Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor逄愛君zh_TW
dc.contributor.advisorAi-Chun Pangen
dc.contributor.author陳富春zh_TW
dc.contributor.authorFu-Chun Chenen
dc.date.accessioned2024-09-16T16:13:39Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citationBibliography
[1] “Amazon drone delivery is coming to Arizona.” https://www.aboutamazon.com/news/transportation/amazon-drone-delivery-arizona. Accessed on May 7, 2024.
[2] “Wing and DoorDash Expand Drone Delivery Partnership to the US.” https://blog.wing.com/2024/03/wing-and-doordash-expand-drone-delivery.html. Accessed on May 7, 2024.
[3] “Joby Progresses to Next Phase of Aircraft Flight Test Program.” https://www.jobyaviation.com/news/joby-progresses-next-phase-aircraft-flight-test-program/. Accessed on May 7, 2024.
[4] M. Ghamari, P. Rangel, M. Mehrubeoglu, G. S. Tewolde, and R. S. Sherratt, “Unmanned aerial vehicle communications for civil applications: A review,” IEEE Access, vol. 10, pp. 102492–102531, 2022.
[5] “DJI RC 2.” https://www.dji.com/tw/rc-2. Accessed on April 28, 2024.
[6] “Herelink Overview.” https://docs.cubepilot.org/user-guides/herelink/herelink-overview. Accessed on April 28, 2024.
[7] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on uav communications for 5g and beyond,” Proceedings of the IEEE, vol. 107, no. 12, pp. 2327–2375, 2019.
[8] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on uavs for wireless networks: Applications, challenges, and open problems,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.
[9] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez, and J. Yuan, “Survey on uav cellular communications: Practical aspects, standardization advancements, regulation, and security challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3417–3442, 2019.
[10] G. Geraci, A. Garcia-Rodriguez, M. M. Azari, A. Lozano, M. Mezzavilla, S. Chatzinotas, Y. Chen, S. Rangan, and M. D. Renzo, “What will the future of uav cellular communications be? a flight from 5g to 6g,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1304–1335, 2022.
[11] E. Teng, J. Diogo Falcão, and B. Iannucci, “Holes-in-the-sky: A field study on cellular-connected uas,” in 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1165–1174, 2017.
[12] S. Euler, H.-L. Maattanen, X. Lin, Z. Zou, M. Bergström, and J. Sedin, “Mobility support for cellular connected unmanned aerial vehicles: Performance and analysis,” in 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, 2019.
[13] X. Xu and Y. Zeng, “Cellular-connected uav: Performance analysis with 3d antenna modelling,” in 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6, 2019.
[14] Y. Geng and S. Euler, “Beyond conic section mainlobe coverage for unmanned aerial vehicle,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pp. 4467–4472, 2022.
[15] L. Chen, M. A. Kishk, and M.-S. Alouini, “Dedicating cellular infrastructure for aerial users: Advantages and potential impact on ground users,” IEEE Transactions on Wireless Communications, vol. 22, no. 4, pp. 2523–2535, 2023.
[16] H. Yang, J. Zhang, S. Song, and K. B. Lataief, “Connectivity-aware uav path planning with aerial coverage maps,” in 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, 2019.
[17] O. Esrafilian, R. Gangula, and D. Gesbert, “3d-map assisted uav trajectory design under cellular connectivity constraints,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6, 2020.
[18] S. Zhang and R. Zhang, “Radio map-based 3d path planning for cellular-connected uav,” IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 1975–1989, 2021.
[19] Y. Dong, C. He, Z. Wang, and L. Zhang, “Radio map assisted path planning for uav anti-jamming communications,” IEEE Signal Processing Letters, vol. 29, pp. 607–611, 2022.
[20] Y. Zeng, X. Xu, S. Jin, and R. Zhang, “Simultaneous navigation and radio mapping for cellular-connected uav with deep reinforcement learning,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4205–4220, 2021.
[21] Y. Huang and Y. Zeng, “Simultaneous environment sensing and channel knowledge mapping for cellular-connected uav,” in 2021 IEEE Globecom Workshops (GC Wkshps), pp. 1–6, 2021.
[22] C. Zhan and Y. Zeng, “Energy minimization for cellular-connected uav: From optimization to deep reinforcement learning,” IEEE Transactions on Wireless Communications, vol. 21, no. 7, pp. 5541–5555, 2022.
[23] C. Zhan, H. Hu, S. Mao, and J. Wang, “Energy-efficient trajectory optimization for aerial video surveillance under qos constraints,” in IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, pp. 1559–1568, 2022.
[24] J. Chen, U. Mitra, and D. Gesbert, “3d urban uav relay placement: Linear complexity algorithm and analysis,” IEEE Transactions on Wireless Communications, vol. 20, no. 8, pp. 5243–5257, 2021.
[25] P. Yi, L. Zhu, L. Zhu, Z. Xiao, Z. Han, and X.-G. Xia, “Joint 3-d positioning and power allocation for uav relay aided by geographic information,” IEEE Transactions on Wireless Communications, vol. 21, no. 10, pp. 8148–8162, 2022.
[26] X. Liu, J. Miao, and P. Wang, “Throughput optimization of blocked data transmission: A mobile-relay-uav-assisted approach,” in 2019 IEEE 5th International Conference on Computer and Communications (ICCC), pp. 792–796, 2019.
[27] N. Cherif, W. Jaafar, H. Yanikomeroglu, and A. Yongacoglu, “Disconnectivity-aware energy-efficient cargo-uav trajectory planning with minimum handoffs,” in ICC 2021 - IEEE International Conference on Communications, pp. 1–6, 2021.
[28] 3GPP, “Study on 3D channel model for LTE,” Technical report (TR) 36.873, 2018. V12.7.0.
[29] 3GPP, “Enhanced LTE support for aerial vehicles,” Technical report (TR) 36.777, 2018. V15.0.0.
[30] M. H. C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T. Şahin, and A. Kousaridas, “A tutorial on 5g nr v2x communications,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1972–2026, 2021.
[31] 3GPP, “Study on evaluation methodology of new Vehicle-to-Everything (V2X) use cases for LTE and NR,” Technical report (TR) 37.885, 2019. V15.3.0.
[32] “2023 Building Footprints —CoM Open Data Portal.” https://data.melbourne.vic.gov.au/explore/dataset/2023-building-footprints/information/. Accessed on May 2, 2024.
[33] “Radiocomms licence data | ACMA.” https://www.acma.gov.au/radiocomms-licence-data. Accessed on May 2, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95746-
dc.description.abstract無人機由於具有高移動性、易於使用、且可因應需求裝載不同設備,因此被廣泛運用於不同情境,如物流運輸、區域監控、資料蒐集等等。而為了讓無人機能順暢執行任務,維持無人機和地面控制站之間的網路連線至關重要。然而,現今的行動網路雖然能提供地面使用者廣泛的訊號覆蓋範圍,但對於空中的網路使用者卻仍有問題需要處理,包括訊號旁瓣(sidelobe) 之間的訊號弱區(null areas) 以及相鄰基地台之間,由於訊號不受障礙物遮蔽所導致的干擾。為了提升空中的網路連線品質,我們提出利用無人機作為中繼,延長基地台的訊號範圍,提供網路連線給其他執行任務的無人機。我們以所有空中使用者的連線時間做為最佳化的目標,以動態規劃(dynamic programming) 的方式設計此中繼無人機的飛行軌跡,使其能夠最大化所有空中使用者連線時間的總和。在此架構之下,現行的基地台架構以及任務無人機的軌跡均不需要做任何更動,因此具有高度的相容性,並可適用於不同環境。模擬結果顯示在生成的環境中,空中使用者的平均連線時間比例相較於沒有中繼無人機的情況下,增加了約20% 的連線時間。我們也呈現對於中繼無人機具有不同的服務能力,以及和現行的更改空中使用者飛行路徑的方法的比較。最後我們以墨爾本的建築物及基地台資料建構真實世界的模擬環境,結果顯示在市中心以及在市郊區域中使用我們提出的中繼無人機,可以將接受中繼無人機協助之任務無人機的連線時間比例中位數提升至到93.2% 和100%,反映我們所提出方法的泛用性。zh_TW
dc.description.abstractIncreasing applications are deployed on unmanned aerial vehicles (UAVs) due to their high mobility and versatility. While cellular network is a decent option to provide the connection to UAVs, there are still some problems to be addressed such as null areas between signal sidelobes and interference from neighboring ground base stations (GBSs). To improve the aerial connection performance, we proposed to employ a Connectivity-Aware RElay UAV (CARE-U) to extend the signal coverage of existing GBSs to other aerial user equipments (AUEs). The trajectory of the UAV relay is optimized by a dynamic programming (DP) based method to maximize the total connected time of all AUEs. In the synthetic environment, the average connected time ratio of CARE-U improves by about 20% when compared to scenarios without the help of a relay. The effect of different relay serving capabilities is also investigated. Besides, comparisons with an existing method that modifies AUE trajectory are demonstrated. Lastly, building and GBS data in Melbourne are used to construct real-world environments. Considering AUEs benefited from CARE-U, the median connected time ratio achieves 93.2% and 100% in Melbourne CBD and Kensington real-world environments, showing the great compatibility of our proposed method.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:13:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:13:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書i
誌謝ii
摘要iii
Abstract iv
1 Introduction 1
2 Related Works 4
2.1 Aerial Null Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Modifying Existing Cellular Infrastructure . . . . . . . . . . . . . . . . . 5
2.3 Designing the Trajectory of UAV . . . . . . . . . . . . . . . . . . . . . . 6
2.4 UAV Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 System Model 9
3.1 UAV Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 G2A Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 U2U Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Channel Knowledge Maps . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Problem Statement 14
5 Methodology 17
5.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Correctness and Complexity . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Performance Evaluation 21
6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Effectiveness of the Relay Trajectory . . . . . . . . . . . . . . . . . . . . 23
6.3 Effect of Relay Serving Capability . . . . . . . . . . . . . . . . . . . . . 25
6.4 Comparison to State-of-the-art Method . . . . . . . . . . . . . . . . . . . 26
6.5 Simulation with Real-world Environment Data . . . . . . . . . . . . . . 27
6.5.1 Melbourne CBD . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.5.2 Melbourne suburb - Kensington . . . . . . . . . . . . . . . . . . 28
7 Conclusion and Future Work 32
-
dc.language.isoen-
dc.title地面網路中繼無人機之飛行軌跡最佳化zh_TW
dc.titleTrajectory Optimization of Connectivity-Aware Aerial Relayen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳昱嘉;施淵耀;莊清智;巫芳璟zh_TW
dc.contributor.oralexamcommitteeYu-Jia Chen;Yuan-Yao Shih;Ching-Chih Chuang;Fang-Jing Wuen
dc.subject.keyword中繼無人機,軌跡最佳化,zh_TW
dc.subject.keywordUnmanned aerial vehicle,,Relay,Trajectory,en
dc.relation.page37-
dc.identifier.doi10.6342/NTU202403147-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2029-08-01-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
11.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved