid construct preparation 12
IRF4 Asp117His point mutagenesis 12
The minimal CD22 promoter point mutation at GC box, Ebox, and SPIB/PU.1 binding site 12
Lentivirus production 13
Lentivirus transduction 14
CRISPR Cas9 mediated gene disruption 14
CD22 detection by Flow cytometer 15
Western blotting 15
Quantitative real-time PCR 16
Luciferase reporter assay 16
DNA-affinity enrichment proteomics analysis 17
Experimental design 17
Biotinylated probe preparation 18
Large-scale nuclear extraction 18
DNA affinity purification 18
Mass spectrometry (MS) front-end sample preparation and Mass spectrometry data acquisition 19
MS raw data processing 21
Bioinformatic analysis 21
Chromatin immunoprecipitation (ChIP) - Quantitative PCR (qPCR) 21
Electrophoretic Mobility Shift Assay (EMSA) 22
Transient transfection in HEK293T cell 22
Nuclear extraction 23
EMSA 23
Results 25
I. CD22 expression level in CLL patients and cell lines. 25
II. Identification of CD22 minimal promoter region 28
III. Identification of CD22 transcriptional regulators by DNA affinity coupled with proteomics. 33
III.1. DNA affinity capture and proteomics by mass spectrometry 33
III.2 Identification of significantly enriched transcriptional regulators with CD22 minimal promoter DNA. 35
III.3. Bioinformatic analysis of candidate transcriptional regulators 40
IV. Functional characterization of candidate transcriptional regulators 43
IV. 1. Functional analysis of candidate transcriptional regulators by reconstitution in HEK293T cells 43
IV.2 Characterization of candidate transcription factors occupancy of the minimal promoter in B cells by chromatin immunoprecipitation analysis 46
IV.3 Baseline expression of PU.1, SPIB, and IRF4 in B cell lines 47
V. PU.1, SPIB, and IRF4 regulatory function on the CD22 minimal promoter 49
V.1. Confirmation of PU.1, SPIB, and IRF4 on the minimal CD22 promoter 49
V.2. PU.1, SPIB, IRF4 binding to the minimal CD22 promoter region by EMSA 50
V.3. IRF4 suppresses CD22 transcriptional activation by PU.1 in a reconstituted reporter assay 51
VI. The influence of genetic perturbation of candidate transcription factors on CD22 expression in B cell lines 56
VI.1. The effect of RUNX3 overexpression on CD22 expression in BJAB 56
VI.2 The effect of IKZF3 knock-out on CD22 expression in BJAB 57
VI.3 The effect of PAX5 knock-out on CD22 expression in MEC1 58
VI.4. The effect of SPIB knock-out on CD22 expression in BJAB 59
VI.5. The effect of PU.1 knock-down on CD22 expression in BJAB 61
VI.6. The effect of IRF4 overexpression on CD22 expression in BJAB 61
VII. Associations of transcription factors with CLL patients’ overall survival 66
Discussion 69
Conclusion 77
References 78
Appendices 82
-
dc.language.isoen-
dc.titleB細胞慢性淋巴性白血病中CD22基因的轉錄調控zh_TW
dc.titleTranscriptional regulation of CD22 in B cell chronic lymphocytic leukemiaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林國儀;陳玉如;邱繼輝;王書品zh_TW
dc.contributor.oralexamcommitteeKuo-I Lin ;Yu-Ju Chen ;Kay Hooi Khoo;Shu-Ping Wangen
dc.subject.keywordCD22,最小啟動子,轉錄因子,DNA下拉蛋白質體學,B淋巴細胞,慢性淋巴球白血病,伯基特淋巴瘤,zh_TW
dc.subject.keywordCD22,minimal promoter,transcription factor,DNA pull down-proteomics,B lymphocytes,chronic lymphocytic leukemia,Burkitt lymphoma,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202403945-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
dc.date.embargo-lift2029-08-07-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
9.8 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved