請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95773
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭光成 | zh_TW |
dc.contributor.advisor | Kuan-Chen Cheng | en |
dc.contributor.author | 顧子嵐 | zh_TW |
dc.contributor.author | Tzu-Lan Ku | en |
dc.date.accessioned | 2024-09-16T16:21:43Z | - |
dc.date.available | 2024-09-17 | - |
dc.date.copyright | 2024-09-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-24 | - |
dc.identifier.citation | 曾天倪 (2016)。評估聚乙烯醇/右旋醣酐/甲殼素水凝膠在傷口敷料之應用。國立臺灣大學生物資源暨農學院農業化學研究所學位論文,臺北市。
林欣平 (2017)。細菌性纖維素之生產及其於傷口癒創之應用。國立臺灣大學生物資源暨農學院生物科技研究所學位論文,臺北市。 周志展 (2019)。以反應曲面法提升Komactobacter intermedius之細菌纖維素產量。國立臺灣大學生物資源暨農學院生物科技研究所學位論文,臺北市。 盛柳娟 (2022)。以泡沫培養基生產多孔性細菌性纖維與其材料特性分析。國立臺灣大學生物資源暨農學院生物科技研究所學位論文,臺北市。 洪翎 (2023)。以幾丁聚醣修飾之泡沫培養基生產多孔性細菌纖維素作為活性包材之應用。國立臺灣大學生物資源暨農學院食品科技研究所學位論文,臺北市。 行政院環境部水質保護網:https://water.moenv.gov.tw/Public/CHT/Default.aspx Abatangelo, G., Vindigni, V., Avruscio, G., Pandis, L., & Brun, P. (2020). Hyaluronic acid: redefining its role. Cells, 9(7), 1743. Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Khraisheh, M., & Atieh, M. A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, 141-161. Abdel-Raouf, M. S., & Abdul-Raheim, A. R. M. (2017). Removal of heavy metals from industrial waste water by biomass-based materials: A review. j pollut eff cont 5: 180. doi: 10.4172/2375-4397.1000180 page 2 of 13 volume 5• issue 1• 1000180 j pollut eff cont, an open access journal issn: 2375-4397 the top six toxic threats: Estimated population at risk at identified sites*(million people) estimated global impact**(million people) 1. lead 10 18-22 2. Mercury, 8, 15-19. Abeer, M. M., Mohd Amin, M. C. I., & Martin, C. (2014). A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. Journal of Pharmacy and Pharmacology, 66(8), 1047-1061. Acharya, J., Sahu, J. N., Mohanty, C. R., & Meikap, B. C. (2009). Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal, 149(1-3), 249-262. Acharya, J., Sahu, J. N., Sahoo, B. K., Mohanty, C. R., & Meikap, B. C. (2009). Removal of chromium (VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chemical Engineering Journal, 150(1), 25-39. Acheampong, M. A., Pereira, J. P., Meulepas, R. J., & Lens, P. N. (2011). Biosorption of Cu (II) onto agricultural materials from tropical regions. Journal of Chemical Technology & Biotechnology, 86(9), 1184-1194. Adjeroud, N., Elabbas, S., Merzouk, B., Hammoui, Y., Felkai-Haddache, L., Remini, H., ... & Madani, K. (2018). Effect of Opuntia ficus indica mucilage on copper removal from water by electrocoagulation-electroflotation technique. Journal of Electroanalytical Chemistry, 811, 26-36. Ahmed, M. J. K., & Ahmaruzzaman, M. J. J. O. W. P. E. (2016). A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering, 10, 39-47. Ahn, S. Y., Choi, M., Jeong, D. W., Park, S., Park, H., Jang, K. S., & Choi, K. Y. (2019). Synthesis and chemical composition analysis of protocatechualdehyde-based novel melanin dye by 15T FT-ICR: high dyeing performance on soft contact lens. Dyes and Pigments, 160, 546-554. Allen, S. J., & Brown, P. A. (1995). Isotherm analyses for single component and multi‐component metal sorption onto lignite. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 62(1), 17-24. Al-Sherbini, A. S. A., Ghannam, H. E., El-Ghanam, G. M., El-Ella, A. A., & Youssef, A. M. (2019). Utilization of chitosan/Ag bionanocomposites as eco-friendly photocatalytic reactor for Bactericidal effect and heavy metals removal. Heliyon, 5(6). Alvarez, M. T., Crespo, C., & Mattiasson, B. (2007). Precipitation of Zn (II), Cu (II) and Pb (II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere, 66(9), 1677-1683. Alves, E., Dias, M., Lopes, D., Almeida, A., Domingues, M. D. R., & Rey, F. (2020). Antimicrobial lipids from plants and marine organisms: An overview of the current state-of-the-art and future prospects. Antibiotics, 9(8), 441. Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1-3), 482-488. An, H. K., Park, B. Y., & Kim, D. S. (2001). Crab shell for the removal of heavy metals from aqueous solution. Water Research, 35(15), 3551-3556. Anotai, J., Tontisirin, P., & Churod, P. (2007). Integrated treatment scheme for rubber thread wastewater: sulfide precipitation and biological processes. Journal of Hazardous Materials, 141(1), 1-7. Arun, G., Eyini, M., & Gunasekaran, P. (2015). Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries). Audelo, M. L. D. P., Mendoza-Muñoz, N., Escutia-Guadarrama, L., Giraldo-Gomez, D., González-Torres, M., Florán, B., ... & Leyva-Gómez, G. (2020). Recent advances in elastin-based biomaterial. Journal of Pharmacy & Pharmaceutical Sciences, 23, 314-332. Bader, J., Mast‐Gerlach, E., Popović, M. K., Bajpai, R., & Stahl, U. (2010). Relevance of microbial coculture fermentations in biotechnology. Journal of Applied Microbiology, 109(2), 371-387. Baldauf, K. J., Royal, J. M., Hamorsky, K. T., & Matoba, N. (2015). Cholera toxin B: one subunit with many pharmaceutical applications. Toxins, 7(3), 974-996. Balladares, E., Jerez, O., Parada, F., Baltierra, L., Hernández, C., Araneda, E., & Parra, V. (2018). Neutralization and co-precipitation of heavy metals by lime addition to effluent from acid plant in a copper smelter. Minerals Engineering, 122, 122-129. Baltpurvins, K. A., Burns, R. C., Lawrance, G. A., & Stuart, A. D. (1997). Effect of electrolyte composition on zinc hydroxide precipitation by lime. Water Research, 31(5), 973-980. Banzon, J. A., Gonzalez, O. N., De Leon, S. Y., & Sanchez, P. C. (1990). Coconut as Food. Philippine Coconut Research and Development Foundation. Inc. Philippines.Baraf, H. S., Yood, R. A., Ottery, F. D., Sundy, J. S., & Becker, M. A. (2014). Infusion-related reactions with pegloticase, a recombinant uricase for the treatment of chronic gout refractory to conventional therapy. JCR: Journal of Clinical Rheumatology, 20(8), 427-432. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377. Belaustegui, Y., Pantò, F., Urbina, L., Corcuera, M. A., Eceiza, A., Palella, A., ... & Santangelo, S. (2020). Bacterial-cellulose-derived carbonaceous electrode materials for water desalination via capacitive method: The crucial role of defect sites. Desalination, 492, 114596. Bello, A. B., Kim, D., Kim, D., Park, H., & Lee, S. H. (2020). Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Engineering Part B: Reviews, 26(2), 164-180. Ben Tahar, I., Kus‐Liśkiewicz, M., Lara, Y., Javaux, E., & Fickers, P. (2020). Characterization of a nontoxic pyomelanin pigment produced by the yeast Yarrowia lipolytica. Biotechnology Progress, 36(2), e2912. Bielecki, S., Krystynowicz, A., Turkiewicz, M., & Kalinowska, H. (2005). Bacterial cellulose. Polysaccharides and Polyamides in The Food Industry: Properties, Production, and Patents, 31-84. Biškup, B., & Subotić, B. (2004). Kinetic analysis of the exchange processes between sodium ions from zeolite A and cadmium, copper and nickel ions from solutions. Separation and Purification Technology, 37(1), 17-31. Biškup, B., & Subotić, B. (2005). Removal of heavy metal ions from solutions using zeolites. III. Influence of sodium ion concentration in the liquid phase on the kinetics of exchange processes between cadmium ions from solution and sodium ions from zeolite A. Separation Science and Technology, 39(4), 925-940. Blaas, L., Musteanu, M., Eferl, R., Bauer, A., & Casanova, E. (2009). Bacterial artificial chromosomes improve recombinant protein production in mammalian cells. Bmc Biotechnology, 9, 1-5. Blanco Parte, F. G., Santoso, S. P., Chou, C. C., Verma, V., Wang, H. T., Ismadji, S., & Cheng, K. C. (2020). Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397-414. Bolognese, F., Scanferla, C., Caruso, E., & Orlandi, V. T. (2019). Bacterial melanin production by heterologous expression of 4 hydroxyphenylpyruvate dioxygenase from Pseudomonas aeruginosa. International Journal of Biological Macromolecules, 133, 1072-1080. Borovanský, J. (2011). History of melanosome research. Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions. Bottan, S., Robotti, F., Jayathissa, P., Hegglin, A., Bahamonde, N., Heredia-Guerrero, J. A., ... & Ferrari, A. (2015). Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). Acs Nano, 9(1), 206-219. Brackmann, C., Zaborowska, M., Sundberg, J., Gatenholm, P., & Enejder, A. (2012). In situ imaging of collagen synthesis by osteoprogenitor cells in microporous bacterial cellulose scaffolds. Tissue Engineering Part C: Methods, 18(3), 227-234. Brown, A. J. (1886). XLIII.—On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions, 49, 432-439. Brown Jr, R. M. (2004). Cellulose structure and biosynthesis: what is in store for the 21st century?. Journal of Polymer Science Part A: Polymer Chemistry, 42(3), 487-495. Brown Jr, R. M., & Saxena, I. M. (2000). Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiology and Biochemistry, 38(1-2), 57-67. Brumano, L. P., da Silva, F. V. S., Costa-Silva, T. A., Apolinário, A. C., Santos, J. H. P. M., Kleingesinds, E. K., ... & Junior, A. P. (2019). Development of L-asparaginase biobetters: current research status and review of the desirable quality profiles. Frontiers in Bioengineering and Biotechnology, 6, 212. Buchaim, D. V., Cassaro, C. V., Shindo, J. V. T. C., Coletta, B. B. D., Pomini, K. T., Rosso, M. P. D. O., ... & Buchaim, R. L. (2019). Unique heterologous fibrin biopolymer with hemostatic, adhesive, sealant, scaffold and drug delivery properties: a systematic review. Journal of Venomous Animals and Toxins including Tropical Diseases, 25, e20190038. Bueno, V. B., & Petri, D. F. S. (2014). Xanthan hydrogel films: Molecular conformation, charge density and protein carriers. Carbohydrate Polymers, 101, 897-904. Bulman, S. E., Coleman, C. M., Murphy, J. M., Medcalf, N., Ryan, A. E., & Barry, F. (2015). Pullulan: a new cytoadhesive for cell-mediated cartilage repair. Stem Cell Research & Therapy, 6, 1-12. Butchosa, N., Brown, C., Larsson, P. T., Berglund, L. A., Bulone, V., & Zhou, Q. (2013). Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chemistry, 15(12), 3404-3413. Cabrera-Valladares, N., Martínez, A., Pinero, S., Lagunas-Munoz, V. H., Tinoco, R., De Anda, R., ... & Gosset, G. (2006). Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. Enzyme and Microbial Technology, 38(6), 772-779. Caldas, M., Santos, A. C., Veiga, F., Rebelo, R., Reis, R. L., & Correlo, V. M. (2020). Melanin nanoparticles as a promising tool for biomedical applications–a review. Acta Biomaterialia, 105, 26-43. Cao, W., Zhou, X., McCallum, N. C., Hu, Z., Ni, Q. Z., Kapoor, U., ... & Gianneschi, N. C. (2021). Unraveling the structure and function of melanin through synthesis. Journal of the American Chemical Society, 143(7), 2622-2637. Carinci, F., Santarelli, A., Laino, L., Pezzetti, F., De Lillo, A., Parisi, D., ... & Muzio, L. L. (2014). Pre-clinical evaluation of a new coral-based bone scaffold. International Journal of Immunopathology and Pharmacology, 27(2), 221-234. Cazón, P., Velazquez, G., & Vázquez, M. (2020). Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocolloids, 99, 105323. Cazón, P., & Vázquez, M. (2021). Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocolloids, 113, 106514. Chávez-Béjar, M. I., Balderas-Hernandez, V. E., Gutiérrez-Alejandre, A., Martinez, A., Bolívar, F., & Gosset, G. (2013). Metabolic engineering of Escherichia coli to optimize melanin synthesis from glucose. Microbial Cell Factories, 12, 1-12. Chen, L., Du, Y., & Zeng, X. (2003). Relationships between the molecular structure and moisture-absorption and moisture-retention abilities of carboxymethyl chitosan: II. Effect of degree of deacetylation and carboxymethylation. Carbohydrate Research, 338(4), 333-340. Chen, S., Shen, W., Yu, F., & Wang, H. (2009). Kinetic and thermodynamic studies of adsorption of Cu 2+ and Pb 2+ onto amidoximated bacterial cellulose. Polymer Bulletin, 63, 283-297. Chen, S., Shen, W., Yu, F., Hu, W., & Wang, H. (2010). Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu2+ and Pb2+. Journal of Applied Polymer Science, 117(1), 8-15. Chen, S., Zou, Y., Yan, Z., Shen, W., Shi, S., Zhang, X., & Wang, H. (2009). Carboxymethylated-bacterial cellulose for copper and lead ion removal. Journal of Hazardous Materials, 161(2-3), 1355-1359. Cheng, R., Kang, M., Zhuang, S., Shi, L., Zheng, X., & Wang, J. (2019). Adsorption of Sr (II) from water by mercerized bacterial cellulose membrane modified with EDTA. Journal of Hazardous Materials, 364, 645-653. Chi, Y., Zhang, M., Wang, X., Fu, X., Guan, H., & Wang, P. (2020). Ulvan lyase assisted structural characterization of ulvan from Ulva pertusa and its antiviral activity against vesicular stomatitis virus. International Journal of Biological Macromolecules, 157, 75-82. Chiaoprakobkij, N., Suwanmajo, T., Sanchavanakit, N., & Phisalaphong, M. (2020). Curcumin-loaded bacterial cellulose/alginate/gelatin as a multifunctional biopolymer composite film. Molecules, 25(17), 3800. Choi, J. H., & Lee, S. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology, 64, 625-635. Choi, S. M., & Shin, E. J. (2020). The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials, 10(3), 406. Chou, C. P. (2007). Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Applied Microbiology and Biotechnology, 76(3), 521-532. Chowdhury, S. R., Mh Busra, M. F., Lokanathan, Y., Ng, M. H., Law, J. X., Cletus, U. C., & Binti Haji Idrus, R. (2018). Collagen type I: A versatile biomaterial. Novel Biomaterials for Regenerative Medicine, 389-414. Clifford, D. A. (1990). Ion exchange and inorganic adsorption. MCGRAW-HILL, INC.,(USA). 1194, 1990. Cohen, S. N., Chang, A. C., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences, 70(11), 3240-3244. Coon, S. L., Kotob, S., Jarvis, B. B., Wang, S., Fuqua, W. C., & Weiner, R. M. (1994). Homogentisic acid is the product of MelA, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D. Applied and Environmental Microbiology, 60(8), 3006-3010. Cordero, R. J., & Casadevall, A. (2017). Functions of fungal melanin beyond virulence. Fungal Biology Reviews, 31(2), 99-112. Cordero, R. J. (2017). Melanin for space travel radioprotection. Environmental Microbiology, 19(7), 2529-2532. Cordero, R. J., & Casadevall, A. (2020). Melanin. Current Biology, 30(4), R142-R143. Costa, A. F., Almeida, F. C., Vinhas, G. M., & Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8, 2027. Costa, T. G., Younger, R., Poe, C., Farmer, P. J., & Szpoganicz, B. (2012). Studies on synthetic and natural melanin and its affinity for Fe (III) ion. Bioinorganic Chemistry and Applications, 2012. Dadachova, E., Bryan, R. A., Howell, R. C., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., & Casadevall, A. (2008). The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell & Melanoma Research, 21(2), 192-199. Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 19(6), 2023-2028. Dahman, Y. (2009). Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology, 9(9), 5105-5122. De Lasa, H., & Serrano-Rosales, B. (2009). Advances in Chemical Engineering: Photocatalytic Technologies (Vol. 36). Academic Press. Dean, J. G., Bosqui, F. L., & Lanouette, K. H. (1972). Removing heavy metals from waste water. Environmental Science & Technology, 6(6), 518-522. Della-Cioppa, G., Garger, S. J., Sverlow, G. G., Turpen, T. H., & Grill, L. K. (1990). Melanin production in Escherichia coli from a cloned tyrosinase gene. Bio/technology, 8(7), 634-638. Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27(3), 297-306. Depci, T., Kul, A. R., & Önal, Y. (2012). Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single-and multi-solute systems. Chemical Engineering Journal, 200, 224-236. DeVol, R. T., Sun, C. Y., Marcus, M. A., Coppersmith, S. N., Myneni, S. C., & Gilbert, P. U. (2015). Nanoscale transforming mineral phases in fresh nacre. Journal of the American Chemical Society, 137(41), 13325-13333. Díaz-Montes, E. (2021). Dextran: sources, structures, and properties. Polysaccharides, 2(3), 554-565. Ding, R., Hu, S., Xu, M., Hu, Q., Jiang, S., Xu, K., ... & Zhang, T. (2021). The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha. Carbohydrate Polymers, 252, 117137. d'Ischia, M., Wakamatsu, K., Cicoira, F., Di Mauro, E., Garcia‐Borron, J. C., Commo, S., ... & Ito, S. (2015). Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell & Melanoma Research, 28(5), 520-544. d'Ischia, M., Wakamatsu, K., Napolitano, A., Briganti, S., Garcia‐Borron, J. C., Kovacs, D., ... & Ito, S. (2013). Melanins and melanogenesis: methods, standards, protocols. Pigment Cell & Melanoma Research, 26(5), 616-633. Edan, G., Kappos, L., Montalbán, X., Polman, C. H., Freedman, M. S., Hartung, H. P., ... & Pleimes, D. (2014). Long-term impact of interferon beta-1b in patients with CIS: 8-year follow-up of BENEFIT. Journal of Neurology, Neurosurgery & Psychiatry, 85(11), 1183-1189. El Samrani, A. G., Lartiges, B. S., & Villiéras, F. (2008). Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Research, 42(4-5), 951-960. El-Naggar, N. E. A., & El-Ewasy, S. M. (2017). Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific Reports, 7(1), 42129. EPA 816-F-09-004, 2009. Esa, F., Tasirin, S. M., & Abd Rahman, N. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119. Fang, L., & Catchmark, J. M. (2015). Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydrate Polymers, 115, 663-669. Farooq, U., Kozinski, J. A., Khan, M. A., & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature. Bioresource Technology, 101(14), 5043-5053. Feldmann, E. M., Sundberg, J. F., Bobbili, B., Schwarz, S., Gatenholm, P., & Rotter, N. (2013). Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. Journal of Biomaterials Applications, 28(4), 626-640. Feng, Y., Wang, Y., Wang, Y., Liu, S., Jiang, J., Cao, C., & Yao, J. (2017). Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal. Journal of Colloid and Interface Science, 502, 52-58. Feroz, S., Muhammad, N., Ratnayake, J., & Dias, G. (2020). Keratin-Based materials for biomedical applications. Bioactive Materials, 5(3), 496-509. Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J. L., Vázquez, E., & Villaverde, A. (2009). Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories, 8, 1-8. Fogarty, R. V., & Tobin, J. M. (1996). Fungal melanins and their interactions with metals. Enzyme and Microbial Technology, 19(4), 311-317. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407-418. Fu, Y., Mu, D., Qiao, W., Zhu, D., Wang, X., Liu, F., ... & Qiao, M. (2018). Co-expression of nisin Z and Leucocin C as a basis for effective protection against Listeria monocytogenes in pasteurized milk. Frontiers in Microbiology, 9, 547. Galdino Jr, C. J. S., Maia, A. D., Meira, H. M., Souza, T. C., Amorim, J. D., Almeida, F. C., ... & Sarubbo, L. A. (2020). Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochemistry, 91, 288-296. Gao, G., Fan, H., Zhang, Y., Cao, Y., Li, T., Qiao, W., ... & Li, G. (2021). Production of nisin-containing bacterial cellulose nanomaterials with antimicrobial properties through co-culturing Enterobacter sp. FY-07 and Lactococcus lactis N8. Carbohydrate Polymers, 251, 117131. Gessler, N. N., Egorova, A. S., & Belozerskaya, T. A. (2014). Melanin pigments of fungi under extreme environmental conditions. Applied Biochemistry and Microbiology, 50, 105-113. Gilbert, C., & Ellis, T. (2018). Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synthetic Biology, 8(1), 1-15. Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., ... & Riggs, A. D. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences, 76(1), 106-110. Gomes, R. J., Ida, E. I., & Spinosa, W. A. (2022). Nutritional supplementation with amino acids on bacterial cellulose production by Komagataeibacter intermedius: Effect analysis and application of response surface methodology. Applied Biochemistry and Biotechnology, 194(11), 5017-5036. Goodman, M. (2009). Pharmaceutical industry financial performance. Nature Reviews Drug Discovery, 8(12), 927. Gopal, G. J., & Kumar, A. (2013). Strategies for the production of recombinant protein in Escherichia coli. The Protein Journal, 32, 419-425. Guo, J., Rao, Z., Yang, T., Man, Z., Xu, M., Zhang, X., & Yang, S. T. (2015). Cloning and identification of a novel tyrosinase and its overexpression in Streptomyces kathirae SC-1 for enhancing melanin production. FEMS Microbiology Letters, 362(8), fnv041. Gurme, S. T., Dongale, T. D., Surwase, S. N., Kumbhar, S. D., More, G. M., Patil, V. L., ... & Jadhav, J. P. (2018). An organic bipolar resistive switching memory device based on natural melanin synthesized from Aeromonas sp. SNS. Physica Status Solidi (a), 215(24), 1800550. Gurme, S. T., Aware, C. B., Surwase, S. N., Chavan, C. S., & Jadhav, J. P. (2019). Synthesis of melanin mediated silver nanoparticles from Aeromonas sp. SNS using response surface methodology: Characterization with the biomedical applications and photocatalytic degradation of brilliant green. Journal of Polymers and the Environment, 27, 2428-2438. Gustavsson, M., Hörnström, D., Lundh, S., Belotserkovsky, J., & Larsson, G. (2016). Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell exterior. Scientific Reports, 6(1), 36117. Hacker, D. L., Chenuet, S., & Wurm, F. M. (2009). Chinese hamster ovary cells, recombinant protein production. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, 1-8. Hankins, N. P., Lu, N., & Hilal, N. (2006). Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. Separation and Purification Technology, 51(1), 48-56. Hank, J. A., Surfus, J., Gan, J., Albertini, M., Lindstrom, M., Schiller, J. H., ... & Sondel, P. M. (1999). Distinct clinical and laboratory activity of two recombinant interleukin-2 preparations. Clinical Cancer Research, 5(2), 281-289. Hasan, M., Gopakumar, D. A., Olaiya, N. G., Zarlaida, F., Alfian, A., Aprinasari, C., ... & Khalil, H. A. (2020). Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films. International Journal of Biological Macromolecules, 156, 896-905. Hassan, A., Sorour, N. M., El-Baz, A., & Shetaia, Y. (2019). Simple synthesis of bacterial cellulose/magnetite nanoparticles composite for the removal of antimony from aqueous solution. International Journal of Environmental Science and Technology, 16, 1433-1448. Hayashi, T., & Mukamel, S. (2007). Vibrational− Exciton couplings for the amide I, II, III, and a modes of peptides. The Journal of Physical Chemistry B, 111(37), 11032-11046. He, J., Zhao, H., Li, X., Su, D., Zhang, F., Ji, H., & Liu, R. (2018). Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. Journal of Hazardous Materials, 346, 199-207. Hearing, V. J., & Jiménez, M. (1987). Mammalian tyrosinase—the critical regulatory control point in melanocyte pigmentation. International Journal of Biochemistry, 19(12), 1141-1147. Herrmann, J. M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129. Hodgson, J. E., Curnock, S. P., Dyke, K. G., Morris, R., Sylvester, D. R., & Gross, M. S. (1994). Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870. Antimicrobial Agents and Chemotherapy, 38(5), 1205-1208. Hong, L., Wang, Y. L., Jia, S. R., Huang, Y., Gao, C., & Wan, Y. Z. (2006). Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Materials Letters, 60(13-14), 1710-1713. Hou, J., Tyo, K. E., Liu, Z., Petranovic, D., & Nielsen, J. (2012). Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Research, 12(5), 491-510. Hou, Y., Duan, C., Zhu, G., Luo, H., Liang, S., Jin, Y., ... & Xu, J. (2019). Functional bacterial cellulose membranes with 3D porous architectures: Conventional drying, tunable wettability and water/oil separation. Journal of Membrane Science, 591, 117312. Hu, S. Q., Gao, Y. G., Tajima, K., Sunagawa, N., Zhou, Y., Kawano, S., ... & Yao, M. (2010). Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proceedings of the National Academy of Sciences, 107(42), 17957-17961. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211, 317-331. Huacai, G., Wan, P., & Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydrate Polymers, 66(3), 372-378. Huang, H. C., Chen, L. C., Lin, S. B., & Chen, H. H. (2011). Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydrate Polymers, 83(2), 979-987. Huang, K., Liu, L., Jiang, B., & Zhu, H. (2012). Removal of Pb (II) by modified watermelon peel adsorbent. In TT Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization-TMS 2012 Annual Meeting and Exhibition (pp. 673-680). Minerals, Metals and Materials Society. Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., & Sun, D. (2014). Recent advances in bacterial cellulose. Cellulose, 21, 1-30. Humenik, M., Scheibel, T., & Smith, A. (2011). Spider silk: understanding the structure–function relationship of a natural fiber. Progress in Molecular Biology and Translational Science, 103, 131-185. Hussein, K. H., Park, K. M., Kang, K. S., & Woo, H. M. (2016). Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Materials Science and Engineering: C, 67, 766-778. Hwang, J. W., Yang, Y. K., Hwang, J. K., Pyun, Y. R., & Kim, Y. S. (1999). Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. Journal of Bioscience and Bioengineering, 88(2), 183-188. Insuasti‐Cruz, E., Suárez‐Jaramillo, V., Mena Urresta, K. A., Pila‐Varela, K. O., Fiallos‐Ayala, X., Dahoumane, S. A., & Alexis, F. (2022). Natural biomaterials from biodiversity for healthcare applications. Advanced Healthcare Materials, 11(1), 2101389. Intranasal-Unigene, S. (2004). Calcitonin Intranasal–Unigene. Jang, S., Gang, H., Kim, B. G., & Choi, K. Y. (2018). FCS and ECH dependent production of phenolic aldehyde and melanin pigment from l-tyrosine in Escherichia coli. Enzyme and Microbial Technology, 112, 59-64. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182. Jebel, F. S., & Almasi, H. (2016). Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers, 149, 8-19. Jenkins, N., & Curling, E. M. (1994). Glycosylation of recombinant proteins: problems and prospects. Enzyme and Microbial Technology, 16(5), 354-364. Jeong, E. Y., Ansari, M. B., Mo, Y. H., & Park, S. E. (2011). Removal of Cu (II) from water by tetrakis (4-carboxyphenyl) porphyrin-functionalized mesoporous silica. Journal of Hazardous Materials, 185(2-3), 1311-1317. Ji, C. F., Ji, Y. B., & Meng, D. Y. (2013). Sulfated modification and anti tumor activity of laminarin. Experimental and Therapeutic Medicine, 6(5), 1259-1264. Jiang, C., Chen, H., Zhang, Y., Feng, H., Shehzad, M. A., Wang, Y., & Xu, T. (2018). Complexation Electrodialysis as a general method to simultaneously treat wastewaters with metal and organic matter. Chemical Engineering Journal, 348, 952-959. Jiang, Q., Luo, Z., Men, Y., Yang, P., Peng, H., Guo, R., ... & Yang, W. (2017). Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials, 143, 29-45. Jin, K., Jin, C., & Wu, Y. (2022). Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydrate Polymers, 283, 119171. Jin, X., Xiang, Z., Liu, Q., Chen, Y., & Lu, F. (2017). Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Bioresource Technology, 244, 844-849. Jin, W., Fu, Y., Hu, M., Wang, S., & Liu, Z. (2020). Highly efficient SnS-decorated Bi2O3 nanosheets for simultaneous electrochemical detection and removal of Cd (II) and Pb (II). Journal of Electroanalytical Chemistry, 856, 113744. Jung, K. W., Lee, S. Y., Choi, J. W., & Lee, Y. J. (2019). A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: adsorption behavior and mechanisms for the removal of copper (II) from aqueous media. Chemical Engineering Journal, 369, 529-541. Jüttner, K., Galla, U., & Schmieder, H. (2000). Electrochemical approaches to environmental problems in the process industry. Electrochimica Acta, 45(15-16), 2575-2594. Kanawade, S. M., & Gaikwad, R. W. (2011). Removal of zinc ions from industrial effluent by using cork powder as adsorbent. International Journal of Chemical Engineering and Applications, 2(3), 199. Kanjanamosit, N., Muangnapoh, C., & Phisalaphong, M. (2010). Biosynthesis and characterization of bacteria cellulose–alginate film. Journal of Applied Polymer Science, 115(3), 1581-1588. Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113-120. Kattimani, V., Lingamaneni, K. P., Chakravarthi, P. S., Kumar, T. S., & Siddharthan, A. (2016). Eggshell-derived hydroxyapatite: a new era in bone regeneration. Journal of Craniofacial Surgery, 27(1), 112-117. Kimura, S., Chen, H. P., Saxena, I. M., Brown Jr, R. M., & Itoh, T. (2001). Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. Journal of Bacteriology, 183(19), 5668-5674. Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345-351. Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561-1603. Kobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92-107. Kongsricharoern, N., & Polprasert, C. (1995). Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Science and Technology, 31(9), 109-117. Koo, H. M., Song, S. H., Pyun, Y. R., & Kim, Y. S. (1998). Evidence that a β-1, 4-endoglucanase secreted by Acetobacter xylinum plays an essential role for the formation of cellulose fiber. Bioscience, Biotechnology, and Biochemistry, 62(11), 2257-2259. Körner, A., & Pawelek, J. (1982). Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science, 217(4565), 1163-1165. Korytowski, W., Kalyanaraman, B., Menon, I. A., Sarna, T., & Sealy, R. C. (1986). Reaction of superoxide anions with melanins: electron spin resonance and spin trapping studies. Biochimica et Biophysica Acta (BBA)-General Subjects, 882(2), 145-153. Kou, S. G., Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules, 169, 85-94. Krichen, F., Bougatef, H., Sayari, N., Capitani, F., Amor, I. B., Koubaa, I., ... & Bougatef, A. (2018). Isolation, purification and structural characterestics of chondroitin sulfate from smooth hound cartilage: In vitro anticoagulant and antiproliferative properties. Carbohydrate Polymers, 197, 451-459. Kumar, A. S. K., Jiang, S. J., & Tseng, W. L. (2015). Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry A, 3(13), 7044-7057. Kumar, A., Grover, S., Sharma, J., & Batish, V. K. (2010). Chymosin and other milk coagulants: sources and biotechnological interventions. Critical Reviews in Biotechnology, 30(4), 243-258. Kyzas, G. Z., & Matis, K. A. (2016). Electroflotation process: A review. Journal of Molecular Liquids, 220, 657-664. Lagunas‐Muñoz, V. H., Cabrera‐Valladares, N., Bolívar, F., Gosset, G., & Martínez, A. (2006). Optimum melanin production using recombinant Escherichia coli. Journal of Applied Microbiology, 101(5), 1002-1008. Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., ... & Ray, R. R. (2021). Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 22(23), 12984. Lam, B., Déon, S., Morin-Crini, N., Crini, G., & Fievet, P. (2018). Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. Journal of Cleaner Production, 171, 927-933. Lamboni, L., Li, Y., Liu, J., & Yang, G. (2016). Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromolecules, 17(9), 3076-3084. Laxmi, M., Kurian, N. K., Smitha, S., & Bhat, S. G. (2016). Melanin and bacteriocin from marine bacteria inhibit biofilms of foodborne pathogens. Indian J Biotechnol, 15(3), 392-399. Lee, H. S., Choi, J. Y., Kwon, S. J., Park, E. S., Oh, B. M., Kim, J. H., & Lee, P. C. (2022). Melanin biopolymer synthesis using a new melanogenic strain of Flavobacterium kingsejongi and a recombinant strain of Escherichia coli expressing 4-hydroxyphenylpyruvate dioxygenase from F. kingsejongi. Microbial Cell Factories, 21(1), 75. Lee, K. Y., Buldum, G., Mantalaris, A., & Bismarck, A. (2014). More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience, 14(1), 10-32. Lee, K. Y., Quero, F., Blaker, J. J., Hill, C. A., Eichhorn, S. J., & Bismarck, A. (2011). Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose, 18, 595-605. Lejeune, F. J., Liénard, D., Matter, M., & Rüegg, C. (2006). Efficiency of recombinant human TNF in human cancer therapy. Cancer Immunity, 6(1). Lewis, U. J., Singh, R. N. P., Tutwiler, G. F., Sigel, M. B., VanderLaan, E. F., & VanderLaan, W. P. (1980, January). Human growth hormone: a complex of proteins. Proceedings of the 1979 Laurentian Hormone Conference, 477-508. Li, D., Li, Q., Mao, D., Bai, N., & Dong, H. (2017). A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously. Bioresource Technology, 245, 649-655. Li, D., Tian, X., Wang, Z., Guan, Z., Li, X., Qiao, H., ... & Wei, Q. (2020). Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chemical Engineering Journal, 383, 123127. Li, P., Anumanthan, A., Gao, X. G., Ilangovan, K., Suzara, V. V., Düzgüneş, N., & Renugopalakrishnan, V. (2007). Expression of recombinant proteins in Pichia pastoris. Applied Biochemistry and Biotechnology, 142, 105-124. Li, Y., Li, L., & Yu, J. (2017). Applications of zeolites in sustainable chemistry. Chem, 3(6), 928-949. Liberti, D., Alfieri, M. L., Monti, D. M., Panzella, L., & Napolitano, A. (2020). A melanin-related phenolic polymer with potent photoprotective and antioxidant activities for dermo-cosmetic applications. Antioxidants, 9(4), 270. Lin, L., & Xu, J. (2020). Fungal pigments and their roles associated with human health. Journal of Fungi, 6(4), 280. Lin, S. P., Loira Calvar, I., Catchmark, J. M., Liu, J. R., Demirci, A., & Cheng, K. C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219. Lin, S. P., Singajaya, S., Lo, T. Y., Santoso, S. P., Hsu, H. Y., & Cheng, K. C. (2023). Evaluation of porous bacterial cellulose produced from foam templating with different additives and its application in 3D cell culture. International Journal of Biological Macromolecules, 234, 123680. Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M., & Hsu, S. H. (2013). Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydrate Polymers, 94(1), 603-611. Lin, W. P., Lai, H. L., Liu, Y. L., Chiung, Y. M., Shiau, C. Y., Han, J. M., ... & Liu, Y. T. (2005). Effect of melanin produced by a recombinant Escherichia coli on antibacterial activity of antibiotics. Journal of Microbiology, Immunology, and Infection= Wei Mian yu gan ran za zhi, 38(5), 320-326. Liu, D., Wei, L., Guo, T., & Tan, W. (2014). Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro. PLoS One, 9(3), e92610. Liu, J., Zhan, X., Wan, J., Wang, Y., & Wang, C. (2015). Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohydrate Polymers, 121, 27-36. Liu, K., & Catchmark, J. M. (2018). Effects of exopolysaccharides from Escherichia coli ATCC 35860 on the mechanical properties of bacterial cellulose nanocomposites. Cellulose, 25, 2273-2287. Liu, K., & Catchmark, J. M. (2019). Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system. Bioresource Technology, 290, 121715. Liu, K., & Catchmark, J. M. (2018). Effects of exopolysaccharides from Escherichia coli ATCC 35860 on the mechanical properties of bacterial cellulose nanocomposites. Cellulose, 25, 2273-2287. Liu, K., & Catchmark, J. M. (2019). Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions. Carbohydrate polymers, 219, 12-20. Liu, K., & Catchmark, J. M. (2020). Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis under different initial pH values of fermentation media. Cellulose, 27(5), 2529-2540. Liu, L., Luo, X. B., Ding, L., & Luo, S. L. (2019). Application of nanotechnology in the removal of heavy metal from water. Nanomaterials for the Removal of Pollutants and Resource Reutilization, 83-147. Liu, Y. C., Chen, S. M., Liu, J. H., Hsu, H. W., Lin, H. Y., & Chen, S. Y. (2015). Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress. Journal of Applied Physics, 117(6). Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 114(9), 5057-5115. Łopusiewicz, Ł. (2018). Isolation, characterisation and biological activity of melanin from Exidia nigricans. World Scientific News, (91), 111-129. Łopusiewicz, Ł., Drozłowska, E., Trocer, P., Kostek, M., Śliwiński, M., Henriques, M. H., ... & Sobolewski, P. (2020). Whey protein concentrate/isolate biofunctional films modified with melanin from watermelon (Citrullus lanatus) seeds. Materials, 13(17), 3876. Lu, Y., Ye, M., Song, S., Li, L., Shaikh, F., & Li, J. (2014). Isolation, purification, and anti-aging activity of melanin from Lachnum singerianum. Applied Biochemistry and Biotechnology, 174, 762-771. Luo, H., Dong, J., Xu, X., Wang, J., Yang, Z., & Wan, Y. (2018). Exploring excellent dispersion of graphene nanosheets in three-dimensional bacterial cellulose for ultra-strong nanocomposite hydrogels. Composites Part A: Applied Science and Manufacturing, 109, 290-297. Madison, J. H. (1989). Manufacturing Pharmaceuticals: Eli Lilly and Company, 1876-1948. Business and Economic History, 72-78. Maksoud, M. A., Elgarahy, A. M., Farrell, C., Ala'a, H., Rooney, D. W., & Osman, A. I. (2020). Insight on water remediation application using magnetic nanomaterials and biosorbents. Coordination Chemistry Reviews, 403, 213096. Maldonado, L. M. P., Hernández, V. E. B., Rivero, E. M., de la Rosa, A. P. B., Flores, J. L. F., Acevedo, L. G. O., & Rodríguez, A. D. L. (2007). Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology: the case of human interferon beta. Biomolecular Engineering, 24(2), 217-222. Manirethan, V., & Balakrishnan, R. M. (2020). Batch and continuous studies on the removal of heavy metals using biosynthesised melanin impregnated activated carbon. Environmental Technology & Innovation, 20, 101085. Manirethan, V., Raval, K., Rajan, R., Thaira, H., & Balakrishnan, R. M. (2018). Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri. Journal of Environmental Management, 214, 315-324. Marcovici, I., Coricovac, D., Pinzaru, I., Macasoi, I. G., Popescu, R., Chioibas, R., ... & Dehelean, C. A. (2022). Melanin and melanin-functionalized nanoparticles as promising tools in cancer research—a review. Cancers, 14(7), 1838. Maria, L., Santos, A. L., Oliveira, P. C., Valle, A. S., Barud, H. S., Messaddeq, Y., & Ribeiro, S. J. (2010). Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polimeros, 20, 72-77. McNamara, J. T., Morgan, J. L., & Zimmer, J. (2015). A molecular description of cellulose biosynthesis. Annual Review of Biochemistry, 84, 895-921. Mejía-Caballero, A., de Anda, R., Hernández-Chávez, G., Rogg, S., Martinez, A., Bolívar, F., ... & Gosset, G. (2016). Biosynthesis of catechol melanin from glycerol employing metabolically engineered Escherichia coli. Microbial Cell Factories, 15, 1-8. Meng, C., Zhong, N., Hu, J., Yu, C., & Saddler, J. N. (2019). The effects of metal elements on ramie fiber oxidation degumming and the potential of using spherical bacterial cellulose for metal removal. Journal of Cleaner Production, 206, 498-507. Mensah, A., Lv, P., Narh, C., Huang, J., Wang, D., & Wei, Q. (2019). Sequestration of Pb (II) ions from aqueous systems with novel green bacterial cellulose graphene oxide composite. Materials, 12(2), 218. Mergulhão, F. J. M., Summers, D. K., & Monteiro, G. A. (2005). Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 23(3), 177-202. Min, L. U., Zhang, Y. M., Guan, X. H., Xu, X. H., & Gao, T. T. (2014). Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Transactions of Nonferrous Metals Society of China, 24(6), 1912-1917. Mobasherpour, I., Salahi, E., & Ebrahimi, M. (2012). Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes. Research on Chemical Intermediates, 38, 2205-2222. Mohsin, A., Zhang, K., Hu, J., Tariq, M., Zaman, W. Q., Khan, I. M., ... & Guo, M. (2018). Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: A kinetic model approach. Carbohydrate Polymers, 181, 793-800. Munarin, F. A. B. I. O. L. A., Tanzi, M. C., & Petrini, P. A. O. L. A. (2012). Advances in biomedical applications of pectin gels. International Journal of Biological Macromolecules, 51(4), 681-689. Musso, T. B., Parolo, M. E., Pettinari, G., & Francisca, F. M. (2014). Cu (II) and Zn (II) adsorption capacity of three different clay liner materials. Journal of Environmental Management, 146, 50-58. Nagarajah, R., Wong, K. T., Lee, G., Chu, K. H., Yoon, Y., Kim, N. C., & Jang, M. (2017). Synthesis of a unique nanostructured magnesium oxide coated magnetite cluster composite and its application for the removal of selected heavy metals. Separation and Purification Technology, 174, 290-300. Nakayama, A., Kakugo, A., Gong, J. P., Osada, Y., Takai, M., Erata, T., & Kawano, S. (2004). High mechanical strength double‐network hydrogel with bacterial cellulose. Advanced Functional Materials, 14(11), 1124-1128. Napavichayanun, S., Amornsudthiwat, P., Pienpinijtham, P., & Aramwit, P. (2015). Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing. Materials Science and Engineering: C, 55, 95-104. Ngah, W. W., & Fatinathan, S. J. C. E. J. (2008). Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chemical Engineering Journal, 143(1-3), 62-72. Nguyen, V. T., Gidley, M. J., & Dykes, G. A. (2008). Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiology, 25(3), 471-478. Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., & Mitsuhashi, S. (1990). The structure and mechanical properties of sheets prepared from bacterial cellulose: Part 2 Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. Journal of Materials Science, 25, 2997-3001. Niu, C., Wu, W., Wang, Z., Li, S., & Wang, J. (2007). Adsorption of heavy metal ions from aqueous solution by crosslinked carboxymethyl konjac glucomannan. Journal of Hazardous Materials, 141(1), 209-214. Nosanchuk, J. D., Stark, R. E., & Casadevall, A. (2015). Fungal melanin: what do we know about structure?. Frontiers in Microbiology, 1463. Ntana, F., Mortensen, U. H., Sarazin, C., & Figge, R. (2020). Aspergillus: A powerful protein production platform. Catalysts, 10(9), 1064. Nune, M., Manchineella, S., Govindaraju, T., & Narayan, K. S. (2019). Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. Materials Science and Engineering: C, 94, 17-25. Obaid, S. S., Gaikwad, D. K., Sayyed, M. I., Khader, A. R., & Pawar, P. P. (2018). Heavy metal ions removal from waste water bythe natural zeolites. Materials Today: Proceedings, 5(9), 17930-17934. Oh, J. J., Kim, J. Y., Kim, Y. J., Kim, S., & Kim, G. H. (2021). Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere, 272, 129884. Ojovan, M. I., Lee, W. E., & Kalmykov, S. N. (2019). An Introduction to Nuclear Waste Immobilisation. Elsevier. Onotri, L., Race, M., Clarizia, L., Guida, M., Alfè, M., Andreozzi, R., & Marotta, R. (2017). Solar photocatalytic processes for treatment of soil washing wastewater. Chemical Engineering Journal, 318, 10-18. Orelma, H., Morales, L. O., Johansson, L. S., Hoeger, I. C., Filpponen, I., Castro, C., ... & Laine, J. (2014). Affibody conjugation onto bacterial cellulose tubes and bioseparation of human serum albumin. RSC Advances, 4(93), 51440-51450. Ow, D. S. W., Nissom, P. M., Philp, R., Oh, S. K. W., & Yap, M. G. S. (2006). Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5α during batch fermentation. Enzyme and Microbial Technology, 39(3), 391-398. Ozverdi, A., & Erdem, M. (2006). Cu {sup 2+}, Cd {sup 2+} and Pb {sup 2+} adsorption from aqueous solutions by pyrite and synthetic iron sulphide. Journal of Hazardous Materials, 137. Pacelli, C., Cassaro, A., Maturilli, A., Timperio, A. M., Gevi, F., Cavalazzi, B., ... & Onofri, S. (2020). Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Applied Microbiology and Biotechnology, 104, 6385-6395. Padrão, J., Machado, R., Casal, M., Lanceros-Méndez, S., Rodrigues, L. R., Dourado, F., & Sencadas, V. (2015). Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes. International Journal of Biological Macromolecules, 81, 608-614. Palomares, L. A., Estrada-Moncada, S., & Ramírez, O. T. (2004). Production of recombinant proteins: challenges and solutions. Recombinant Gene Expression: Reviews and Protocols, 15-51. Pandit, A., & Kumar, R. (2021). A review on production, characterization and application of bacterial cellulose and its biocomposites. Journal of Polymers and the Environment, 29(9), 2738-2755. Park, D., Yun, Y. S., & Park, J. M. (2005). Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere, 60(10), 1356-1364. Park, H., Yang, I., Choi, M., Jang, K. S., Jung, J. C., & Choi, K. Y. (2020). Engineering of melanin biopolymer by co-expression of MelC tyrosinase with CYP102G4 monooxygenase: Structural composition understanding by 15 tesla FT-ICR MS analysis. Biochemical Engineering Journal, 157, 107530. Park, J. H., Choi, G. J., & Kim, S. H. (2014). Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation. Journal of the Korea Organic Resources Recycling Association, 22(2), 50-56. Peligro, F. R., Pavlovic, I., Rojas, R., & Barriga, C. (2016). Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides. Chemical Engineering Journal, 306, 1035-1040. Pountos, I., & Giannoudis, P. V. (2016). Is there a role of coral bone substitutes in bone repair?. Injury, 47(12), 2606-2613. Pralea, I. E., Moldovan, R. C., Petrache, A. M., Ilieș, M., Hegheș, S. C., Ielciu, I., ... & Iuga, C. A. (2019). From extraction to advanced analytical methods: The challenges of melanin analysis. International Journal of Molecular Sciences, 20(16), 3943. Preston, K. E., Graffunder, E. M., Evans, A. M., & Venezia, R. A. (2003). Survey of plasmid-associated genetic markers in Enterobacteriaceae with reduced susceptibilities to cephalosporins. Antimicrobial Agents and Chemotherapy, 47(7), 2179-2185. Pu'Ad, N. M., Koshy, P., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2019). Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5). Purev, E., Kondo, T., Takemoto, D., Niones, J. T., & Ojika, M. (2020). Identification of ε-poly-l-lysine as an antimicrobial product from an Epichloë endophyte and isolation of fungal ε-PL synthetase gene. Molecules, 25(5), 1032. Qin, C., Du, Y., Zhang, Z., Liu, Y., Xiao, L., & Shi, X. (2003). Adsorption of chromium (VI) on a novel quaternized chitosan resin. Journal of Applied Polymer Science, 90(2), 505-510. Rajagopal, K., Kathiravan, G., & Karthikeyan, S. (2011). Extraction and characterization of melanin from Phomopsis: A phellophytic fungi Isolated from Azadirachta indica A. Juss. African Journal of Microbiology Research, 5(7), 762-766. Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separation and Purification Technology, 58(1), 224-231. Rawsthorne, H., Turner, K. N., & Mills, D. A. (2006). Multicopy integration of heterologous genes, using the lactococcal group II intron targeted to bacterial insertion sequences. Applied and Environmental Microbiology, 72(9), 6088-6093. Revskaya, E., Chu, P., Howell, R. C., Schweitzer, A. D., Bryan, R. A., Harris, M., ... & Casadevall, A. (2012). Compton scattering by internal shields based on melanin-containing mushrooms provides protection of gastrointestinal tract from ionizing radiation. Cancer Biotherapy and Radiopharmaceuticals, 27(9), 570-576. Riley, P. A. (1997). Melanin. The International Journal of Biochemistry & Cell Biology, 29(11), 1235-1239. Rizzo, D. M., Blanchette, R. A., & Palmer, M. A. (1992). Biosorption of metal ions by Armillaria rhizomorphs. Canadian Journal of Botany, 70(8), 1515-1520. Rocha, J. H. G., Lemos, A. F., Agathopoulos, S., Valério, P., Kannan, S., Oktar, F. N., & Ferreira, J. M. F. (2005). Scaffolds for bone restoration from cuttlefish. Bone, 37(6), 850-857. Romanov, D. P., Khripunov, A. K., Baklagina, Y. G., Severin, A. V., Lukasheva, N. V., Tolmachev, D. A., ... & Klechkovskaya, V. V. (2014). Nanotextures of composites based on the interaction between hydroxyapatite and cellulose Gluconacetobacter xylinus. Glass Physics and Chemistry, 40, 367-374. Rosas, Á. L., & Casadevall, A. (1997). Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiology Letters, 153(2), 265-272. Ross, P., Mayer, R., & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1), 35-58. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., ... & Benziman, M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 325(6101), 279-281. Roy, S., & Rhim, J. W. (2019). Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocolloids, 94, 391-398. Roy, S., Kim, H. C., Kim, J. W., Zhai, L., Zhu, Q. Y., & Kim, J. (2020). Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nanofiber based nanocomposite films. Materials Today Communications, 24, 100984. Ruan, L., Yu, Z., Fang, B., He, W., Wang, Y., & Shen, P. (2004). Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction. Systematic and Applied Microbiology, 27(3), 286-289. Rühs, P. A., Storz, F., López Gómez, Y. A., Haug, M., & Fischer, P. (2018). 3D bacterial cellulose biofilms formed by foam templating. npj Biofilms and Microbiomes, 4(1), 21. Ruihua, L., Lin, Z., Tao, T., & Bo, L. (2011). Phosphorus removal performance of acid mine drainage from wastewater. Journal of Hazardous Materials, 190(1-3), 669-676. Ruka, D. R., Simon, G. P., & Dean, K. M. (2013). In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydrate Polymers, 92(2), 1717-1723. Sajjan, S., Kulkarni, G., Yaligara, V., Lee, K., & Karegoudar, T. B. (2010). Purification and physiochemical characterization of melanin pigment from Klebsiella sp. GSK. Journal of Microbiology and Biotechnology, 20(11), 1513-1520. Salari, M., Khiabani, M. S., Mokarram, R. R., Ghanbarzadeh, B., & Kafil, H. S. (2018). Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids, 84, 414-423. Saturnini-dimaguila, L. A. (1967). The" nata de coco" 1. Characterization and identity of the causal organism. Philippine Agriculturist, Manila, 5, 462-474. Satyro, S., Marotta, R., Clarizia, L., Di Somma, I., Vitiello, G., Dezotti, M., ... & Andreozzi, R. (2014). Removal of EDDS and copper from waters by TiO2 photocatalysis under simulated UV–solar conditions. Chemical Engineering Journal, 251, 257-268. Saxena, I. M., Kudlicka, K., Okuda, K., & Brown Jr, R. M. (1994). Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. Journal of Bacteriology, 176(18), 5735-5752. Schneider, W. D. H., Dillon, A. J. P., & Camassola, M. (2021). Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. Biotechnology Advances, 47, 107685. Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786-794. Sekar, M., Sakthi, V., & Rengaraj, S. (2004). Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 279(2), 307-313. Selbmann, L., Isola, D., Zucconi, L., & Onofri, S. (2011). Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biology, 115(10), 937-944. Selvakumar, P., Rajasekar, S., Periasamy, K., & Raaman, N. (2008). Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World Journal of Microbiology and Biotechnology, 24, 2125-2131. Sen, T., Barrow, C. J., & Deshmukh, S. K. (2019). Microbial pigments in the food industry—challenges and the way forward. Frontiers in Nutrition, 6, 7. Seo, D., & Choi, K. Y. (2020). Heterologous production of pyomelanin biopolymer using 4-hydroxyphenylpyruvate dioxygenase isolated from Ralstonia pickettii in Escherichia coli. Biochemical Engineering Journal, 157, 107548. Seto, A., Saito, Y., Matsushige, M., Kobayashi, H., Sasaki, Y., Tonouchi, N., ... & Beppu, T. (2006). Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Applied Microbiology and Biotechnology, 73, 915-921. Sevastsyanovich, Y., Alfasi, S., & Cole, J. (2009). Recombinant protein production: a comparative view on host physiology. New Biotechnology, 25(4), 175-180. Shah, N., Ul-Islam, M., Khattak, W. A., & Park, J. K. (2013). Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585-1598. Shankar, S., Wang, L. F., & Rhim, J. W. (2019). Effect of melanin nanoparticles on the mechanical, water vapor barrier, and antioxidant properties of gelatin-based films for food packaging application. Food Packaging and Shelf Life, 21, 100363. Sharifpour, E., Khafri, H. Z., Ghaedi, M., Asfaram, A., & Jannesar, R. (2018). Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization. Ultrasonics Sonochemistry, 40, 373-382. Shen, W., Chen, S., Shi, S., Li, X., Zhang, X., Hu, W., & Wang, H. (2009). Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohydrate Polymers, 75(1), 110-114. Shiloach, J., & Fass, R. (2005). Growing E. coli to high cell density—a historical perspective on method development. Biotechnology Advances, 23(5), 345-357. Shizuya, H., Birren, B., Kim, U. J., Mancino, V., Slepak, T., Tachiiri, Y., & Simon, M. (1992). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proceedings of the National Academy of Sciences, 89(18), 8794-8797. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., ... & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688. Siddiqi, F., Odrljin, T. M., Fay, P. J., Cox, C., & Francis, C. W. (1998). Binding of tissue-plasminogen activator to fibrin: effect of ultrasound. Blood, The Journal of the American Society of Hematology, 91(6), 2019-2025. Si, H., Luo, H., Xiong, G., Yang, Z., Raman, S. R., Guo, R., & Wan, Y. (2014). One‐step in situ biosynthesis of graphene oxide–bacterial cellulose nanocomposite hydrogels. Macromolecular Rapid Communications, 35(19), 1706-1711. Si, W., RN, A., Li, S. R., Zhang, J. X., Wu, W. Y., & Cui, Y. J. (2014). Comparative analysis of seven marine biological source of mineral drugs. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica, 39(17), 3321-3325. Singh, A. K., Srivastava, J. K., Chandel, A. K., Sharma, L., Mallick, N., & Singh, S. P. (2019). Biomedical applications of microbially engineered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Applied Microbiology and Biotechnology, 103, 2007-2032. Singh, S., Nimse, S. B., Mathew, D. E., Dhimmar, A., Sahastrabudhe, H., Gajjar, A., ... & Shinde, P. B. (2021). Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications. Biotechnology Advances, 53, 107773. Sleight, S. C., Bartley, B. A., Lieviant, J. A., & Sauro, H. M. (2010). Designing and engineering evolutionary robust genetic circuits. Journal of Biological Engineering, 4, 1-20. Solano, F. (2014). Melanins: skin pigments and much more—types, structural models, biological functions, and formation routes. New Journal of Science, 2014, 1-28. Soliman, N. A., Berekaa, M. M., & Abdel-Fattah, Y. R. (2005). Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett–Burman experimental design to evaluate culture requirements. Applied Microbiology and Biotechnology, 69, 259-267. Song, W., Yang, H., Liu, S., Yu, H., Li, D., Li, P., & Xing, R. (2023). Melanin: Insights into structure, analysis, and biological activities for future development. Journal of Materials Chemistry B. Sørensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4, 1-8. Srinivasan, S., Barnard, G. C., & Gerngross, T. U. (2003). Production of recombinant proteins using multiple‐copy gene integration in high‐cell‐density fermentations of Ralstonia eutropha. Biotechnology and Bioengineering, 84(1), 114-120. Standal, R., Iversen, T. G., Coucheron, D. H., Fjaervik, E., Blatny, J. M., & Valla, S. (1994). A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. Journal of Bacteriology, 176(3), 665-672. Stanic, V., Maia, F. C. B., de Oliveira Freitas, R., Montoro, F. E., & Evans-Lutterodt, K. (2018). The chemical fingerprint of hair melanosomes by infrared nano-spectroscopy. Nanoscale, 10(29), 14245-14253. Stoica-Guzun, A., Stroescu, M., Jinga, S. I., Mihalache, N., Botez, A., Matei, C., ... & Ionita, V. (2016). Box-Behnken experimental design for chromium (VI) ions removal by bacterial cellulose-magnetite composites. International Journal of Biological Macromolecules, 91, 1062-1072. Stokes, K., McVenes, R., & Anderson, J. M. (1995). Polyurethane elastomer biostability. Journal of Biomaterials Applications, 9(4), 321-354. Sun, T., Jiang, D., Rosenkrans, Z. T., Ehlerding, E. B., Ni, D., Qi, C., ... & Cai, W. (2019). A melanin‐based natural antioxidant defense nanosystem for theranostic application in acute kidney injury. Advanced Functional Materials, 29(48), 1904833. Sun, Y., Meng, C., Zheng, Y., Xie, Y., He, W., Wang, Y., ... & Yue, L. (2018). The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: a comparative study. Cellulose, 25, 5893-5908. Sunagawa, N., Fujiwara, T., Yoda, T., Kawano, S., Satoh, Y., Yao, M., ... & Dairi, T. (2013). Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. Journal of Bioscience and Bioengineering, 115(6), 607-612. Suryanarayanan, T. S., Ravishankar, J. P., Venkatesan, G., & Murali, T. S. (2004). Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycological Research, 108(8), 974-978. Suzuki, Y., Yabuta, M., & Ohsuye, K. (1998). High-level production of recombinant human parathyroid hormone 1-34. Applied and Environmental Microbiology, 64(2), 526-529. Swartz, J. R. (2001). Advances in Escherichia coli production of therapeutic proteins. Current Opinion in Biotechnology, 12(2), 195-201. Tang, X., Zheng, H., Teng, H., Sun, Y., Guo, J., Xie, W., ... & Chen, W. (2016). Chemical coagulation process for the removal of heavy metals from water: a review. Desalination and Water Treatment, 57(4), 1733-1748. Talpaz, M., O'Brien, S., Rose, E., Gupta, S., Shan, J., Cortes, J., ... & Kantarjian, H. M. (2001). Phase 1 study of polyethylene glycol formulation of interferon α-2B (Schering 54031) in Philadelphia chromosome–positive chronic myelogenous leukemia. Blood, The Journal of the American Society of Hematology, 98(6), 1708-1713. Tanizaki, H., Tanaka, H., Iwata, H., & Kato, A. (1997). Activation of macrophages by sulfated glycopeptides in ovomucin, yolk membrane, and chalazae in chicken eggs. Bioscience, Biotechnology, and Biochemistry, 61(11), 1883-1889. Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16), 4363-4389. Terashima, Y., Ozaki, H., & Sekine, M. (1986). Removal of dissolved heavy metals by chemical coagulation, magnetic seeding and high gradient magnetic filtration. Water Research, 20(5), 537-545. Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72, 211-222. Thein-Han, W. W., & Misra, R. D. K. (2009). Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia, 5(4), 1182-1197. Thirumavalavan, M., Lai, Y. L., & Lee, J. F. (2011). Fourier transform infrared spectroscopic analysis of fruit peels before and after the adsorption of heavy metal ions from aqueous solution. Journal of Chemical & Engineering Data, 56(5), 2249-2255. Tofighy, M. A., & Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of Hazardous Materials, 185(1), 140-147. Tran-Ly, A. N., Reyes, C., Schwarze, F. W., & Ribera, J. (2020). Microbial production of melanin and its various applications. World Journal of Microbiology and Biotechnology, 36, 1-9. Tran-Ly, A. N., Ribera, J., Schwarze, F. W., Brunelli, M., & Fortunato, G. (2020). Fungal melanin-based electrospun membranes for heavy metal detoxification of water. Sustainable Materials and Technologies, 23, e00146. Ullah, H., Santos, H. A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23, 2291-2314. Ul-Islam, M., Khan, T., & Park, J. K. (2012). Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydrate Polymers, 89(4), 1189-1197. Ul-Islam, M., Khan, T., & Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596-603. Urbina, L., Guaresti, O., Requies, J., Gabilondo, N., Eceiza, A., Corcuera, M. A., & Retegi, A. (2018). Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydrate Polymers, 193, 362-372. Valla, S., Coucheron, D. H., Fjærvik, E., Kjosbakken, J., Weinhouse, H., Ross, P., ... & Benziman, M. (1989). Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene. Molecular and General Genetics MGG, 217, 26-30. Vethanayagam, J. G., & Flower, A. M. (2005). Decreased gene expression from T7 promoters may be due to impaired production of active T7 RNA polymerase. Microbial Cell Factories, 4, 1-7. Wahid, F., Duan, Y. X., Hu, X. H., Chu, L. Q., Jia, S. R., Cui, J. D., & Zhong, C. (2019). A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties. International Journal of Biological Macromolecules, 132, 692-700. Walsh, G. (2010). Biopharmaceutical benchmarks 2010. Nature Biotechnology, 28(9), 917-924. Wan, Y., Gao, C., Han, M., Liang, H., Ren, K., Wang, Y., & Luo, H. (2011). Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polymers for Advanced Technologies, 22(12), 2643-2648. Wan, Y., Wang, J., Gama, M., Guo, R., Zhang, Q., Zhang, P., ... & Luo, H. (2019). Biofabrication of a novel bacteria/bacterial cellulose composite for improved adsorption capacity. Composites Part A: Applied Science and Manufacturing, 125, 105560. Wang, S. S., Han, Y. H., Chen, J. L., Zhang, D. C., Shi, X. X., Ye, Y. X., ... & Li, M. (2018). Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polymers, 10(9), 963. Wang, Y., Feng, Y., Zhang, X. F., Zhang, X., Jiang, J., & Yao, J. (2018). Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals. Journal of Colloid and Interface Science, 514, 190-198. Wei, H., Wu, M., Fan, A., & Su, H. (2021). Recombinant protein production in the filamentous fungus Trichoderma. Chinese Journal of Chemical Engineering, 30, 74-81. Widhiastuti, F., Lin, J. Y., Shih, Y. J., & Huang, Y. H. (2018). Electrocoagulation of boron by electrochemically co-precipitated spinel ferrites. Chemical Engineering Journal, 350, 893-901. Williams, W. S., & Cannon, R. E. (1989). Alternative environmental roles for cellulose produced by Acetobacter xylinum. Applied and Environmental Microbiology, 55(10), 2448-2452. Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., ... & Emerick, A. W. (1990). Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proceedings of the National Academy of Sciences, 87(20), 8130-8134. Wong, M. S., Wu, S., Causey, T. B., Bennett, G. N., & San, K. Y. (2008). Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metabolic Engineering, 10(2), 97-108. World Health Organization. (2022). Guidelines for Drinking-water Quality: Incorporating the First and Second Addenda. World Health Organization. Wu, C. N., Fuh, S. C., Lin, S. P., Lin, Y. Y., Chen, H. Y., Liu, J. M., & Cheng, K. C. (2018). TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules, 19(2), 544-554. Xiaorui, K., Cong, Z., Pin, X., Zhanwen, D., & Zhijiang, C. (2022). Copper ion-imprinted bacterial cellulose for selectively removing heavy metal ions from aqueous solution. Cellulose, 29(7), 4001-4019. Xu, C., Li, J., Yang, L., Shi, F., Yang, L., & Ye, M. (2017). Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control, 73, 1445-1451. Yamada, Y., Yukphan, P., Vu, H. T. L., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., & Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58(5), 397-404. Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., & Uryu, M. (1989). The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science, 24, 3141-3145. Yang, G., Xie, J., Deng, Y., Bian, Y., & Hong, F. (2012). Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydrate Polymers, 87(4), 2482-2487. Yang, H., Qu, J., Zou, W., Shen, W., & Chen, X. (2021). An overview and future prospects of recombinant protein production in Bacillus subtilis. Applied Microbiology and Biotechnology, 105(18), 6607-6626. Yang, J. S., Xie, Y. J., & He, W. (2011). Research progress on chemical modification of alginate: A review. Carbohydrate Polymers, 84(1), 33-39. Yang, L., Chen, C., Hu, Y., Wei, F., Cui, J., Zhao, Y., ... & Sun, D. (2020). Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. Journal of Colloid and Interface Science, 562, 21-28. Yang, X. J., Fane, A. G., & MacNaughton, S. (2001). Removal and recovery of heavy metals from wastewaters by supported liquid membranes. Water Science and Technology, 43(2), 341-348. Yoshino, T., Asakura, T., & Toda, K. (1996). Cellulose production by Acetobacter pasteurianus on silicone membrane. Journal of Fermentation and Bioengineering, 81(1), 32-36. Zohuriaan, M. J., & Shokrolahi, F. J. P. T. (2004). Thermal studies on natural and modified gums. Polymer Testing, 23(5), 575-579. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95773 | - |
dc.description.abstract | 隨著工業化的迅速發展和人類生活方式的改變,生產和消費活動導致大量污染物排放,這些污染物主要來自各種行業的工業廢水,包括電池製造、殺蟲劑生產、皮革加工、紡織業、石化產品製造和造紙等行業,其中,重金屬是工業廢水中最主要的污染物,對生態環境和人體健康造成嚴重的負面影響。在本研究中,透過共培養Komagataeibacter xylinus ATCC 700178和基因工程改造的Escherichia coli (E. coli),將多孔狀細菌性纖維 (foaming bacterial cellulose,FBC)與黑色素 (melanin)結合,開發一款環境友善的納米複合材料,用於去除水溶液中的重金屬。本研究利用各項分析方法,包括掃描式電子顯微鏡分析、傅里葉紅外線光譜分析、X光繞射分析、熱重分析和介面電位分析,以了解FBC/melanin複合材料的物理化學特性。此外,通過批次實驗研究了重金屬在FBC/melanin複合材料上的吸附情況。FBC/melanin複合材料在pH值6時表現出對於Cu(II)的最佳吸附性能,其吸附在前20分鐘內快速上升,隨後緩慢上升並逐漸達到平衡。FBC/melanin複合材料對Cu(II)的最大吸附容量為293.59 mg/g,此結果高於其他改性細菌性纖維及其他類型的吸附劑。能量色散X射線光譜分析、傅里葉紅外線光譜分析和X射線光電子能譜分析證實了Cu(II)與FBC/melanin複合材料表面的結合,並且探討了其對Cu(II)的吸附機制。基於以上結果,FBC/melanin複合材料具有作為去除水溶液中Cu(II)的高效吸附劑的潛力。此外,本研究所提出的創新策略,即透過基因工程E. coli合成melanin並將其與多孔狀細菌性纖維透過共培養結合,這種方法不僅簡化了細菌性纖維基複合材料的製造過程並降低了成本,還成功開發出一款具有重金屬吸附能力的新型吸附劑。 | zh_TW |
dc.description.abstract | The rapid advancement of industrialization and evolving human lifestyles have led to significant emissions of pollutants, predominantly originating from industrial wastewater across various sectors like battery manufacturing, pesticide production, leather processing, textiles, petrochemicals, and papermaking. Among these, heavy metals emerge as the primary pollutants in industrial wastewater, causing severe adverse effects on both ecological environments and human health. In this study, foaming bacterial cellulose (FBC) was combined with bacterial pigment, melanin nanocrystals by co-culturing Komagataeibacter xylinus ATCC 700178 with genetically engineered Escherichia coli (E. coli) to develop an environmentally friendly nanocomposite, which can effectively serve as an adsorbent for removing heavy metals from aqueous solutions. Various characterization methods, including scanning electron microscope, fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetric analysis and zeta potential analysis were used to analyze the material properties of FBC/melanin composite. Batch experiments were conducted to investigate the adsorption of heavy metals. The FBC/melanin composite exhibited excellent adsorption performance at an optimized pH of 6, with rapid adsorption in the first 20 minutes followed by a gradual increase until equilibrium was reached. The maximum adsorption capacity of the FBC/melanin composite for Cu(II) was found to be 293.59 mg/g, which is higher than that of other modified BC and other types of adsorbents. The binding of heavy metals to the FBC/melanin composite surface was confirmed by energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and the mechanism of Cu(II) adsorption by the FBC/melanin composite was investigated. Considering these results, the FBC/melanin composite shows potential as an efficient adsorbent for the removal of Cu(II) ions from aqueous solutions. Additionally, this study provides an innovative strategy by using genetic engineered E. coli to synthesize melanin and integrating it with foaming bacterial cellulose through co-culture. This approach not only simplifies the fabrication process and reduces costs of producing BC-based composites but also produces a new bioadsorbent with heavy metal adsorption capacity. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:21:43Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-16T16:21:43Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
謝辭 ii 中文摘要 iii 英文摘要 iv 目次 v 圖次 xi 表次 xiv List of Figures xvi List of Tables xix 壹、 前言 1 貳、 文獻回顧 3 2.1 重金屬簡介 3 2.1.1 重金屬汙染問題 3 2.1.2 相關法規 7 2.1.3 水中重金屬汙染處理技術 8 2.1.3.1 化學沉澱 8 2.1.3.2 化學混凝和絮凝 9 2.1.3.3 電化學方法 10 2.1.3.4 膜過濾 10 2.1.3.5 離子交換 11 2.1.3.6 光催化 11 2.1.3.7 吸附 12 2.2 生物材料 14 2.2.1 動物及植物來源之生物材料 14 2.2.2 微生物來源之生物材料 15 2.3 細菌性纖維 (Bacterial cellulose) 24 2.3.1 細菌性纖維結構及特性 24 2.3.2 細菌性纖維來源及其生合成 25 2.3.3 細菌性纖維之應用 29 2.3.3.1 生物醫學應用 29 2.3.3.2 食品應用 30 2.3.3.3 環境應用 30 2.4 細菌性纖維修飾方法 31 2.4.1 原位修飾 (In-situ modifications) 31 2.4.2 異位修飾 (Ex-situ modifications) 33 2.4.3 微生物共培養 (Co-culture fermentation) 34 2.5 黑色素 (Melanin) 37 2.5.1 黑色素之簡介 37 2.5.2 黑色素生合成路徑 39 2.5.3 黑色素之生理活性與應用 40 2.5.3.1 光保護 40 2.5.3.2 熱調節 41 2.5.3.3 抗輻射 41 2.5.3.4 抗氧化 42 2.5.3.5 抗菌 42 2.5.3.6 金屬離子螯合 43 2.6 基因工程 45 2.6.1 重組DNA技術之簡介 45 2.6.2 以質體為基礎的重組蛋白生產 46 2.6.3 重組蛋白生產之宿主 48 2.6.4 大腸桿菌生產黑色素之代謝工程 50 參、 研究目的與架構 57 3.1 研究目的 57 3.2 研究架構 57 肆、 材料與方法 59 4.1 實驗材料 59 4.1.1 實驗菌種 59 4.1.2 質體 60 4.1.3 引子 60 4.1.4 實驗藥品 61 4.2 儀器設備 61 4.3 實驗方法 62 4.3.1 質體建構與轉型作用 62 4.3.1.1 B. megaterium培養及其genomic DNA抽取 62 4.3.1.2 目標基因片段PCR擴增及尺寸確認 62 4.3.1.3 目標基因片段接合 63 4.3.1.4 E.coli轉型作用與酪胺酸酶表達 63 4.3.2 K. xylinus凍管製作 63 4.3.3 利用共培養合成BC/melanin複合膜 64 4.3.4 利用共培養合成FBC/melanin複合膜 65 4.3.5 色差儀檢測FBC/melanin複合膜之外觀顏色 66 4.3.6 FBC/melanin複合膜之melanin萃取與定量 66 4.3.7 材料特性分析 66 4.3.7.1 水含量分析 (Water content analysis) 66 4.3.7.2 掃描式電子顯微鏡分析 (Scanning electron microscopy) 66 4.3.7.3 傅立葉紅外線光譜分析 (Fourier transfer infrared spectroscopy) 67 4.3.7.4 X光繞射分析 (X-ray diffraction) 67 4.3.7.5 熱重分析 (Thermogravimetric analysis) 67 4.3.7.6 介面電位分析 (Zeta potential) 67 4.3.8 細胞毒性分析 67 4.3.9 重金屬離子批次吸附實驗 68 4.3.9.1 FBC/melanin複合膜之複合重金屬吸附能力 68 4.3.9.2 FBC/melanin複合膜吸附Cu(II)之最適條件探討 69 4.3.9.2.1 FBC/melanin複合膜在不同pH值下的Cu(II)吸附能力評估 69 4.3.9.2.2 FBC/melanin複合膜在不同接觸時間下的Cu(II)吸附能力評估 69 4.3.9.2.3 FBC/melanin複合膜之最大Cu(II)承載量 70 4.3.10 FBC/melanin複合膜吸附Cu(II)之機制 70 4.3.10.1 能量色散X射線光譜分析 (Energy-dispersive X-ray spectroscopy) 70 4.3.10.2 傅立葉紅外線光譜分析 (Fourier transfer infrared spectroscopy) 70 4.3.10.3 X射線光電子能譜分析 (X-ray photoelectron spectroscopy) 71 4.3.11 統計分析 71 伍、 結果與討論 72 5.1 pBBR1-melC質體之建構與轉型作用 72 5.2 重組大腸桿菌之melanin生產 75 5.3 FBC/melanin複合膜之外觀顏色 76 5.4 FBC/melanin複合膜之melanin萃取與定量 79 5.5 材料特性分析 80 5.5.1 水含量分析 80 5.5.2 傅立葉紅外線光譜分析 82 5.5.3 掃描式電子顯微鏡分析 84 5.5.4 熱重分析 86 5.5.5 X射線繞射分析 88 5.5.6 介面電位分析 90 5.6 細胞毒性分析 93 5.7 重金屬離子批次吸附實驗 95 5.7.1 複合金屬溶液中FBC/melanin複合膜之重金屬吸附 95 5.7.2 FBC/melanin複合模吸附Cu(II)之最適條件探討 97 5.7.2.1 FBC/melanin複合膜在不同pH值下的Cu(II)吸附能力評估 97 5.7.2.2 FBC/melanin複合膜在不同接觸時間下的Cu(II)吸附能力評估 99 5.7.2.3 FBC/melanin複合膜之最大Cu(II)承載量 102 5.8 FBC/melanin複合膜吸附Cu(II)之機制 104 5.8.1 能量色散X-射線光譜分析 104 5.8.2 傅立葉紅外線光譜分析 106 5.8.3 X射線光電子能譜分析 108 陸、 結論 112 柒、 未來展望 113 捌、 參考文獻 114 玖、 附錄 xxi 9.1 學位論文原創性比對檢核 xxi 9.2 個人簡歷 xxii 9.3 pBBR1-MelC之melC基因與B. megaterium之melC基因比對結果 xxiii 9.4 不同K. xylinus和E. coli共培養比例下製備的FBC/melanin複合膜之外觀 xxiv 9.5 FBC的O 1s高分辨率掃描光譜 xxiv 9.6 小論文 xxv | - |
dc.language.iso | zh_TW | - |
dc.title | 利用共培養木質醋酸菌和基因工程大腸桿菌製備多孔性細菌性纖維/黑色素複合膜及其重金屬離子吸附功能之研究 | zh_TW |
dc.title | Foaming bacterial cellulose/biosynthetic melanin production through co-culturing Komagataeibacter xylinus and genetically modified Escherichia coli for heavy metal adsorption application | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林欣平 | zh_TW |
dc.contributor.coadvisor | Shin-Ping Lin | en |
dc.contributor.oralexamcommittee | 林詠凱;李俊霖;徐國強 | zh_TW |
dc.contributor.oralexamcommittee | Yung-Kai Lin;Chun-Lin Lee;Kuo-Chiang Hsu | en |
dc.subject.keyword | 細菌性纖維,多孔狀細菌性纖維,生物合成,黑色素,重金屬吸附,共培養, | zh_TW |
dc.subject.keyword | Bacterial cellulose,Foaming bacterial cellulose,Biosynthesis,Melanin,Heavy metal adsorption,Co-culture, | en |
dc.relation.page | 156 | - |
dc.identifier.doi | 10.6342/NTU202402194 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-26 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物科技研究所 | - |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 6.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。