Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95752
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽彥正zh_TW
dc.contributor.advisorYen-Jen Oyangen
dc.contributor.author陳淑鈴zh_TW
dc.contributor.authorShook Leng Chinen
dc.date.accessioned2024-09-16T16:15:28Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citation[1] S. N. Raja, D. B. Carr, M. Cohen, N. B. Finnerup, H. Flor, S. Gibson, F. J. Keefe, J. S. Mogil, M. Ringkamp, K. A. Sluka, X.-J. Song, B. Stevens, M. D. Sullivan, P. R. Tutelman, T. Ushida, and K. Vader, "The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises," Pain, vol. 161, pp. 1976-1982, 2020. doi: 10.1097/j.pain.0000000000001939.
[2] K. J. Anand and K. D. Craig, "New perspectives on the definition of pain," Pain, vol. 67, pp. 3-6, 1996.
[3] N. Cunningham, "Primary requirements for an ethical definition of pain," Pain Forum, vol. 8, pp. 93-9, 1999.
[4] H. Kehlet, "Enhanced recovery after surgery from clinical observations to evidence-based practice," Dan. Med. J., vol. 69, pp. A0922053, 2022.
[5] V. B. Kes, Pain. Zagreb, Croatia: Školska knjiga, 2019, pp. 63-170.
[6] W. H. McMullen, "The evolution of the ophthalmoscope," Br. J. Ophthalmol., vol. 1, no. 10, pp. 593-599, 1917. doi: 10.1136/bjo.1.10.593.
[7] E. H. Hess and J. M. Polt, "Pupil size as related to interest value of visual stimuli," Science, vol. 132, no. 3423, pp. 349-350, 1960. doi: 10.1126/science.132.3423.349.
[8] R. G. Kerr, A. M. Bacon, L. L. Baker, J. S. Gehrke, K. D. Hahn, C. L. Lillegraven, and S. K. Spilman, "Underestimation of pupil size by critical care and neurosurgical nurses," Am. J. Crit. Care, vol. 25, no. 3, pp. 213-219, 2016. doi: 10.4037/ajcc2016554.
[9] D. M. Olson and M. Fishel, "The use of automated pupillometry in critical care," Crit. Care Nurs. Clin. North Am., vol. 28, no. 1, pp. 101-107, 2016. doi: 10.1016/j.cnc.2015.09.003.
[10] D. Couret, P. Simeone, S. Freppel, and L. Velly, "The effect of ambient-light conditions on quantitative pupillometry: a history of rubber cup," Neurocrit. Care, 2019. doi: 10.1007/s12028-018-0664-z.
[11] I. E. Loewenfeld, The Pupil: Anatomy, Physiology, and Clinical Applications. Detroit, MI: Wayne State University Press, 1993.
[12] D. H. McDougal and P. D. Gamlin, "Autonomic control of the eye," Compr. Physiol., vol. 5, pp. 439-473, 2015. doi: 10.1002/cphy.c140014.
[13] H. Yoo and D. M. Mihaila, "Neuroanatomy, pupillary light reflexes and pathway," in StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing, 2024. Available: https://www.ncbi.nlm.nih.gov/books/NBK553169/
[14] M. A. Bouffard, "The pupil," CONTINUUM: Lifelong Learning Neurol., vol. 25, no. 5, pp. 1194-1214, 2019. doi: 10.1212/con.0000000000000771.
[15] E. Szabadi, "Functional organization of the sympathetic pathways controlling the pupil: light-inhibited and light-stimulated pathways," Front. Neurol., vol. 9, 2018. doi: 10.3389/fneur.2018.01069.
[16] I. E. Loewenfeld, The Pupil: Anatomy, Physiology, and Clinical Applications. Oxford: Butterworth-Heinemann, 1999.
[17] F. D. Bremner and S. E. Smith, "Pupil abnormalities in selected autonomic neuropathies," J. Neuro-Ophthalmol., vol. 26, no. 3, pp. 209-219, 2006.
[18] H. Wilhelm, "Disorders of the pupil," Handbook Clin. Neurol., vol. 102, pp. 477-495, 2008.
[19] A. Williamson and B. Hoggart, "Pain: a review of three commonly used pain rating scales," J. Clin. Nurs., vol. 14, no. 7, pp. 798-804, 2005. doi: 10.1111/j.1365-2702.2005.01121.x.
[20] G. A. Hawker, S. Mian, T. Kendzerska, and M. French, "Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP)," Arthritis Care Res., vol. 63, S11, pp. S240-S252, 2011. doi: 10.1002/acr.20543.
[21] K. Herr, P. J. Coyne, M. McCaffery, R. Manworren, and S. Merkel, "Pain assessment in the nonverbal patient: Position statement with clinical practice recommendations," Pain Manage. Nurs., vol. 12, no. 4, pp. 215-227, 2011. doi: 10.1016/j.pmn.2011.06.002.
[22] K. M. Prkachin, "Assessing pain by facial expression: Facial expression as nexus," Pain Res. Manage., vol. 14, no. 1, pp. 53-58, 2009. doi: 10.1155/2009/542964.
[23] T. Hadjistavropoulos and K. D. Craig, "A theoretical framework for understanding self-report and observational measures of pain: A communications model," Behav. Res. Ther., vol. 40, no. 5, pp. 551-570, 2002. doi: 10.1016/S0005-7967(01)00072-9.
[24] R. Melzack, "The McGill Pain Questionnaire: Major properties and scoring methods," Pain, vol. 1, no. 3, pp. 277-299, 1975. doi: 10.1016/0304-3959(75)90044-5.
[25] J. Watt-Watson and J. Donnelly, "The impact of nurses' characteristics on their pain assessment practices," J. Pain Symptom Manage., vol. 7, no. 3, pp. 172-179, 1992. doi: 10.1016/0885-3924(92)90124-B.
[26] K. M. Prkachin and P. E. Solomon, "The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain," Pain, vol. 139, no. 2, pp. 267-274, 2008. doi: 10.1016/j.pain.2008.04.008.
[27] N. Sabourdin, M. Arnaout, N. Louvet, M. L. Guye, C. Paugam-Burtz, and V. Berthoud, "Pupillometry-guided intraoperative remifentanil administration versus standard practice influences opioid use: A randomized study," Anesthesiology, vol. 130, no. 1, pp. 87-95, 2019. doi: 10.1097/ALN.0000000000002493.
[28] M. D. Larson and M. Behrends, "Portable infrared pupillometry: A review," Anesth. Analg., vol. 120, no. 6, pp. 1242-1253, 2015. doi: 10.1213/ANE.0000000000000314.
[29] S. Mathôt, "Pupillometry: Psychology, physiology, and function," J. Cogn., vol. 3, no. 1, pp. 5, 2020. doi: 10.5334/joc.18.
[30] S. R. Steinhauer, G. J. Siegle, R. Condray, and M. Pless, "Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing," Int. J. Psychophysiol., vol. 52, no. 1, pp. 77-86, 2004. doi: 10.1016/j.ijpsycho.2003.12.005.
[31] B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, "Factors affecting light-adapted pupil size in normal human subjects," Invest. Ophthalmol. Vis. Sci., vol. 35, no. 3, pp. 1132-1137, 1994. Available: https://iovs.arvojournals.org/article.aspx?articleid=2161416.
[32] D. H. McDougal and P. D. Gamlin, "Autonomic control of the eye," Compr. Physiol., vol. 5, no. 1, pp. 439-473, 2015. doi: 10.1002/cphy.c140014.
[33] S. Mathôt and S. Van der Stigchel, "New light on the mind’s eye: The pupillary light response as active vision," Curr. Dir. Psychol. Sci., vol. 24, no. 5, pp. 374-378, 2015. doi: 10.1177/0963721415593725.
[34] B. T. Carter and S. G. Luke, "Best practices in eye tracking research," Int. J. Psychophysiol., vol. 155, pp. 49-62, 2020. doi: 10.1016/j.ijpsycho.2020.05.003.
[35] J. Liu and L. Kelliher, "Physiology of pain—a narrative review on the pain pathway and its application in the pain management," Digestive Med. Res., vol. 5, pp. 56, 2022. doi: 10.21037/dmr-21-100.
[36] S. Ali, et al., "Recent advances in management of neuropathic, nociceptive, and chronic pain: A narrative review with focus on nanomedicine, gene therapy, stem cell therapy, and newer therapeutic options," Curr. Pain Headache Rep., vol. 26, pp. 25, 2022. doi: 10.1007/s11916-022-00958-6.
[37] Anesthesiology News, "A basic review of pain pathways and analgesia," Anesthesiology News, 2018. Available: https://www.anesthesiologynews.com/Review-Articles/Article/10-18/A-Basic-Review-of-Pain-Pathways-and-Analgesia/52868.
[38] A. Hahn, M. B. Reed, C. Vraka, G. M. Godbersen, S. Klug, A. Komorowski, et al., "High-temporal resolution functional PET/MRI reveals coupling between human metabolic and hemodynamic brain response," Eur. J. Nucl. Med. Mol. Imaging, 2023. doi: 10.1007/s00259-023-06542-4.
[39] X. Zhang, L. Li, G. Huang, L. Zhang, Z. Liang, L. Shi, et al., "A multisensory fMRI investigation of nociceptive-preferential cortical regions and responses," Front. Neurosci., 2021. doi: 10.3389/fnins.2021.635733.
[40] D. J. Charier, D. Zantour, V. Pichot, F. Chouchou, J. M. Barthelemy, F. Roche, and S. B. Molliex, "Assessing pain using the variation coefficient of pupillary diameter," J. Pain, vol. 18, no. 11, pp. 1346-1353, 2017. doi: 10.1016/j.jpain.2017.06.006. PMID: 28711635.
[41] R. Yılmaz, G. Kocadağ, Ş. Arıcan, M. Özdemir, R. Reisli, and S. T. Uzun, "Evaluation of pupil diameter for pain assessment in interventional headache management," Agri, vol. 35, no. 1, pp. 22-27, 2023. doi: 10.14744/agri.2022.37880. PMID: 36625194.
[42] D. Wildemeersch, N. Peeters, V. Saldien, M. Vercauteren, and G. Hans, "Pain assessment by pupil dilation reflex in response to noxious stimulation in anaesthetized adults," Acta Anaesthesiol. Scand., vol. 62, no. 8, pp. 1050-1056, 2018. doi: 10.1111/aas.13129. PMID: 29671874; PMCID: PMC6099429.
[43] C. Gregoire, D. Charier, R. de Bergeyck, A. Mouraux, F. Van Ouytsel, R. Lambert, N. Zhou, P. Lavand'homme, and G. Penaloza, "Comparison between pupillometry and numeric pain rating scales for pain assessment in the emergency department," Eur. J. Pain, 2023. doi: 10.1002/ejp.2137.
[44] A. Bogucki, et al., "Machine learning approach for ambient-light-corrected parameters and the Pupil Reactivity (PuRe) score in smartphone-based pupillometry," Front. Neurol., 2024. doi: 10.3389/fneur.2024.1363190.
[45] F. Pouromran, S. Radhakrishnan, and S. Kamarthi, "Exploration of physiological sensors, features, and machine learning models for pain intensity estimation," PLOS ONE, 2021. doi: 10.1371/journal.pone.0254108.
[46] B. D. Winslow, R. Kwasinski, K. Whirlow, E. Mills, J. Hullfish, and M. Carroll, "Automatic detection of pain using machine learning," Front. Pain Res., 2022. doi: 10.3389/fpain.2022.1044518.
[47] D. Lopez-Martinez and R. Picard, "Skin conductance deconvolution for pain estimation," presented at the Int. Conf. Biomed. Health Inform., 2018. doi: 10.1109/BHI.2018.8333445.
[48] Ganzin Technology, "Sol Glasses - Wearable Eye Tracker," [Online]. Available: https://ganzin.com/en/sol-glasses-wearable-eye-tracker/. [Accessed: 24-Jun-2023].
[49] H. Jafari, A. Courchesne-Loyer, V. St-Pierre, et al., "Pain and the Brain: Specific Brain Activation in Different Pain Conditions," presented at Biomedicines, 2023. doi: 10.3390/biomedicines11092554.
[50] J.E. Letzen and J. Boissoneault, "Imaging brains, changing minds: how pain neuroimaging can inform the law," presented at Curr. Rheumatol. Rep., 2017. doi: 10.1007/s11926-017-0629-9.
[51] M. Tsukamoto, S. Yamasaki, A. Yokoyama, et al., "Enhanced recovery protocols for gastrointestinal surgery and perioperative management," J. Anesth., vol. 36, no. 2, pp. 157-166, Apr. 2022. doi: 10.1007/s00540-022-03126-8.
[52] Lee, S. P., & Kang, H. (2023). Pain Assessment Using the Analgesia Nociception Index (ANI) in Patients Undergoing General Anesthesia: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 13(10), 1461. doi: 10.3390/jpm13101461.
[53] Gruenewald, M., Ilies, C., Herz, J., et al. (2013). Influence of nociceptive stimulation on analgesia nociception index (ANI) during propofol-remifentanil anesthesia. British Journal of Anaesthesia, 110(6), 1024-1030. doi: 10.1093/bja/aet019.
[54] Funcke, S., Sauerlaender, S., & Pinnschmidt, H. O. (2017). Validation of innovative techniques for monitoring nociception during general anesthesia: a clinical study using tetanic and intracutaneous electrical stimulation. Anesthesiology, 127(2), 272-283. doi: 10.1097/ALN.0000000000001670.
[55] C. T. Primiani, K. S. Husari, R. Mathur, and R. G. Geocadin, "Fixed and dilated pupils by pupillometer in lateralized periodic discharges: a case report in the neurocritical care unit," J. Neurocrit. Care, vol. 15, no. 2, pp. 136-140, Dec. 2022, doi: 10.18700/jnc.220066.
[56] A. Agrawal, V. A. Kiran Kumar, and L. R. Moscote-Salazar, "Contralateral pupillary dilatation and hemiparesis: Kernohan’s notch revisited," Egyptian J. Neurosurgery, vol. 35, no. 22, Nov. 2020, doi: 10.1186/s41984-020-00093-8.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95752-
dc.description.abstract準確和客觀的疼痛評估在臨床環境中至關重要,因為依賴主觀患者報告的傳統方法可能會受到個體疼痛閾值和溝通能力的影響。本研究探討了瞳孔動態,特別是綜合瞳孔反應指數(CPRI),作為疼痛客觀測量指標的潛力。作為概念驗證研究,本研究在全身麻醉、區域麻醉和局部麻醉的患者中進行了三次實驗,分析了瞳孔直徑和面積在疼痛刺激下的變化。通過使用先進的瞳孔計和頭戴設備,首先進行了基線測量,然後施加疼痛刺激。數據顯示,瞳孔變化與患者使用數字評定量表(NRS)和鎮痛傷害感受指數(ANImean)報告的疼痛強度之間存在顯著相關性。CPRI作為疼痛的強大指標,表現出與傳統測量方法的高度相關性。

本研究還強調了硬件限制,包括攝像頭距離問題。建議未來與更先進的硬件進行整合,以提高測量精度。目標是開發一種與各種硬件平台兼容的軟件即服務(SaaS)解決方案,提供一個多功能的疼痛管理工具。研究結果表明,這可能在臨床疼痛評估中帶來範式轉變,為醫療提供者提供一個改進患者結果和疼痛管理策略的客觀工具。
zh_TW
dc.description.abstractAccurate and objective pain assessment is crucial in clinical settings, as traditional methods relying on subjective patient reports can be influenced by individual pain thresholds and communication abilities. This study explores the potential of pupillary dynamics, specifically the Composite Pupillary Response Index (CPRI), as an objective measure of pain. Conducted across three experiments with patients under general, regional, and local anesthesia, we analyzed changes in pupil diameter and area in response to pain stimuli as a proof-of-concept study. Using advanced pupillometry and head-mounted devices, baseline measurements were taken followed by the administration of pain stimuli. The data showed significant correlations between pupillary changes and pain intensity, as reported by patients using the Numeric Rating Scale (NRS) and the Analgesia Nociception Index (ANImean). The CPRI emerged as a robust indicator of pain, with strong correlations to traditional measures.

This study also highlighted hardware limitations, including camera proximity issues. Future integration with more advanced hardware is recommended to enhance measurement accuracy. The goal is to develop a software-as-a-service (SaaS) solution compatible with various hardware platforms, providing a versatile tool for pain management. The findings suggest a potential paradigm shift in clinical pain assessment, offering healthcare providers an objective tool to improve patient outcomes and pain management strategies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:15:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:15:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents

誌謝 i
Acknowledgement ii
Abstract iv
摘要 v
List of Figures viii
List of Tables ix
Chapter 1: Introduction 1
1.1 Overview 1
1.2 Research Focus and Objectives 3
1.3 Thesis Organization 5
Chapter 2: Background and Related Works 7
2.1 Physiology of Pupil 7
2.2 Historical Development of Pupillometry 10
2.3 Definition of Pain 14
2.4 Overview of Available Pain Assessment Methodologies in Clinical Settings 19
2.4.1 Objective Measures of Pain 24
2.5 Challenges and Limitations in Pupillometry for Pain Assessment 28
Chapter 3: Data, Device and Methodology 31
3.1 Specification of Ganzin SOL Glasses 31
3.1.1 Ganzin SOL Glasses SDK 33
3.2 Data Collection 36
3.2.1 Overview of Medical Procedures for Each Case Study 37
3.2.2 Custom-Built Data Collection Application for Pupillary Responses and Eye Movement 38
3.3 Methodology 50
3.3.1 Conversion of Pupil Measurements from Pixels to Millimeters 50
3.3.2 Justification for Post-Recording Conversion from Pixels to Millimeters 56
3.3.3 Introduction of Mathematical Equations and Logic 59
3.3.4 Statistical Methods 63
3.3.5 Explanation of NRS and ANI Analysis 65
Chapter 4: Experiments and Results 67
4.1 Experiment 1: Orthopedic Surgery on Right Ankle 67
4.1.1 Introduction to Experiment 1 67
4.1.2 Methodology Specific to Experiment 1 67
4.1.3 Results of Experiment 1 69
4.1.4 Analysis and Discussion 76
4.1.5 Additional Study 78
4.2 Experiment 2: Lumbar Spondylosis Treatment 86
4.2.1 Introduction to Experiment 2 86
4.2.2 Methodology Specific to Experiment 2 86
4.2.3 Results of Experiment 2 87
4.2.4 Analysis and Discussion 93
4.3 Experiment 3: Cervical Sympathetic Chain Block 98
4.3.1 Introduction to Experiment 3 98
4.3.2 Methodology Specific to Experiment 3 98
4.3.3 Results of Experiment 3 99
4.3.4 Analysis and Discussion 104
Chapter 5: Discussion 108
5.1 Comparison of Results Across Experiments 108
5.2 Interpretation of Findings 108
5.3 Implications for Clinical Practice 110
5.4 Challenges and Limitations of the Study 111
5.5 Contributions and Strengths 112
5.6 Recommendations for Future Research 113
Chapter 6: Conclusion 114
6.1 Summary of Key Findings 114
6.2 Contributions to the Field 114
6.3 Final Thoughts 115
Reference 116

List of Figures

Figure 2.1: The constriction and dilation of pupil 7
Figure 2.2: NPi-300 automated infrared pupillometer 11
Figure 2.3: Historical diagnostic chart used in pupillometry, showing general characteristics, light/near reactions, anisocoria, and associated findings for conditions such as Marcus Gunn pupil, Horner's syndrome, cranial nerve palsy, physiological anisocoria, and trauma. 12
Figure 2.4: Disposable pen torch with pupil gauge 13

Figure 3.1: Ganzin SOL Glasses along with the application developed to detect pupillary area and diameter, as well as the lighting condition of the surroundings in pixels (px). 31
Figure 3.2: Overview of Main System Interface 39
Figure 3.3: Setting to choose from Record or Analyzing 40
Figure 3.4: User interface of the self-developed pupil monitoring software showing video rendering, data display, and pupil measurements. 40
Figure 3.5: Algorithm enhancement to include option to manually draw a box (yellow box on the right eye) when system fails to detect patients’ eyes automatically 47
Figure 3.6: Operational Adjustments for enhanced accuracy when collecting pupillary data 48
Figure 3.7: Video Frame Extraction 51
Figure 3.8: Manual Measurement of Diameter of Pupil 51
Figure 3.9: Verification Plot of Pupil Diameter and Area over Time 54
Figure 3.10: Grid Search for Optimal Weights 61

Figure 4.1: Baseline Data (CPRI) (case study 1) 69
Figure 4.2: Pain Data (CPRI) (case study 1) 70
Figure 4.3: Plot for Tukey HSD Test Results for CPRI (case study 1) 72
Figure 4.4: Plot for Tukey HSD Test Results for Diameter (case study 1) 73
Figure 4.5: Plot for Tukey HSD Test Results for Area (case study 1) 74
Figure 4.6: Pupillary Metrics (CPRI) Over Time (case study 2) 87
Figure 4.7 ANImean Over Time (case study 2) 88
Figure 4.8: NRS Over Time (case study 2) 88
Figure 4.9: Pupillary Metrics and NRS Over Time (case study 3) 100
Figure 4.10: Tukey HSD for CPRI (case study 3) 102

List of Tables

Table 2.1: Neural Structures Involved in Pupillary Response 10
Table 2.2: Summary of Classification of Pain 17
Table 2.3: Overview of Pain Assessment Tools, Their Technical Characteristics, Scoring Systems, Application Areas, and Associated Issues 22


Table 3.1: Description of each blinking value 42


Table 4.1: Summary of Paired t-tests (case study 1) 71
Table 4.2: Summary of ANOVA Results (case study 1) 71
Table 4.3: Tukey HSD Test Results for CPRI (case study 1) 73
Table 4.4: Tukey HSD Test Results for Diameter (case study 1) 74
Table 4.5: Tukey HSD Test Results for Area (case study 1) 75
Table 4.6: Entropy, Mean and Standard Deviation (case study 1) 76
Table 4.7: Relative Changes in Pupil Diameter and Area (additional study 1) 79
Table 4.8: Relative Change in Diameter (additional study 1) 80
Table 4.9: Relative Change in Area (additional study 1) 81
Table 4.10: Composite Pupillary Response Index (CPRI) (additional study 1) 82
Table 4.11: Mixed Linear Model Regression Results for CPRI (additional study 1) 83
Table 4.12: Composite Pupillary Response Index (CPRI) Thresholds with number of significantly smaller and larger values (case study 2) 89
Table 4.13: Paired t-test for CPRI (case study 2) 90
Table 4.14: Tukey's HSD for CPRI (case study 2) 91
Table 4.15: Summary table of CPRI Entropy, CPRI Mean and CPRI Standard Deviation (case study 2) 93
Table 4.16: Composite Pupillary Response Index (CPRI) Thresholds with number of significantly smaller and larger values (case study 3) 100
Table 4.17: Paired t-test for CPRI (case study 3) 101
Table 4.18: Tukey's HSD for CPRI (case study 3) 102
-
dc.language.isoen-
dc.title探索瞳孔動態作爲疼痛客觀測量方法:臨床工具開發zh_TW
dc.titleExploring Pupillary Dynamics as an Objective Measure of Pain: Development of a Clinical Toolen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor孫維仁zh_TW
dc.contributor.coadvisorWei-Zen Sunen
dc.contributor.oralexamcommittee林至芃;歐陽明;楊庭華zh_TW
dc.contributor.oralexamcommitteeChih-Peng Lin;Ming Ouhyoung;Ting-Hua Yangen
dc.subject.keyword概念驗證,瞳孔測量法,瞳孔動態,疼痛評估,瞳孔反應綜合指數 (CPRI),數字評定量表 (NRS),疼痛管理,麻醉,鎮痛傷害感受指數 (ANI),zh_TW
dc.subject.keywordproof-of-concept,pupillometry,pupillary dynamics,pain assessment,Composite Pupillary Response Index (CPRI),Numeric Rating Scale (NRS),pain management,anesthesia,Analgesia Nociceptive Index (ANI),en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202402426-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2029-07-27-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved