Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95767
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信銘zh_TW
dc.contributor.advisorHsin-Min Luen
dc.contributor.author林宜璇zh_TW
dc.contributor.authorYi-Shiuan Linen
dc.date.accessioned2024-09-16T16:19:56Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationBaltzakis, H., & Papamarkos, N. (2001). A new signature verification technique based on a two-stage neural network classifier. Engineering Applications of Artificial Intelligence, 14(1), 95–103.
Beresneva, A., & Epishkina, A. (2020). Data augmentation for signature images in online verification systems. In Biomedical Engineering and Computational Intelligence: Proceedings of The World Thematic Conference—Biomedical Engineering and Computational Intelligence, BIOCOM 2018 (pp. 105-112). Springer International Publishing.
Chandra, S., & Maheshkar, S. (2017). Verification of static signature pattern based on random subspace, REP tree and bagging. Multimedia Tools and Applications, 76, 19139–19171.
Chattopadhyay, S., Manna, S., Bhattacharya, S., & Pal, U. (2022). Surds: Self-supervised attention-guided reconstruction and dual triplet loss for writer independent offline signature verification. In 2022 26th International Conference on Pattern Recognition (ICPR) (pp. 1600-1606). IEEE.
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International Conference on Machine Learning (pp. 1597-1607). PMLR.
Chen, W., Chen, X., Zhang, J., & Huang, K. (2017). Beyond triplet loss: A deep quadruplet network for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 403-412).
Dey, S., Dutta, A., Toledo, J. I., Ghosh, S. K., Lladós, J., & Pal, U. (2017). Signet: Convolutional siamese network for writer independent offline signature verification. arXiv Preprint arXiv:1707.02131.
Diaz, M., Ferrer, M. A., Impedovo, D., Malik, M. I., Pirlo, G., & Plamondon, R. (2019). A perspective analysis of handwritten signature technology. Acm Computing Surveys (Csur), 51(6), 1–39.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv Preprint arXiv:2010.11929.
Ferrer, M. A., Diaz-Cabrera, M., & Morales, A. (2014). Static signature synthesis: A neuromotor inspired approach for biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 667–680.
Ferrer, M. A., Vargas, J. F., Morales, A., & Ordonez, A. (2012). Robustness of offline signature verification based on gray level features. IEEE Transactions on Information Forensics and Security, 7(3), 966–977.
Ghandali, S., & Moghaddam, M. E. (2008). A method for off-line Persian signature identification and verification using DWT and image fusion. In 2008 IEEE International Symposium on Signal Processing and Information Technology (pp. 315-319). IEEE.
Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z., & Gheshlaghi Azar, M. (2020). Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural Information Processing Systems, 33, 21271–21284.
Hafemann, L. G., Sabourin, R., & Oliveira, L. S. (2017). Offline handwritten signature verification—Literature review. In 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-8). IEEE.
Hameed, M. M., Ahmad, R., Kiah, M. L. M., & Murtaza, G. (2021). Machine learning-based offline signature verification systems: A systematic review. Signal Processing: Image Communication, 93, 116139.
He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9729-9738).
Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.7132 7141).
Huang, F.-H., & Lu, H.-M. (2023). Multiscale Feature Learning Using Co-Tuplet Loss for Offline Handwritten Signature Verification. Available at SSRN 4677183.
Justino, E. J., El Yacoubi, A., Bortolozzi, F., & Sabourin, R. (2000a). An off-line signature verification system using hidden markov model and cross-validation. In Proceedings 13th Brazilian Symposium on Computer Graphics and Image Processing (Cat. No. PR00878) (pp. 105-112). IEEE.
Justino, E. J., El Yacoubi, A., Bortolozzi, F., & Sabourin, R. (2000b). An off-line signature verification system using HMM and graphometric features. In Proc. of the 4th International Workshop on Document Analysis Systems (pp. 211-222). Citeseer.
Kalera, M. K., Srihari, S., & Xu, A. (2004). Offline signature verification and identification using distance statistics. International Journal of Pattern Recognition and Artificial Intelligence, 18(07), 1339–1360.
Lam, L., Lee, S.-W., & Suen, C. Y. (1992). Thinning methodologies-a comprehensive survey. IEEE Transactions on Pattern Analysis & Machine Intelligence, 14(09), 869–885.
Li, H., Wei, P., Ma, Z., Li, C., & Zheng, N. (2024). TransOSV: Offline Signature Verification with Transformers. Pattern Recognition, 145, 109882.
Liu, L., Huang, L., Yin, F., & Chen, Y. (2021a). Offline signature verification using a region based deep metric learning network. Pattern Recognition, 118, 108009.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021b). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012-10022).
Musgrave, K., Belongie, S., & Lim, S.-N. (2020). A metric learning reality check. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16 (pp. 681-699). Springer International Publishing.
Ohri, K., & Kumar, M. (2021). Review on self-supervised image recognition using deep neural networks. Knowledge-Based Systems, 224, 107090.
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.
Özgündüz, E., Şentürk, T., & Karslıgil, M. E. (2005). Off-line signature verification and recognition by support vector machine. In 2005 13th European Signal Processing Conference (pp. 1-4). IEEE.
Pal, S., Alaei, A., Pal, U., & Blumenstein, M. (2016). Performance of an off-line signature verification method based on texture features on a large indic-script signature dataset. In 2016 12th IAPR Workshop on Document Analysis Systems (DAS) (pp. 72-77). IEEE.
Ren, J.-X., Xiong, Y.-J., Zhan, H., & Huang, B. (2023). 2C2S: A two-channel and two-stream transformer based framework for offline signature verification. Engineering Applications of Artificial Intelligence, 118, 105639.
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 815-823).
Shariatmadari, S., Emadi, S., & Akbari, Y. (2019). Patch-based offline signature verification using one-class hierarchical deep learning. International Journal on Document Analysis and Recognition (IJDAR), 22(4), 375–385.
Vargas, J. F., Ferrer, M. A., Travieso, C. M., & Alonso, J. B. (2011). Off-line signature verification based on grey level information using texture features. Pattern Recognition, 44(2), 375–385.
Wan, Q., & Zou, Q. (2021). Learning metric features for writer-independent signature verification using dual triplet loss. In 2020 25th International Conference on Pattern Recognition (ICPR) (pp. 3853-3859). IEEE.
Wei, P., Li, H., & Hu, P. (2019). Inverse discriminative networks for handwritten signature verification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5764-5772).
Xing, Z.-J., Yin, F., Wu, Y.-C., & Liu, C.-L. (2018). Offline signature verification using convolution siamese network. In Ninth International Conference on Graphic and Image Processing (ICGIP 2017) (Vol. 10615, pp. 415-423). SPIE.
Yapıcı, M. M., Tekerek, A., & Topaloğlu, N. (2021). Deep learning-based data augmentation method and signature verification system for offline handwritten signature. Pattern Analysis and Applications, 24, 165–179.
Yilmaz, M. B., Yanikoglu, B., Tirkaz, C., & Kholmatov, A. (2011). Offline signature verification using classifier combination of HOG and LBP features. In 2011 International Joint Conference on Biometrics (IJCB) (pp. 1-7). IEEE.
Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2223-2232).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95767-
dc.description.abstract手寫簽名驗證是一種可應用於多種場景的方法,它能夠在銀行或行政機構中用於驗證簽名是否來自於同一作者。因此,它在現代社會中扮演著重要角色。過去的研究中,多採用電腦視覺技術來處理此問題,早期研究通過手工特徵提取方法來獲取簽名特徵,並結合機器學習進行訓練。近年來,研究轉向採用深度學習方法來構建模型並進行訓練,包括應用度量學習和注意力機制。最近,有學者提出使用自監督學習方法來提取簽名特徵,並將其應用於下游任務進行度量學習的手寫簽名驗證框架。我們認為這是一個具有發展潛力的新方向,因此在我們的研究中也採用了這種自監督學習架構來進行手寫簽名驗證訓練。在此過程中,我們探討了不同的資料增強方法對結果的正面或負面影響,同時也利用大型資料集進行自監督學習的預訓練來探討其影響。我們採用Bootstrap Your Own Latent (BYOL) 作為自監督學習模型,並為下游任務構建了一個手寫簽名驗證模型,與其他四種基線方法進行比較。結果顯示,儘管在四種語言資料集:CEDAR(英文)、BHSig-Bengali(孟加拉語)、BHSig-Hindi(印度語)和HanSig(中文)的表現上我們大多排名第三(共五名),但在跨語言資料集的表現上,我們的模型在英文、孟加拉語、印度語上表現最佳,顯示了我們模型的跨語言適應能力,以及使用自監督式學習框架的潛力。zh_TW
dc.description.abstractHandwritten signature verification is a method applicable to various scenarios, capable of being used in banks or administrative institutions to verify whether a signature comes from the same author. Hence, it plays a significant role in modern society. In past research, computer vision techniques have been commonly used to address this issue. Early studies extracted signature features using handcrafted methods and combined them with machine learning. In recent years, research has shifted towards using deep learning models, including the application of metric learning and attention mechanisms. Recently, scholars have proposed using self-supervised learning to extract signature features and apply them to downstream tasks for metric learning in handwritten signature verification frameworks. We believe this is a new promising direction; therefore, we adopted this self-supervised learning framework in our study. In this process, we explored how different data augmentation methods could impact the results. We also investigated the impact of pretraining with a large dataset for self-supervised learning. We used Bootstrap Your Own Latent (BYOL) as the self-supervised learning model and constructed a handwritten signature verification model for the downstream task, comparing it with four other baseline methods. The results showed that although we mostly ranked third out of five in performance on the four language datasets: CEDAR (English), BHSig-Bengali (Bengali), BHSig-Hindi (Hindi), and HanSig (Chinese), our model performed best in English, Bengali, and Hindi on cross-language datasets, demonstrating the cross-language adaptation ability of our model and the potential of using a self-supervised learning framework.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:19:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:19:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Research Motivation 3
1.3 Research Objective 3
Chapter 2. Literature Review 4
2.1 Image Preprocessing 4
2.1.1 Enhancement 5
2.1.2 Normalization 5
2.2. Handcrafted-Based Methods 6
2.2.1 Handcrafted Features 6
2.2.2 Machine Learning Models 7
2.3 Deep Neural Networks 8
2.3.1 Metric Learning 9
2.3.2 Attention Mechanisms 10
2.3.3 Data Augmentation Methods 16
2.3.4 Self-Supervised Learning 17
Chapter 3. System Design 20
3.1 System Overview 21
3.2 Self-Supervised Representation Learning 21
3.2.1 Data Augmentation Methods 23
3.2.2 Pretrain on Large Signature Dataset 26
3.3 Metric Learning Model 27
3.4 Loss Function 29
Chapter 4. Experimental Design 31
4.1 Research Datasets 31
4.2 Performance Evaluation Metrics 33
4.3 Experimental Setups 34
Chapter 5. Experimental Results 36
5.1 Data Augmentation Comparison 36
5.2 Model Performance 38
5.3 Cross-Language Evaluation 44
5.4 Error Analysis 47
Chapter 6. Conclusions 68
REFERENCE 70
-
dc.language.isoen-
dc.title手寫簽名驗證中自監督學習效果的研究zh_TW
dc.titleHandwritten Signature Verification: The Effect of Self-Supervised Learningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;林怡伶zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;Yi-Ling Linen
dc.subject.keyword手寫簽名驗證,深度學習,自監督式學習,度量學習,資料增強,zh_TW
dc.subject.keywordHandwritten Signature Verification,Deep Learning,Self-Supervised Learning,Metric Learning,Data Augmentation,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202402444-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2025-09-01-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved