請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95757
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊姍樺 | zh_TW |
dc.contributor.advisor | Shan-Hua Yang | en |
dc.contributor.author | 蒙彥蓁 | zh_TW |
dc.contributor.author | Yan-Zhen Meng | en |
dc.date.accessioned | 2024-09-16T16:16:57Z | - |
dc.date.available | 2024-09-17 | - |
dc.date.copyright | 2024-09-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-30 | - |
dc.identifier.citation | 陳繼威. (2021). 台灣離島旅遊對硨磲貝的衝擊.
楊清閔, 陳羿惠, 陳岳川, 賴繼昌, 黃星翰, & 吳龍靜. (2015). A preliminary study of distribution and density of giant clams (Tridacna spp.) on Green Island, Taiwan. 臺灣水產學會刊, 42(3), 145-155. 鄭漢文, & 王桂清. (2008). 蘭嶼雅美族貝類文化初探. 東台灣研究(11), 65-96. Abrego, D., Van Oppen, M. J., & Willis, B. L. (2009). Highly infectious symbiont dominates initial uptake in coral juveniles. Molecular Ecology, 18(16), 3518-3531. Adams, T., Lewis, A., & Ledua, E. (1988). Natural population dynamics of Tridacna derasa in relation to reef reseeding and mariculture. Giant clams in Asia and the Pacific. ACIAR Monograph(9), 78-81. Anthony, K. R., Kline, D. I., Diaz-Pulido, G., Dove, S., & Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences, 105(45), 17442-17446. Apte, D., Dutta, S., & Babu, I. (2010). Monitoring densities of the giant clam Tridacna maxima in the Lakshadweep Archipelago. Marine Biodiversity Records, 3, e78. Arvedlund, M., & Takemura, A. (2005). Long-term observation in situ of the anemonefish Amphiprion clarkii (Bennett) in association with a soft coral. Coral Reefs, 24(4), 698-698. Asato, S. (1991). [TRADE AND EXCHANGE SYSTEMS IN EAST AND SOUTHEAST ASIA] The distribution of Tridacna shell adzes in the southern Ryukyu Islands. Bulletin of the Indo-Pacific Prehistory Association, 10, 282-291. Baker, A. C. (2003). Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics, 34(1), 661-689. Baker, A. C., Starger, C. J., McClanahan, T. R., & Glynn, P. W. (2004). Corals' adaptive response to climate change. Nature, 430(7001), 741-741. Bennion, M., Ross, P. M., Lane, H. S., & McDonald, I. R. (2022). Bacterial composition in the toheroa (Paphies ventricosa), a threatened surf clam from Aotearoa (New Zealand). Marine Biology, 169(3), 39. Bernasconi, R., Stat, M., Koenders, A., Paparini, A., Bunce, M., & Huggett, M. J. (2019). Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Frontiers in Microbiology, 10, 459531. bin Othman, A. S., Goh, G. H., & Todd, P. A. (2010). The distribution and status of giant clams (family Tridacnidae)-a short review. Raffles Bull Zool, 58(1), 103-111. Blackall, L. L., Wilson, B., & Van Oppen, M. J. (2015). Coral—the world's most diverse symbiotic ecosystem. Molecular Ecology, 24(21), 5330-5347. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., & Asnicar, F. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology, 37(8), 852-857. Brahmi, C., Chapron, L., Le Moullac, G., Soyez, C., Beliaeff, B., Lazareth, C. E., Gaertner-Mazouni, N., & Vidal-Dupiol, J. (2019). Effects of temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima. BioRxiv, 672907. Brahmi, C., Chapron, L., Le Moullac, G., Soyez, C., Beliaeff, B., Lazareth, C. E., Gaertner-Mazouni, N., & Vidal-Dupiol, J. (2021). Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima. Conservation Physiology, 9(1), coab041. Brown, B. (1997). Coral bleaching: causes and consequences. Coral Reefs, 16, S129-S138. Bruce, A. (2000). Biological observations on the commensal shrimp Paranchistus armatus (H. Milne Edwards)(Crustacea: Decapoda: Pontoniinae). Beagle: Records of the Museums and Art Galleries of the Northern Territory, The, 16, 91-96. Bruno, J. F., Selig, E. R., Casey, K. S., Page, C. A., Willis, B. L., Harvell, C. D., Sweatman, H., & Melendy, A. M. (2007). Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS biology, 5(6), e124. Buck, B. H., Rosenthal, H., & Saint-Paul, U. (2002). Effect of increased irradiance and thermal stress on the symbiosis of Symbiodinium microadriaticum and Tridacna gigas. Aquatic Living Resources, 15(2), 107-117. Bullock, H. A., Luo, H., & Whitman, W. B. (2017). Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Frontiers in Microbiology, 8, 254510. Cabaitan, P. C., Gomez, E. D., & Aliño, P. M. (2008). Effects of coral transplantation and giant clam restocking on the structure of fish communities on degraded patch reefs. Journal of Experimental Marine Biology and Ecology, 357(1), 85-98. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581-583. Charpy, L., Casareto, B., Langlade, M.-J., & Suzuki, Y. (2012). Cyanobacteria in coral reef ecosystems: a review. Journal of Marine Sciences. Clams, G. (2017). Oceanography and Marine Biology. Oceanography and marine biology: An annual review, 55, 2-303. Coffroth, M. A., Santos, S. R., & Goulet, T. L. (2001). Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Marine Ecology Progress Series, 222, 85-96. Cooper, T. F., Berkelmans, R., Ulstrup, K. E., Weeks, S., Radford, B., Jones, A. M., Doyle, J., Canto, M., O'Leary, R. A., & van Oppen, M. J. (2011). Environmental factors controlling the distribution of Symbiodinium harboured by the coral Acropora millepora on the Great Barrier Reef. PLoS One, 6(10), e25536. Davy, S. K., Allemand, D., & Weis, V. M. (2012). Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews, 76(2), 229-261. de Gier, W., & Becker, C. (2020). A Review of the Ecomorphology of Pinnotherine Pea Crabs (Brachyura: Pinnotheridae), with an Updated List of Symbiont-Host Associations. Diversity, 12(11). DeBoer, T. S., Baker, A. C., Erdmann, M. V., Jones, P. R., & Barber, P. H. (2012). Patterns of Symbiodinium distribution in three giant clam species across the biodiverse Bird’s Head region of Indonesia. Marine Ecology Progress Series, 444, 117-132. Dubousquet, V., Gros, E., Berteaux-Lecellier, V. r., Viguier, B., Raharivelomanana, P., Bertrand, C., & Lecellier, G. J. (2016). Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress. Biology Open, 5(10), 1400-1407. Dunphy, C. M., Gouhier, T. C., Chu, N. D., & Vollmer, S. V. (2019). Structure and stability of the coral microbiome in space and time. Scientific reports, 9(1), 6785. Elfwing, T., Blidberg, E., Sison, M., & Tedengren, M. (2003). A comparison between sites of growth, physiological performance and stress responses in transplanted Tridacna gigas. Aquaculture, 219(1-4), 815-828. Elfwing, T., Blidberg, E., & Tedengren, M. (2002). Physiological responses to copper in giant clams: a comparison of two methods in revealing effects on photosynthesis in zooxanthellae. Marine environmental research, 54(2), 147-155. Elfwing, T., Plantman, P., Tedengren, M., & Wijnbladh, E. (2001). Responses to temperature, heavy metal and sediment stress by the giant clam Tridacna squamosa. Marine & Freshwater Behaviour & Phy, 34(4), 239-248. Ellis, S. C. (1997). Spawning and early larval rearing of giant clams (Bivalvia: Tridacnidae) (Vol. 130). Center for Tropical and Subtropical Aquaculture Waimanalo, Hawaii. Fankboner, P. V. (1971). Intracellular digestion of symbiontic zooxanthellae by host amoebocytes in giant clams (Bivalvia: Tridacnidae), with a note on the nutritional role of the hypertrophied siphonal epidermis. The Biological Bulletin, 141(2), 222-234. Farmer, M. A., Fitt, W. K., & Trench, R. K. (2001). Morphology of the symbiosis between Corculum cardissa (Mollusca: Bivalvia) and Symbiodinium corculorum (Dinophyceae). The Biological Bulletin, 200(3), 336-343. Finney, J. C., Pettay, D. T., Sampayo, E. M., Warner, M. E., Oxenford, H. A., & LaJeunesse, T. C. (2010). The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microbial ecology, 60, 250-263. Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25(4), 500-505. Freitas, S., Hatosy, S., Fuhrman, J. A., Huse, S. M., Mark Welch, D. B., Sogin, M. L., & Martiny, A. C. (2012). Global distribution and diversity of marine Verrucomicrobia. The ISME Journal, 6(8), 1499-1505. Gerpe, D., Lasa, A., Lema, A., & Romalde, J. L. (2021). Metataxonomic analysis of tissue-associated microbiota in grooved carpet-shell (Ruditapes decussatus) and Manila (Ruditapes philippinarum) clams. International Microbiology, 24(4), 607-618. Gilbert, A., Andréfouët, S., Yan, L., & Remoissenet, G. (2006). The giant clam Tridacna maxima communities of three French Polynesia islands: comparison of their population sizes and structures at early stages of their exploitation. ICES Journal of Marine Science, 63(9), 1573-1589. Guibert, I., Lecellier, G., Torda, G., Pochon, X., & Berteaux-Lecellier, V. (2020). Metabarcoding reveals distinct microbiotypes in the giant clam Tridacna maxima. Microbiome, 8(1), 57. Harris, D. L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J. M., & Parravicini, V. (2018). Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Science advances, 4(2), eaao4350. Harzhauser, M., Mandic, O., Piller, W. E., Reuter, M., & Kroh, A. (2008). Tracing back the origin of the Indo‐Pacific mollusc fauna: Basal Tridacninae from the Oligocene and Miocene of the sultanate of Oman. Palaeontology, 51(1), 199-213. Hean, R. L., & Cacho, O. J. (2003). A growth model for giant clams Tridacna crocea and T. derasa. Ecological modelling, 163(1-2), 87-100. Heslinga, G. (1996). Clams to cash: how to make and sell giant clam shell products (Vol. 125). Center for Tropical and Subtropical Aquaculture Waimanalo, Hawaii. Hester, E. R., Barott, K. L., Nulton, J., Vermeij, M. J., & Rohwer, F. L. (2016). Stable and sporadic symbiotic communities of coral and algal holobionts. The ISME Journal, 10(5), 1157-1169. Hodgson, G. (1999). A global assessment of human effects on coral reefs. Marine Pollution Bulletin, 38(5), 345-355. Hong, M.-J., Yu, Y.-T., Chen, C. A., Chiang, P.-W., & Tang, S.-L. (2009). Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan. Applied and environmental microbiology, 75(24), 7797-7806. Huber, J. A., Mark Welch, D. B., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A., & Sogin, M. L. (2007). Microbial population structures in the deep marine biosphere. science, 318(5847), 97-100. Huggett, M. J., & Apprill, A. (2019). Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral‐associated microbes. Environmental microbiology reports, 11(3), 372-385. Hume, B., D'Angelo, C., Burt, J., Baker, A. C., Riegl, B., & Wiedenmann, J. (2013). Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull, 72(2), 313-322. Hume, B. C., D'Angelo, C., Smith, E. G., Stevens, J. R., Burt, J., & Wiedenmann, J. (2015). Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Scientific reports, 5(1), 8562. Ikeda, S., Yamashita, H., Kondo, S. N., Inoue, K., Morishima, S. Y., & Koike, K. (2017). Zooxanthellal genetic varieties in giant clams are partially determined by species-intrinsic and growth-related characteristics. PLoS One, 12(2), e0172285. Ishikura, M., Adachi, K., & Maruyama, T. (1999). Zooxanthellae release glucose in the tissue of a giant clam, Tridacna crocea. Marine Biology, 133, 665-673. Ishikura, M., Hagiwara, K., Takishita, K., Haga, M., Iwai, K., & Maruyama, T. (2004). Isolation of new Symbiodinium strains from tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate. Marine Biotechnology, 6, 378-385. Jameson, S. C. (1976). Early life history of the giant clams Tridacna crocea Lamarck, Tridacna maxima (Roding), and Hippopus hippopus (Linnaeus). Jantzen, C., Wild, C., El-Zibdah, M., Roa-Quiaoit, H. A., Haacke, C., & Richter, C. (2008). Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa, Red Sea. Marine Biology, 155, 211-221. Jones, A., & Berkelmans, R. (2010). Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS One, 5(5), e10437. Jones, D. S., Williams, D. F., & Romanek, C. S. (1986). Life history of symbiont-bearing giant clams from stable isotope profiles. science, 231(4733), 46-48. Junchompoo, C., Sinrapasan, N., Penpian, C., & Patsorn, P. (2013). Changing seawater. temperature effects on giant clams bleaching, Mannai Island, Rayong province, Thailand. PROCEEDINGS of the Design Symposium on Conservation of Ecosystem (2013)(The 12th SEASTAR2000 workshop), p. 71-76. Kelly, L. W., Williams, G. J., Barott, K. L., Carlson, C. A., Dinsdale, E. A., Edwards, R. A., Haas, A. F., Haynes, M., Lim, Y. W., & McDole, T. (2014). Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proceedings of the National Academy of Sciences, 111(28), 10227-10232. Kimes, N. E., Van Nostrand, J. D., Weil, E., Zhou, J., & Morris, P. J. (2010). Microbial functional structure of Montastraea faveolata, an important Caribbean reef‐building coral, differs between healthy and yellow‐band diseased colonies. Environmental microbiology, 12(2), 541-556. Klumpp, D., Bayne, B., & Hawkins, A. (1992). Nutrition of the giant clam Tridacna gigas (L.) I. Contribution of filter feeding and photosynthates to respiration and growth. Journal of Experimental Marine Biology and Ecology, 155(1), 105-122. Klumpp, D., & Griffiths, C. (1994). Contributions of phototrophic and heterotrophic nutrition to the metabolic and growth requirements of four species of giant clam (Tridacnidae). Marine Ecology Progress Series, 103-115. Klumpp, D. W., Bayne, B. L., & Hawkins, A. J. S. (1992). Nutrition of the giant clam Tridacna gigas (L.) I. Contribution of filter feeding and photosynthates to respiration and growth. Journal of Experimental Marine Biology and Ecology, 155(1), 105-122. LaJeunesse, T. (2002). Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Marine Biology, 141, 387-400. LaJeunesse, T., Bhagooli, R., Hidaka, M., DeVantier, L., Done, T., Schmidt, G., Fitt, W., & Hoegh-Guldberg, O. (2004). Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Marine Ecology Progress Series, 284, 147-161. LaJeunesse, T. C., Wham, D. C., Pettay, D. T., Parkinson, J. E., Keshavmurthy, S., & Chen, C. A. (2014). Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia, 53(4), 305-319. Lee, S. Y., Jeong, H. J., Kang, N. S., Jang, T. Y., Jang, S. H., & Lajeunesse, T. C. (2015). Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. European Journal of Phycology, 50(2), 155-172. Leggat, W., Buck, B. H., Grice, A., & Yellowlees, D. (2003). The impact of bleaching on the metabolic contribution of dinoflagellate symbionts to their giant clam host. Plant, Cell & Environment, 26(12), 1951-1961. Lema, K. A., Bourne, D. G., & Willis, B. L. (2014). Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Molecular Ecology, 23(19), 4682-4695. Lema, K. A., Willis, B. L., & Bourne, D. G. (2012). Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Applied and environmental microbiology, 78(9), 3136-3144. Li, J., Chen, Q., Zhang, S., Huang, H., Yang, J., Tian, X.-P., & Long, L.-J. (2013). Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora. PLoS One, 8(8), e71301. Li, J., Zou, Y., Yang, J., Li, Q., Bourne, D. G., Sweet, M., Liu, C., Guo, A., & Zhang, S. (2022). Cultured bacteria provide insight into the functional potential of the coral-associated microbiome. Msystems, 7(4), e00327-00322. Lim, S. S. Q., Huang, D., Soong, K., & Neo, M. L. (2019). Diversity of endosymbiotic Symbiodiniaceae in giant clams at Dongsha Atoll, northern South China Sea. Symbiosis, 78(3), 251-262. Little, A. F., Van Oppen, M. J., & Willis, B. L. (2004). Flexibility in algal endosymbioses shapes growth in reef corals. science, 304(5676), 1492-1494. Littman, R. A., van Oppen, M. J., & Willis, B. L. (2008). Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). Journal of Experimental Marine Biology and Ecology, 364(1), 48-53. Littman, R. A., Willis, B. L., & Bourne, D. G. (2009). Bacterial communities of juvenile corals infected with different Symbiodinium (dinoflagellate) clades. Marine Ecology Progress Series, 389, 45-59. Littman, R. A., Willis, B. L., Pfeffer, C., & Bourne, D. G. (2009). Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS microbiology ecology, 68(2), 152-163. Long, C., Zhang, Y., Li, Y., Li, J., Zhou, Z., Qin, Y., Li, X., Ma, H., Wei, J., & Zhou, Y. (2021). Effects of Symbiodiniaceae Phylotypes in Clades A–E on Progeny Performance of Two Giant Clams (Tridacna squamosa and T. crocea) During Early History Life Stages in the South China Sea. Frontiers in Marine Science, 8, 633761. Lucas, J. S. (1994). The biology, exploitation, and mariculture of giant clams (Tridacnidae). Reviews in Fisheries Science, 2(3), 181-223. Lucas, J. S. (2014). Giant clams. Curr Biol, 24(5), R183-184. M. Ishikura, C. K. T. M. (1997). UV-absorbing substances in zooxanthellate and azooxanthellate clams. Marine Biology, 128, 649-655. Maboloc, E. A., Puzon, J. J. M., & Villanueva, R. D. (2015). Stress responses of zooxanthellae in juvenile Tridacna gigas (Bivalvia, Cardiidae) exposed to reduced salinity. Hydrobiologia, 762, 103-112. Maruyama, T., & Heslinga, G. (1997). Fecal discharge of zooxanthellae in the giant clam Tridacna derasa, with reference to their in situ growth rate. Marine Biology, 127, 473-477. McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8(4), e61217. Mies, M. (2019). Evolution, diversity, distribution and the endangered future of the giant clam–Symbiodiniaceae association. Coral Reefs, 38(6), 1067-1084. Mies, M., Scozzafave, M. S., Braga, F., & Sumida, P. Y. G. (2017). Giant Clams. In Marine Ornamental Species Aquaculture (pp. 510-535). Mies, M., Sumida, P. Y., Rädecker, N., & Voolstra, C. R. (2017). Marine invertebrate larvae associated with Symbiodinium: a mutualism from the start? Frontiers in Ecology and Evolution, 5, 56. Mingoa-Licuanan, S. S., & Gomez, E. D. (2007). Giant clam hatchery, ocean nursery and stock enhancement. Aquaculture Department, Southeast Asian Fisheries Development Center. Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological economics, 29(2), 215-233. Morrow, K. M., Moss, A. G., Chadwick, N. E., & Liles, M. R. (2012). Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Applied and environmental microbiology, 78(18), 6438-6449. Neo, M. L., Eckman, W., Vicentuan, K., Teo, S. L.-M., & Todd, P. A. (2015). The ecological significance of giant clams in coral reef ecosystems. Biological Conservation, 181, 111-123. Nicholaus, R., Lukwambe, B., Yang, W., Zhu, J., & Zheng, Z. (2020). In situ assemblies of bacteria and nutrient dynamics in response to an ecosystem engineer, marine clam Scapharca subcrenata, in the sediment of an aquaculture bioremediation system. Journal of Ocean University of China, 19, 1447-1460. Norton, J., Prior, H., Baillie, B., & Yellowlees, D. (1995). Atrophy of the zooxanthellal tubular system in bleached giant clams Tridacna gigas. Journal of Invertebrate Pathology, 66(3), 307-310. Norton, J. H., Shepherd, M. A., Long, H. M., & Fitt, W. K. (1992). The zooxanthellal tubular system in the giant clam. The Biological Bulletin, 183(3), 503-506. Okada, H. (1997). Market survey of aquarium giant clams in Japan. Olivotto, I., Planas, M., Simões, N., Holt, G. J., Avella, M. A., & Calado, R. (2011). Advances in Breeding and Rearing Marine Ornamentals. Journal of the World Aquaculture Society, 42(2), 135-166. Pochon, X., Wecker, P., Stat, M., Berteaux-Lecellier, V., & Lecellier, G. (2019). Towards an in-depth characterization of Symbiodiniaceae in tropical giant clams via metabarcoding of pooled multi-gene amplicons. PeerJ, 7, e6898. Qin, Z., Pan, N., Yu, K., Chen, S., Wei, X., Chen, B., & Yu, X. (2024). Depth distribution and depth adaptation of microbiomes in juvenile and adult scleractinian corals (Pocillopora verrucosa) in the central South China Sea. Coral Reefs, 1-14. RCoreTeam. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Rodolfo-Metalpa, R., Houlbrèque, F., Tambutté, É., Boisson, F., Baggini, C., Patti, F. P., Jeffree, R., Fine, M., Foggo, A., & Gattuso, J.-P. (2011). Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change, 1(6), 308-312. Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. Rohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10. Rossbach, S., Cardenas, A., Perna, G., Duarte, C. M., & Voolstra, C. R. (2019). Tissue-Specific Microbiomes of the Red Sea Giant Clam Tridacna maxima Highlight Differential Abundance of Endozoicomonadaceae. Front Microbiol, 10, 2661. Rowan, R., & Knowlton, N. (1995). Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proceedings of the National Academy of Sciences, 92(7), 2850-2853. Sandin, S. A., Smith, J. E., DeMartini, E. E., Dinsdale, E. A., Donner, S. D., Friedlander, A. M., Konotchick, T., Malay, M., Maragos, J. E., & Obura, D. (2008). Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One, 3(2), e1548. Sayco, S. L. G., Cabaitan, P. C., & Kurihara, H. (2023). Bleaching reduces reproduction in the giant clam Tridacna gigas. Marine Ecology Progress Series, 706, 47-56. Schöne, B. R., Lega, J., Flessa, K. W., Goodwin, D. H., & Dettman, D. L. (2002). Reconstructing daily temperatures from growth rates of the intertidal bivalve mollusk Chione cortezi (northern Gulf of California, Mexico). Palaeogeography, Palaeoclimatology, Palaeoecology, 184(1-2), 131-146. Shelley, C., & Southgate, P. C. (1988). Reproductive periodicity and morphometry of Hippopus hippopus and Tridacna crocea. In Giant clams in Asia and the Pacific (pp. 86-88). Australian Centre for International Agricultural Research. Shang, Y. C., Tisdell, C. A., & Leung, P. (1991). Report on a market survey of giant clam products in selected countries. Waimanalo, Hawaii: Center for Tropical and Subtropical Aquaculture. Silverstein, R. N., Cunning, R., & Baker, A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global change biology, 21(1), 236-249. Sorokin, Y. I. (2013). Coral reef ecology (Vol. 102). Springer Science & Business Media. Speers, A. E., Besedin, E. Y., Palardy, J. E., & Moore, C. (2016). Impacts of climate change and ocean acidification on coral reef fisheries: an integrated ecological–economic model. Ecological economics, 128, 33-43. Su, Y., Hung, J.-H., & Liu, L.-L. (2014). Review of giant clams (Mollusca, Bivalvia, Eulamellibranchia, Cardiidae, Tridacninae) from Taiwan. Platax, 2014, 33-52. Sun, F., Yang, H., Zhang, X., Tan, F., & Shi, Q. (2022). Response characteristics of bacterial communities in multiple coral genera at the early stages of coral bleaching during El Niño. Ecological Indicators, 144, 109569. Trabal Fernández, N., Mazón-Suástegui, J. M., Vázquez-Juárez, R., Ascencio-Valle, F., & Romero, J. (2014). Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production. FEMS microbiology ecology, 88(1), 69-83. Trott, L. B., & WL, C. (1972). Carapus homei commensal in the mantle cavity of Tridacna sp. in the South China Sea. Umeki, M., Yamashita, H., Suzuki, G., Sato, T., Ohara, S., & Koike, K. (2020). Fecal pellets of giant clams as a route for transporting Symbiodiniaceae to corals. PLoS One, 15(12), e0243087. van Oppen, M. J., & Blackall, L. L. (2019). Coral microbiome dynamics, functions and design in a changing world. Nature Reviews Microbiology, 17(9), 557-567. Voolstra, C. R., Suggett, D. J., Peixoto, R. S., Parkinson, J. E., Quigley, K. M., Silveira, C. B., Sweet, M., Muller, E. M., Barshis, D. J., & Bourne, D. G. (2021). Extending the natural adaptive capacity of coral holobionts. Nature Reviews Earth & Environment, 2(11), 747-762. Wada, S. K. (1952). Protandric functional hermaphroditism in the tridacnid clams. Oceanographical Magazine, 4(1), 23-30. Wang, L., Cheung, M. K., Kwan, H. S., Hwang, J. S., & Wong, C. K. (2015). Microbial diversity in shallow‐water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. Journal of basic microbiology, 55(11), 1308-1318. Watanabe, A., & Nakamura, T. (2019). Carbon dynamics in coral reefs. Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation, 273-293. Watanabe, T., Suzuki, A., Kawahata, H., Kan, H., & Ogawa, S. (2004). A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 212(3-4), 343-354. Wickham, H., & Wickham, H. (2016). Getting Started with ggplot2. ggplot2: Elegant graphics for data analysis, 11-31. Williams, A. D., Brown, B. E., Putchim, L., & Sweet, M. J. (2015). Age-related shifts in bacterial diversity in a reef coral. PLoS One, 10(12), e0144902. Yang, S.-H., Chiang, P.-W., Hsu, T.-C., Kao, S.-J., & Tang, S.-L. (2016). Bacterial community associated with organs of shallow hydrothermal vent crab Xenograpsus testudinatus near Kuishan Island, Taiwan. PLoS One, 11(3), e0150597. Yang, T. F., Lan, T. F., Lee, H.-F., Fu, C.-C., Chuang, P.-C., Lo, C.-H., Chen, C.-H., Chen, C.-T. A., & Lee, C.-S. (2005). Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal, 39(5), 469-480. Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F. O., Ludwig, W., Schleifer, K. H., Whitman, W. B., Euzeby, J., Amann, R., & Rossello-Mora, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol, 12(9), 635-645. Ziegler, M., Grupstra, C. G., Barreto, M. M., Eaton, M., BaOmar, J., Zubier, K., Al-Sofyani, A., Turki, A. J., Ormond, R., & Voolstra, C. R. (2019). Coral bacterial community structure responds to environmental change in a host-specific manner. Nature communications, 10(1), 3092. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95757 | - |
dc.description.abstract | 硨磲貝(Tridacna spp.)為生活於印度太平洋熱帶珊瑚礁區的大型雙殼類,在珊瑚礁生態系中扮演重要角色,被視為健康指標物種。然而,近年來硨磲貝受到水族貿易需求而遭人為過度捕撈,也因棲地破壞、海洋汙染、海平面溫度增加而有數量下降及體長減少的趨勢,多種硨磲貝被國際自然保護聯盟評估為易危中的依賴保育,華盛頓公約組織也將硨磲貝列為世界稀有海洋生物附錄二之中。前人研究發現珊瑚身上的這些共棲微生物可藉由參與固碳、固氮以及硫、磷等元素的循環來幫助珊瑚維持健康、適應環境變動,預期在硨磲貝上也會有相似的發現,但目前硨磲貝共棲微生物的研究並不多。因此,本研究採集了台灣墾丁、小琉球、澎湖、太平島、東沙、東北角、龜山島、宜蘭、花蓮、台東、綠島、蘭嶼與日本沖繩的四種硨磲貝,長硨磲貝(Tridacna maxima)、諾亞硨磲貝(T. noae)、鱗硨磲貝(T. squamosa)與圓硨磲(T. crocea)的外套膜組織(0.5cm2),同時紀錄殼長、深度,並透過次世代定序了解共生藻及細菌組成。調查結果顯示,硨磲貝在台灣不同地區的物種分布並不平均。微生物結果顯示,菌相組成方面,地點是最主要的影響因子,其次是物種,而體型大小的影響則相對較小,生長深度則無顯著影響。優勢菌門包括Proteobacteria、Verrucomicrobia、Firmicutes、Cyanobacteria、Bacteroidetes。在共生藻方面,地點也是最主要的影響因素,其次是物種,而體型大小和生長深度對共生藻組成的影響不明顯。優勢的共生藻屬以Symbiodinium為主,其次則是Durusdinium及Cladocopium。此外,長硨磲貝、諾亞硨磲貝與鱗硨磲貝三種硨磲貝的菌相組成和共生藻組成具有明顯的地理專一性。隨著地理環境的不同而有獨特的微生物相。且隨著體型的轉變,不同地點與不同種硨磲貝的菌相與共生藻相轉變呈現不同的趨勢。 | zh_TW |
dc.description.abstract | Giant clams (Tridacna spp.) are the biggest bivalves that live in tropical coral reefs in the Indo-Pacific Ocean. They play an important role in the coral reef ecosystem and are considered indicator species for ecosystem health. However, in recent years, these giant clams have faced challenges due to overexploitation driven by the aquarium trade, habitat destruction, marine pollution, and rising sea temperatures, resulting in declining populations and reduced sizes. Most of species are classified as Vulnerable on IUCN Red List of Threatened Species and protected under CITES. Previous studies have demonstrated that the coral-associated microbiota participate in carbon and nitrogen fixation as well as cycling of sulfur, phosphorus, and other elements, aiding corals in maintaining health and adapting to environmental changes. Similar findings are anticipated for the microbiota associated with giant clams, although research in this area is currently limited. Therefore, this study collected samples of mantle tissue (0.5 cm2) from four species of giant clam (Tridacna maxima, T. noae, T. squamosa, and T. crocea) across various locations in Taiwan (Kenting, Xiao Liuqiu, Penghu, Taiping Island, Dongsha, Northeast Coast, Guishan Island, Yilan, Hualien, Taitung, Lyudao, Lanyu) and Okinawa, Japan. Shell length and growth depth are also recorded. And microbiome composition, including symbiotic algae and bacteria, were analyzed using next-generation sequencing. The investigation revealed uneven distribution of giant clam species across different regions of Taiwan. Microbial analysis indicated that location was the primary factor influencing bacterial composition, followed by species, with lesser influence from shell size and growth depth had no significant impact. Dominant bacterial phyla included Proteobacteria, Verrucomicrobia, Firmicutes, Cyanobacteria, and Bacteroidetes. In terms of symbiotic algae, location was also the primary factor, followed by species, with shell size and growth depth having less discernible effects. The predominant genera of symbiotic algae were predominantly Symbiodinium, followed by Durusdinium and Cladocopium. Additionally, T. maxima, T. noae and T. squamosa, microbial composition, both bacterial and algal, exhibited clear geographic specificity, with unique microbial communities associated with different geographic environments. Furthermore, variations in shell size resulted in different trends in microbial composition among different species from different locations. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:16:57Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-16T16:16:57Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
口試委員會審定書…………………………………………………………………………………………………………………………………………i 誌謝…………………………………………………………………………………………………………………………………………………………………………ii 中文摘要……………………………………………………………………………………………………………………………………………………………iii 英文摘要……………………………………………………………………………………………………………………………………………………………iv 目錄………………………………………………………………………………………………………………………………………………………………vi 圖次…………………………………………………………………………………………………………………………………………………………………xi 表次…………………………………………………………………………………………………………………………………………………………………xiii 壹、緒論…………………………………………………………………………………………………………………………………………………………………1 1.1珊瑚礁生態系…………………………………………………………………………………………………………………………………………………1 1.2硨磲貝簡介…………………………………………………………………………………………………………………………………………………1 1.2.1硨磲貝分類………………………………………………………………………………………………………………………………………2 1.2.2硨磲貝生活史…………………………………………………………………………………………………………………………………3 1.2.3 硨磲貝與共生藻的關係…………………………………………………………………………………………………………3 1.2.4 硨磲貝生理……………………………………………………………………………………………………………………………………5 1.3硨磲貝在珊瑚礁生態系中的功能………………………………………………………………………………………………………5 1.4硨磲貝的利用…………………………………………………………………………………………………………………………………………………6 1.5硨磲貝的資源量與保育狀況…………………………………………………………………………………………………………………7 1.6硨磲貝微生物方面研究……………………………………………………………………………………………………………………………8 1.7研究動機與目的……………………………………………………………………………………………………………………………………………9 貳、材料與方法…………………………………………………………………………………………………………………………………………………11 2.1野外採樣地點與物種………………………………………………………………………………………………………………………………11 2.2硨磲貝外套膜組織去氧核醣核酸萃取…………………………………………………………………………………………11 2.3聚合酶連鎖反應(Polymerase chain reaction, PCR) …………………………………………………………………12 2.4 DNA擴增子(DNA amplicon)第一次純化…………………………………………………………………………………12 2.5擴增子編碼與第二次純化……………………………………………………………………………………………………………………12 2.6擴增子次世代定序(Amplicon sequencing) …………………………………………………………………………………14 2.7序列資料處理與統計分析……………………………………………………………………………………………………………………15 參、結果…………………………………………………………………………………………………………………………………………………………………16 3.1硨磲貝物種分佈…………………………………………………………………………………………………………………………………………16 3.2硨磲貝外套膜共棲菌群α多樣性分析…………………………………………………………………………………………16 3.2.1比較各地點中三種硨磲貝之外套膜細菌α多樣性…………………………………………………17 3.2.2比較硨磲貝成體與幼體之外套膜細菌α多樣性………………………………………………………18 3.2.3比較不同深度硨磲貝外套膜之細菌α多樣性……………………………………………………………18 3.2.4硨磲貝外套膜共棲菌群在地點、物種、體型與深度等因子上差異的比…19 3.2.5各硨磲貝物種內外套膜細菌族群的地點專一性的比較……………………………………20 3.2.6各樣區中以三種硨磲貝進行外套膜菌群的宿主專一性比較…………………………21 3.2.7硨磲貝外套膜細菌族群在宿主體型(成體與幼體)的比較…………………………………21 3.2.8硨磲貝外套膜細菌族群在不同深度的比較………………………………………………………………22 3.2.9硨磲貝外套膜之細菌的組成………………………………………………………………………………………………23 3.2.10比較硨磲貝成體與幼體之外套膜細菌組成……………………………………………………………23 3.3硨磲貝外套膜共生藻α多樣性分析………………………………………………………………………………………………24 3.3.1比較在相同地區中,不同宿主的外套膜共生藻α多樣性的差異……………………25 3.3.2比較硨磲貝成體與幼體外套膜之共生藻α多樣性…………………………………………………26 3.3.3比較不同深度硨磲貝外套膜之共生藻α多樣性…………………………………………………26 3.3.4硨磲貝外套膜共生藻在地點、物種、體型與深度等因子上差異的比較……27 3.3.5各硨磲貝物種內外套膜共生藻的地點專一性的比較………………………………………27 3.3.6各樣區中以三種硨磲貝進行外套膜共生藻的宿主專一性比較……………………28 3.3.7硨磲貝外套膜共生藻族群在宿主體型(成體與幼體)的比較……………………28 3.3.8硨磲貝外套膜共生藻族群在不同深度的比較…………………………………………………………29 3.3.9硨磲貝外套膜之共生藻的組成…………………………………………………………………………………………30 3.3.10比較硨磲貝外套膜成體與幼體之共生藻組成………………………………………………………30 肆、討論…………………………………………………………………………………………………………………………………………………………………32 4.1硨磲貝個體物種分布與數量上的歧異…………………………………………………………………………………………32 4.2硨磲貝菌相宿主專一性與地點差異的探討………………………………………………………………………………32 4.3硨磲貝菌相組成體型差異……………………………………………………………………………………………………………………36 4.4硨磲貝共生藻組成地點差異………………………………………………………………………………………………………………37 4.5硨磲貝外套膜共生藻組成體型差異………………………………………………………………………………………………39 伍、結論…………………………………………………………………………………………………………………………………………………………………41 陸、圖與表……………………………………………………………………………………………………………………………………………………………43 柒、參考文獻……………………………………………………………………………………………………………………………………………………131 捌、附錄………………………………………………………………………………………………………………………………………………………………143 | - |
dc.language.iso | zh_TW | - |
dc.title | 台灣硨磲貝共生體之研究 | zh_TW |
dc.title | Investigation of giant clams holobiont in Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 楊松穎 | zh_TW |
dc.contributor.coadvisor | Sung-Yin Yang | en |
dc.contributor.oralexamcommittee | 劉少倫;識名信也 | zh_TW |
dc.contributor.oralexamcommittee | Shao-Lun Liu;Shinya Shikina | en |
dc.subject.keyword | 硨磲外套膜,次世代定序,共生藻組成,細菌菌相, | zh_TW |
dc.subject.keyword | giant clam mantle tissue,next-generation sequencing,symbiotic algae community,bacterial community, | en |
dc.relation.page | 249 | - |
dc.identifier.doi | 10.6342/NTU202402478 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-01 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 漁業科學研究所 | - |
dc.date.embargo-lift | 2027-12-31 | - |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2027-12-31 | 28.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。