請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95786
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪一薰 | zh_TW |
dc.contributor.advisor | I-Hsuan Hong | en |
dc.contributor.author | 宮佳柔 | zh_TW |
dc.contributor.author | Chia-Jou Kung | en |
dc.date.accessioned | 2024-09-16T16:25:37Z | - |
dc.date.available | 2024-09-17 | - |
dc.date.copyright | 2024-09-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | Abido, M. A. (2002). Optimal power flow using particle swarm optimization. International Journal of Electrical Power & Energy Systems, 24(7), 563-571.
Alam, M. S., Al-Ismail, F. S., Salem, A., & Abido, M. A. (2020). High-level penetration of renewable energy sources into grid utility: Challenges and solutions. IEEE Access, 8, 190277-190299. Bai, X., Wei, H., Fujisawa, K., & Wang, Y. (2008). Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems, 30(6-7), 383-392. Bayindir, R., Colak, I., Fulli, G., & Demirtas, K. (2016). Smart grid technologies and applications. Renewable and Sustainable Energy Reviews, 66, 499-516. Blaabjerg, F., Chen, Z., & Kjaer, S. B. (2004). Power electronics as efficient interface in dispersed power generation systems. IEEE transactions on power electronics, 19(5), 1184-1194. Busby, J. W., Baker, K., Bazilian, M. D., Gilbert, A. Q., Grubert, E., Rai, V., Rhodes, J. D., Shidore, S., Smith, C. A., & Webber, M. E. (2021). Cascading risks: Understanding the 2021 winter blackout in Texas. Energy Research & Social Science, 77, 102106. Capitanescu, F. (2021). Evaluating reactive power reserves scarcity during the energy transition toward 100% renewable supply. Electric Power Systems Research, 190, 106672. Dong, X., Liu, Z., Chen, F., Wang, C., Wang, Y., & Wang, Y. (2023). SCOPF considering voltage and power fluctuation under renewable energy integration. International Journal of Electrical Power & Energy Systems, 153, 109273. Eberle, U., & Von Helmolt, R. (2010). Sustainable transportation based on electric vehicle concepts: a brief overview. Energy & Environmental Science, 3(6), 689-699. Ettoumi, F. Y., Mefti, A., Adane, A., & Bouroubi, M. (2002). Statistical analysis of solar measurements in Algeria using beta distributions. Renewable Energy, 26(1), 47-67. Frank, S., & Rebennack, S. (2016). An introduction to optimal power flow: Theory, formulation, and examples. IIE transactions, 48(12), 1172-1197. Hortaçsu, A., & Puller, S. L. (2008). Understanding strategic bidding in multi‐unit auctions: a case study of the Texas electricity spot market. The RAND Journal of Economics, 39(1), 86-114. Impram, S., Nese, S. V., & Oral, B. (2020). Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Reviews, 31, 100539. Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Proceedings of the sixteenth annual ACM symposium on Theory of computing, Khamees, A. K., Abdelaziz, A. Y., Eskaros, M. R., Attia, M. A., & Sameh, M. A. (2022). Optimal power flow with stochastic renewable energy using three mixture component distribution functions. Sustainability, 15(1), 334. Kocuk, B., Dey, S. S., & Sun, X. A. (2016). Strong SOCP relaxations for the optimal power flow problem. Operations Research, 64(6), 1177-1196. Koltsaklis, N. E., & Dagoumas, A. S. (2018). State-of-the-art generation expansion planning: A review. Applied energy, 230, 563-589. Kuang, X., Zuluaga, L. F., Ghaddar, B., & Naoum-Sawaya, J. (2015). Approximating the ACOPF problem with a hierarchy of SOCP problems. 2015 IEEE Power & Energy Society General Meeting, Lavaei, J., & Low, S. H. (2011). Zero duality gap in optimal power flow problem. IEEE Transactions on Power Systems, 27(1), 92-107. Liu, S., Guo, Y., Tang, W., Sun, H., Huang, W., & Hou, J. (2022). Varying condition scopf optimization based on deep learning and knowledge graph. IEEE Transactions on Power Systems. Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied energy, 137, 511-536. Momoh, J. A., Adapa, R., & El-Hawary, M. (1999). A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Transactions on Power Systems, 14(1), 96-104. Momoh, J. A., & Zhu, J. (1999). Improved interior point method for OPF problems. IEEE Transactions on Power Systems, 14(3), 1114-1120. Olabi, A. (2017). Renewable energy and energy storage systems. Energy, 136, 1-6. Olabi, A., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111. Osman, M., Abo-Sinna, M. A., & Mousa, A. (2004). A solution to the optimal power flow using genetic algorithm. Applied mathematics and computation, 155(2), 391-405. Pinson, P., & Madsen, H. (2014). Benefits and challenges of electrical demand response: A critical review. Renewable and Sustainable Energy Reviews, 39, 686-699. Saidi, K., & Omri, A. (2020). The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environmental research, 186, 109567. Saravanan, B., Das, S., Sikri, S., & Kothari, D. P. (2013). A solution to the unit commitment problem—a review. Frontiers in Energy, 7, 223-236. Stott, B., Jardim, J., & Alsaç, O. (2009). DC power flow revisited. IEEE Transactions on Power Systems, 24(3), 1290-1300. Valencia-Zuluaga, T., Agudelo-Martinez, D., Arango-Angarita, D., Acosta-Urrego, C., Rivera, S., Rodriguez-Medina, D., & Gers, J. (2021). A fast decomposition method to solve a security-constrained optimal power flow (SCOPF) problem through constraint handling. IEEE Access, 9, 52812-52824. Velloso, A., & Van Hentenryck, P. (2021). Combining deep learning and optimization for preventive security-constrained DC optimal power flow. IEEE Transactions on Power Systems, 36(4), 3618-3628. Velloso, A., Van Hentenryck, P., & Johnson, E. S. (2021). An exact and scalable problem decomposition for security-constrained optimal power flow. Electric Power Systems Research, 195, 106677. Wais, P. (2017). A review of Weibull functions in wind sector. Renewable and Sustainable Energy Reviews, 70, 1099-1107. Wang, Q., McCalley, J. D., Zheng, T., & Litvinov, E. (2016). Solving corrective risk-based security-constrained optimal power flow with Lagrangian relaxation and Benders decomposition. International Journal of Electrical Power & Energy Systems, 75, 255-264. Weitemeyer, S., Kleinhans, D., Vogt, T., & Agert, C. (2015). Integration of Renewable Energy Sources in future power systems: The role of storage. Renewable Energy, 75, 14-20. Yan, X., & Quintana, V. H. (1999). Improving an interior-point-based OPF by dynamic adjustments of step sizes and tolerances. IEEE Transactions on Power Systems, 14(2), 709-717. Yan, Z., & Xu, Y. (2022). A hybrid data-driven method for fast solution of security-constrained optimal power flow. IEEE Transactions on Power Systems, 37(6), 4365-4374. Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in carbon capture (pp. 3-28). Elsevier. 台電月刊. (2022). 從整合效率走向分散 強化電網韌性. 台電月刊. https://doi.org/https://tpcjournal.taipower.com.tw/article/5770 台電永續發展專區. (2022). 台電永續發展計畫. https://doi.org/https://service.taipower.com.tw/csr/sustainability/development-plan 台電再生能源處. (2020). 離岸風力發電第二期計畫. https://doi.org/https://tpc-offshorewind-p2.tw/project 行政院. (2022). 0303 興達電廠事故致全台停電專案報告. https://www.ey.gov.tw/File/737A9B43201B078 行政院國家發展委員會. (2022). 臺灣2050淨零排放路徑及策略總說明. https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNTA0MC8yZTZhZTA0Mi0wYjUyLTQ4OTAtOGY5NC1hYjk5MzgzNWZlZTIucGRm&n=6Ie654GjMjA1MOa3qOmbtuaOkuaUvui3r%2bW%2bkeWPiuetlueVpee4veiqquaYji5wZGY%3d&icon=.pdf 經濟日報. (2023). 虛擬電廠 台電:交易規模上看百億. https://money.udn.com/money/story/7307/7600378 經濟部能源局. (2023). 能源統計月報 3-02 發電量. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95786 | - |
dc.description.abstract | 隨著全球已經超過140個國家和地區宣布於2050年實現「淨零排放」的目標,能源轉型成為實現這一目標的關鍵因素。這意味著各國需要大幅度減少對化石燃料的依賴,並加速發展可再生能源的技術,如風能、太陽能和氫能。然而,將再生能源整合進電網的過程中,其不確定性以及間歇性的特點,可能會對電網的穩定性和安全性造成影響。因此,本研究考量到在能源轉型初期階段的風險,提出了具備預防性以及安全性的能源流隨機最佳化模型,以確保電網在升級的過程中盡可能的不受任何負面影響,為社會提供穩定的電力。由於提出的模型具有非凸和非線性的特性,我們透過鬆弛方法把模型鬆弛成二階圓錐規劃(Second-Order Cone Programming, SOCP)問題後並使用數學優化求解器GUROBI進行求解,以驗證模型的可行性以及計算結果的真實性。在數值分析中,分別以5個匯流排以及MATPOWER的30個匯流排之能源流測試集作為驗證模型的依據,並使用了台灣彰化沿海地區的風速和太陽能輻射量作為資料來源,透過拉丁超方格抽樣方法隨機生成場景,模擬再生能源的不確定性。由於僅考慮了發電機的操作成本,再加上再生能源加入的位置為高負載地區,因此,結果顯示使用再生能源併入發電機匯流排的配置方式會比再生能源取代發電機匯流排的配置方式還要來的更低成本。 | zh_TW |
dc.description.abstract | Energy transition is crucial for achieving the 'net zero emissions' goal announced by over 140 countries and regions worldwide for 2050. This means countries must significantly reduce their reliance on fossil fuels and accelerate the development of renewable energy technologies such as wind, solar, and hydrogen. However, integrating renewable energy into the power system poses challenges due to its uncertainty and intermittency, which can affect the stability and security of the power system. Considering the risks during the preliminary stage of the energy transition, we propose a preventive stochastic security-constrained optimal power flow model to ensure power system stability during upgrades. We reformulate the model into a Second-Order Cone Programming (SOCP) due to the non-convex and non-linearity of the proposed model and use the Gurobi Optimizer to verify the feasibility and accuracy. The case study utilizes power flow test cases comprising 5 buses and 30 buses of MATPOWER for validation, using wind speed and irradiation intensity as renewable energy input data sourced from the coastal areas of Changhua, Taiwan. Scenarios are randomly generated using Latin Hypercube Sampling (LHS) to simulate the uncertainty of renewable energy. Due to the consideration of only the operational costs of generators, in addition to incorporating renewable energy in high-load areas, the results indicate that integrating renewable energy into the generator bus is more cost-effective than replacing it. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:25:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-16T16:25:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目次 iv 圖次 v 表次 vi 第一章 緒論 1 第二章 安全限制下的能源流隨機最佳化模型 9 2.1 SCOPF問題之最佳化模型 9 2.2 SCOPF問題之隨機最佳化模型 13 2.3 鬆弛後的SCOPF問題之隨機最佳化模型 17 第三章 數值分析 22 3.1 再生能源資料 22 3.1.1 離岸風電 23 3.1.2 太陽能輻射量 23 3.1.3 拉丁超方格抽樣及資料處理 24 3.2 Frank 5 Bus系統 25 3.3 MATPOWER 30 Bus系統 30 第四章 結論與未來研究方向 36 參考文獻 39 | - |
dc.language.iso | zh_TW | - |
dc.title | 在再生能源併入電網後安全限制下之能源流隨機最佳化 | zh_TW |
dc.title | Stochastic optimization of security-constrained power flow after integrating renewable energy into the grid | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃道宏;陳文智;卓金和 | zh_TW |
dc.contributor.oralexamcommittee | Dow-Hon Huang;Wen-Chih Chen;Chin-Ho Cho | en |
dc.subject.keyword | 安全限制下的能源流最佳化,再生能源,隨機最佳化, | zh_TW |
dc.subject.keyword | Security-Constrained Optimal Power Flow,Renewable Energy,Stochastic Optimization, | en |
dc.relation.page | 42 | - |
dc.identifier.doi | 10.6342/NTU202404126 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工業工程學研究所 | - |
dc.date.embargo-lift | 2029-08-09 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 1.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。