Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95735
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor湯森林zh_TW
dc.contributor.advisorSen-Lin Tangen
dc.contributor.author張詠佩zh_TW
dc.contributor.authorYung-Pei Changen
dc.date.accessioned2024-09-16T16:10:06Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation邱育敬 (2020) 兩株台灣軸孔珊瑚內生桿菌新種之特性與基因體分析。國立台灣大學海洋研究所碩博士論文,台北市。取自https://hdl.handle.net/11296/6787r2
Ainsworth, T., Hoegh-Guldberg, O., Heron, S., Skirving, W., & Leggat, W. (2008). Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. Journal of Experimental Marine Biology and Ecology, 364(2), 63-71.
Alex, A., & Antunes, A. (2019). Comparative genomics reveals metabolic specificity of Endozoicomonas isolated from a marine sponge and the genomic repertoire for host-bacteria symbioses. Microorganisms, 7(12), 635.
Appolinario, L. R., Tschoeke, D. A., Rua, C. P., Venas, T., Campeão, M. E., Amaral, G. R., Leomil, L., de Oliveira, L., Vieira, V. V., & Otsuki, K. (2016). Description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach. Antonie Van Leeuwenhoek, 109, 431-438.
Apprill, A., Hughen, K., & Mincer, T. (2013). Major similarities in the bacterial communities associated with lesioned and healthy F ungiidae corals. Environmental Microbiology, 15(7), 2063-2072.
Bayer, T., Neave, M. J., Alsheikh-Hussain, A., Aranda, M., Yum, L. K., Mincer, T., Hughen, K., Apprill, A., & Voolstra, C. R. (2013). The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Applied and Environmental Microbiology, 79(15), 4759-4762.
Becker, C. C., Brandt, M., Miller, C. A., & Apprill, A. (2022). Microbial bioindicators of Stony Coral Tissue Loss Disease identified in corals and overlying waters using a rapid field‐based sequencing approach. Environmental Microbiology, 24(3), 1166-1182.
Beinart, R., Nyholm, S., Dubilier, N., & Girguis, P. R. (2014). Intracellular O ceanospirillales inhabit the gills of the hydrothermal vent snail A lviniconcha with chemosynthetic, γ‐P roteobacterial symbionts. Environmental Microbiology Reports, 6(6), 656-664.
Ben-Haim, Y., Thompson, F., Thompson, C., Cnockaert, M., Hoste, B., Swings, J., & Rosenberg, E. (2003). Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. International Journal of Systematic and Evolutionary Microbiology, 53(1), 309-315.
Bhagwat, P. V., Ravindran, C., & Irudayarajan, L. (2024). Beneficial properties of mucus in coral adaptations and ecological interactions. Marine Biology, 171(2), 46.
Bourne, D., Iida, Y., Uthicke, S., & Smith-Keune, C. (2008). Changes in coral-associated microbial communities during a bleaching event. The ISME Journal, 2(4), 350-363.
Bourne, D. G., & Munn, C. B. (2005). Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environmental Microbiology, 7(8), 1162-1174.
Brown, B. (1997). Coral bleaching: causes and consequences. Coral Reefs, 16, S129-S138.
Brown, B., Le Tissier, M., & Bythell, J. (1995). Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event. Marine Biology, 122, 655-663.
Cesar, H. S., & van Beukering, P. (2004). Economic valuation of the coral reefs of Hawai'i. Pacific Science, 58(2), 231-242.
Chan, Y.-F., Chen, Y.-H., Yu, S.-P., Chen, H.-J., Nozawa, Y., & Tang, S.-L. (2024). Reciprocal transplant experiment reveals multiple factors influencing changes in coral microbial communities across climate zones. Science of the Total Environment, 907, 167929.
Chen, C.-P., Tseng, C.-H., Chen, C. A., & Tang, S.-L. (2011). The dynamics of microbial partnerships in the coral Isopora palifera. The ISME Journal, 5(4), 728-740.
Chen, H., Young, S., Berhane, T.-K., & Williams, H. N. (2012). Predatory Bacteriovorax communities ordered by various prey species. PLoS One, 7(3), e34174.
Chen, W.-M., Lin, K.-R., & Sheu, S.-Y. (2019). Endozoicomonas coralli sp. nov., isolated from the coral Acropora sp. Archives of Microbiology, 201, 531-538.
Chimetto, L. A., Brocchi, M., Thompson, C. C., Martins, R. C., Ramos, H. R., & Thompson, F. L. (2008). Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Systematic and Applied Microbiology, 31(4), 312-319.
Chiou, Y.-J., Chan, Y.-F., Yu, S.-P., Lu, C.-Y., Hsiao, S. S.-Y., Chiang, P.-W., Hsu, T.-C., Liu, P.-Y., Wada, N., & Lee, Y. (2023). Similar but different: Characterization of dddD gene–mediated DMSP metabolism among coral-associated Endozoicomonas. Science Advances, 9(47), eadk1910.
Chornesky, E. A. (1989). Repeated reversals during spatial competition between corals. Ecology, 70(4), 843-855.
Chuang, P.-S., Yu, S.-P., Liu, P.-Y., Hsu, M.-T., Chiou, Y.-J., Lu, C.-Y., & Tang, S.-L. (2024). A gauge of coral physiology: re-examining temporal changes in Endozoicomonas abundance correlated with natural coral bleaching. ISME Communications, 4(1), ycae001.
Curson, A., Rogers, R., Todd, J., Brearley, C., & Johnston, A. (2008). Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate‐changing gas dimethylsulfide in several marine α‐proteobacteria and Rhodobacter sphaeroides. Environmental Microbiology, 10(3), 757-767.
Damjanovic, K., Blackall, L. L., Peplow, L. M., & van Oppen, M. J. (2020). Assessment of bacterial community composition within and among Acropora loripes colonies in the wild and in captivity. Coral Reefs, 39(5), 1245-1255.
De Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, 90(12), 3566-3574.
De Cáceres, M., Legendre, P., Wiser, S. K., & Brotons, L. (2012). Using species combinations in indicator value analyses. Methods in Ecology and Evolution, 3(6), 973-982.
Desjardins, P., & Conklin, D. (2010). NanoDrop microvolume quantitation of nucleic acids. JoVE (Journal of Visualized Experiments)(45), e2565.
Ding, J.-Y., Shiu, J.-H., Chen, W.-M., & Chiang, Y.-R. (2016). Genomic insight into the host–endosymbiont relationship of Endozoicomonas montiporae CL-33T with its coral host. Frontiers in Microbiology, 7, 181218.
Douglas, A. (2003). Coral bleaching––how and why? Marine pollution bulletin, 46(4), 385-392.
Dubinsky, Z., Falkowski, P., Porter, J., & Muscatine, L. (1984). Absorption and utilization of radiant energy by light-and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proceedings of the Royal Society of London. Series B. Biological Sciences, 222(1227), 203-214.
Ducklow, H. W., & Mitchell, R. (1979). Bacterial populations and adaptations in the mucus layers on living corals 1. Limnology and Oceanography, 24(4), 715-725.
Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25(4), 500-505.
Fitt, W. K., Brown, B. E., Warner, M. E., & Dunne, R. P. (2001). Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs, 20, 51-65.
Foyer, C. H., & Hanke, G. (2022). ROS production and signalling in chloroplasts: cornerstones and evolving concepts. The Plant Journal, 111(3), 642-661.
Frias-Lopez, J., Zerkle, A. L., Bonheyo, G. T., & Fouke, B. W. (2002). Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Applied and Environmental Microbiology, 68(5), 2214-2228.
Gissi, E., Manea, E., Mazaris, A. D., Fraschetti, S., Almpanidou, V., Bevilacqua, S., Coll, M., Guarnieri, G., Lloret-Lloret, E., & Pascual, M. (2021). A review of the combined effects of climate change and other local human stressors on the marine environment. Science of the Total Environment, 755, 142564.
Grottoli, A. G., Rodrigues, L. J., & Palardy, J. E. (2006). Heterotrophic plasticity and resilience in bleached corals. Nature, 440(7088), 1186-1189.
Helgoe, J., Davy, S. K., Weis, V. M., & Rodriguez‐Lanetty, M. (2024). Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biological Reviews, 99(3), 715-752.
Higuchi, T., Agostini, S., Casareto, B. E., Yoshinaga, K., Suzuki, T., Nakano, Y., Fujimura, H., & Suzuki, Y. (2013). Bacterial enhancement of bleaching and physiological impacts on the coral Montipora digitata. Journal of Experimental Marine Biology and Ecology, 440, 54-60.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., & Caldeira, K. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737-1742.
Hong, M.-J., Yu, Y.-T., Chen, C. A., Chiang, P.-W., & Tang, S.-L. (2009). Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan. Applied and Environmental Microbiology, 75(24), 7797-7806.
Huggett, M. J., & Apprill, A. (2019). Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral‐associated microbes. Environmental Microbiology Reports, 11(3), 372-385.
Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., Baird, A. H., Baum, J. K., Berumen, M. L., & Bridge, T. C. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359(6371), 80-83.
Hyun, D.-W., Shin, N.-R., Kim, M.-S., Oh, S. J., Kim, P. S., Whon, T. W., & Bae, J.-W. (2014). Endozoicomonas atrinae sp. nov., isolated from the intestine of a comb pen shell Atrina pectinata. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_7), 2312-2318.
Ide, K., Nishikawa, Y., Maruyama, T., Tsukada, Y., Kogawa, M., Takeda, H., Ito, H., Wagatsuma, R., Miyaoka, R., & Nakano, Y. (2022). Targeted single-cell genomics reveals novel host adaptation strategies of the symbiotic bacteria Endozoicomonas in Acropora tenuis coral. Microbiome, 10(1), 220.
Jacobson, A. R., Schuldt, K. N., Arlyn Andrews, Miller, J. B., Oda, T., Sourish Basu, Mund, J., Weir, B., Ott, L., Aalto, T., Abshire, J. B., Aikin, K., Aoki, S., Allen, G., Apadula, F., Arnold, S., Baier, B., Bakwin, P., Bäni, L., … Miroslaw Zimnoch. (2024). CarbonTracker CT-NRT.v2024-1. NOAA Global Monitoring Laboratory.
Jokiel, P. L., & Coles, S. (1990). Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs, 8, 155-162.
Jorgensen, S. L., Hannisdal, B., Lanzén, A., Baumberger, T., Flesland, K., Fonseca, R., Øvreås, L., Steen, I. H., Thorseth, I. H., & Pedersen, R. B. (2012). Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proceedings of the National Academy of Sciences, 109(42), E2846-E2855.
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642.
Kavousi, J., Denis, V., Sharp, V., Reimer, J. D., Nakamura, T., & Parkinson, J. E. (2020). Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata. Marine Biology, 167, 1-15.
Kolde, R. (2019). Pheatmap: pretty heatmaps. R Package Version, 1(2), 726.
Kurahashi, M., & Yokota, A. (2007). Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Systematic and Applied Microbiology, 30(3), 202-206.
Kushmaro, A., Rosenberg, E., Fine, M., & Loya, Y. (1997). Bleaching of the coral Oculina patagonica by Vibrio AK-1. Marine Ecology Progress Series, 147, 159-165.
Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., & Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences, 82(20), 6955-6959.
Lee, S. T., Davy, S. K., Tang, S.-L., & Kench, P. S. (2017). Water flow buffers shifts in bacterial community structure in heat-stressed Acropora muricata. Scientific Reports, 7(1), 43600.
Li, J., Chen, Q., Long, L.-J., Dong, J.-D., Yang, J., & Zhang, S. (2014). Bacterial dynamics within the mucus, tissue and skeleton of the coral Porites lutea during different seasons. Scientific Reports, 4(1), 7320.
Li, J., Zou, Y., Li, Q., Zhang, J., Bourne, D. G., Lyu, Y., Liu, C., & Zhang, S. (2023). A coral-associated actinobacterium mitigates coral bleaching under heat stress. Environmental Microbiome, 18(1), 83.
Lin, C.-H., Chuang, C.-H., Twan, W.-H., Chiou, S.-F., Wong, T.-Y., Liu, J.-K., Kao, C.-y., & Kuo, J. (2016). Seasonal changes in bacterial communities associated with healthy and diseased Porites coral in southern Taiwan. Canadian Journal of Microbiology, 62(12), 1021-1033.
Lindsey, R., & Dahlman, L. (2024). Climate change: Global temperature. Climate. gov.
Luo, D., Wang, X., Feng, X., Tian, M., Wang, S., Tang, S.-L., Ang Jr, P., Yan, A., & Luo, H. (2021). Population differentiation of Rhodobacteraceae along with coral compartments. The ISME Journal, 15(11), 3286-3302.
Maire, J., Tandon, K., Collingro, A., van de Meene, A., Damjanovic, K., Gotze, C., Stephenson, S., Philip, G., Horn, M., & Cantin, N. (2023). Colocalization and potential interactions of endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta. Science Advances, 9(20), eadg0773.
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668.
Mendoza, M., Güiza, L., Martinez, X., Caraballo, X., Rojas, J., Aranguren, L. F., & Salazar, M. (2013). A novel agent (Endozoicomonas elysicola) responsible for epitheliocystis in cobia Rachycentrum canadum larvae. Diseases of Aquatic Organisms, 106(1), 31-37.
Meyer, J. L., Castellanos-Gell, J., Aeby, G. S., Häse, C. C., Ushijima, B., & Paul, V. J. (2019). Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida Reef Tract. Frontiers in Microbiology, 10, 2244.
Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2), 215-233.
Muscatine, L. (1990). The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs.
Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W., & Backhaus, H. (1996). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178(19), 5636-5643.
Neave, M. J., Apprill, A., Ferrier-Pagès, C., & Voolstra, C. R. (2016). Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Applied Microbiology and Biotechnology, 100, 8315-8324.
Neave, M. J., Rachmawati, R., Xun, L., Michell, C. T., Bourne, D. G., Apprill, A., & Voolstra, C. R. (2017). Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. The ISME Journal, 11(1), 186-200.
Nielsen, D. A., Petrou, K., & Gates, R. D. (2018). Coral bleaching from a single cell perspective. The ISME Journal, 12(6), 1558-1567.
Nishijima, M., Adachi, K., Katsuta, A., Shizuri, Y., & Yamasato, K. (2013). Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_2), 709-714.
NOAA (2024, April 15). NOAA confirms 4th global coral bleaching event. National Oceanic and Atmospheric Administration.
Normile, D. (2016). Massive bleaching killed 35% of the coral on the northern end of the Great Barrier Reef. Science, 30.
Oh, M., Kim, J.-H., & Kim, W. (2016). Tropicimonas arenosa sp. nov., isolated from marine sand. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5514-5518.
Pantos, O., Bongaerts, P., Dennis, P. G., Tyson, G. W., & Hoegh-Guldberg, O. (2015). Habitat-specific environmental conditions primarily control the microbiomes of the coral Seriatopora hystrix. The ISME Journal, 9(9), 1916-1927.
Peixoto, R. S., Rosado, P. M., Leite, D. C. d. A., Rosado, A. S., & Bourne, D. G. (2017). Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Frontiers in Microbiology, 8, 341.
Pike, R. E., Haltli, B., & Kerr, R. G. (2013). Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_11), 4294-4302.
Pogoreutz, C., Oakley, C. A., Rädecker, N., Cárdenas, A., Perna, G., Xiang, N., Peng, L., Davy, S. K., Ngugi, D. K., & Voolstra, C. R. (2022). Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. The ISME Journal, 16(8), 1883-1895.
Pootakham, W., Mhuantong, W., Putchim, L., Yoocha, T., Sonthirod, C., Kongkachana, W., Sangsrakru, D., Naktang, C., Jomchai, N., & Thongtham, N. (2018). Dynamics of coral‐associated microbiomes during a thermal bleaching event. MicrobiologyOpen, 7(5), e00604.
Pootakham, W., Mhuantong, W., Yoocha, T., Putchim, L., Jomchai, N., Sonthirod, C., Naktang, C., Kongkachana, W., & Tangphatsornruang, S. (2019). Heat‐induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. MicrobiologyOpen, 8(12), e935.
Pospíšil, P. (2016). Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Frontiers in Plant Science, 7, 1950.
Raghukumar, C., & Ravindran, J. (2011). Fungi and their role in corals and coral reef ecosystems. In Biology of Marine Fungi (pp. 89-113). Springer.
Raina, J.-B., Tapiolas, D., Motti, C. A., Foret, S., Seemann, T., Tebben, J., Willis, B. L., & Bourne, D. G. (2016). Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ, 4, e2275.
Raina, J.-B., Tapiolas, D., Willis, B. L., & Bourne, D. G. (2009). Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Applied and Environmental Microbiology, 75(11), 3492-3501.
Reshef, L., Koren, O., Loya, Y., Zilber‐Rosenberg, I., & Rosenberg, E. (2006). The coral probiotic hypothesis. Environmental Microbiology, 8(12), 2068-2073.
Ritchie, K. B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1-14.
Roff, G., Dove, S., & Dunn, S. (2009). Mesenterial filaments make a clean sweep of substrates for coral growth. Coral Reefs, 28, 79-79.
Rohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10.
Rosado, P. M., Leite, D. C., Duarte, G. A., Chaloub, R. M., Jospin, G., Nunes da Rocha, U., Saraiva, J. P., Dini-Andreote, F., Eisen, J. A., & Bourne, D. G. (2019). Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. The ISME Journal, 13(4), 921-936.
Rua, C. P., Trindade-Silva, A. E., Appolinario, L. R., Venas, T. M., Garcia, G. D., Carvalho, L. S., Lima, A., Kruger, R., Pereira, R. C., & Berlinck, R. G. (2014). Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. PeerJ, 2, e419.
Rubio-Portillo, E., Gago, J. F., Martínez-García, M., Vezzulli, L., Rosselló-Móra, R., Antón, J., & Ramos-Esplá, A. A. (2018). Vibrio communities in scleractinian corals differ according to health status and geographic location in the Mediterranean Sea. Systematic and Applied Microbiology, 41(2), 131-138.
Santoro, E. P., Borges, R. M., Espinoza, J. L., Freire, M., Messias, C. S., Villela, H. D., Pereira, L. M., Vilela, C. L., Rosado, J. G., & Cardoso, P. M. (2021). Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Science Advances, 7(33), eabg3088.
Sato, Y., Willis, B. L., & Bourne, D. G. (2010). Successional changes in bacterial communities during the development of black band disease on the reef coral, Montipora hispida. The ISME Journal, 4(2), 203-214.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., & Robinson, C. J. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541.
Schreiber, L., Kjeldsen, K. U., Obst, M., Funch, P., & Schramm, A. (2016). Description of Endozoicomonas ascidiicola sp. nov., isolated from Scandinavian ascidians. Systematic and Applied Microbiology, 39(5), 313-318.
Sheu, S.-Y., Lin, K.-R., Hsu, M.-y., Sheu, D.-S., Tang, S.-L., & Chen, W.-M. (2017). Endozoicomonas acroporae sp. nov., isolated from Acropora coral. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3791-3797.
Shikina, S., Lin, T.-C., Chu, Y.-L., Cheng, Y.-C., Chang, Y.-E., Wada, N., Tang, S.-L., Iizuka, Y., & Chiu, Y.-L. (2023). Culturing reef-building corals on a laboratory dish: a simple experimental platform for stony corals. Frontiers in Marine Science, 10, 1149495.
Shiu, J.-H., Ding, J.-Y., Tseng, C.-H., Lou, S.-P., Mezaki, T., Wu, Y.-T., Wang, H.-I., & Tang, S.-L. (2018). A newly designed primer revealed high phylogenetic diversity of Endozoicomonas in coral reefs. Microbes and Environments, 33(2), 172-185.
Shnit-Orland, M., & Kushmaro, A. (2009). Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiology Ecology, 67(3), 371-380.
Siebeck, U., Marshall, N., Klüter, A., & Hoegh-Guldberg, O. (2006). Monitoring coral bleaching using a colour reference card. Coral Reefs, 25, 453-460.
Smith, D. J., Suggett, D. J., & Baker, N. R. (2005). Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biology, 11(1), 1-11.
Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., & Staub, F. (2021). Status of coral reefs of the world: 2020: summary for policymakers.
Szabó, M., Larkum, A. W., & Vass, I. (2020). A review: the role of reactive oxygen species in mass coral bleaching. Photosynthesis in Algae: Biochemical and Physiological Mechanisms, 459-488.
Tandon, K., Chiou, Y.-J., Yu, S.-P., Hsieh, H. J., Lu, C.-Y., Hsu, M.-T., Chiang, P.-W., Chen, H.-J., Wada, N., & Tang, S.-L. (2022). Microbiome restructuring: dominant coral bacterium Endozoicomonas species respond differentially to environmental changes. Msystems, 7(4), e00359-00322.
Tandon, K., Lu, C.-Y., Chiang, P.-W., Wada, N., Yang, S.-H., Chan, Y.-F., Chen, P.-Y., Chang, H.-Y., Chiou, Y.-J., & Chou, M.-S. (2020). Comparative genomics: dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). The ISME Journal, 14(5), 1290-1303.
Thompson, F., Barash, Y., Sawabe, T., Sharon, G., Swings, J., & Rosenberg, E. (2006). Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. International Journal of Systematic and Evolutionary Microbiology, 56(2), 365-368.
Thurber, R. V., Payet, J. P., Thurber, A. R., & Correa, A. M. (2017). Virus–host interactions and their roles in coral reef health and disease. Nature Reviews Microbiology, 15(4), 205-216.
Titlyanov, E., Titlyanova, T., Yamazato, K., & van Woesik, R. (2001). Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. Journal of Experimental Marine Biology and Ecology, 263(2), 211-225.
Tout, J., Siboni, N., Messer, L. F., Garren, M., Stocker, R., Webster, N. S., Ralph, P. J., & Seymour, J. R. (2015). Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Frontiers in Microbiology, 6, 140809.
van de Water, J. A., Chaib De Mares, M., Dixon, G. B., Raina, J. B., Willis, B. L., Bourne, D. G., & van Oppen, M. J. (2018). Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef‐building coral. Molecular Ecology, 27(4), 1065-1080.
Villanueva, R. A. M., & Chen, Z. J. (2019). ggplot2: elegant graphics for data analysis.
Wada, N., Hsu, M.-T., Tandon, K., Hsiao, S. S.-Y., Chen, H.-J., Chen, Y.-H., Chiang, P.-W., Yu, S.-P., Lu, C.-Y., & Chiou, Y.-J. (2022). High-resolution spatial and genomic characterization of coral-associated microbial aggregates in the coral Stylophora pistillata. Science Advances, 8(27), eabo2431.
Wang, W., Tang, K., Wang, P., Zeng, Z., Xu, T., Zhan, W., Liu, T., Wang, Y., & Wang, X. (2022). The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction. Nature Ecology & Evolution, 6(8), 1132-1144.
Wegley, L., Yu, Y., Breitbart, M., Casas, V., Kline, D. I., & Rohwer, F. (2004). Coral-associated archaea. Marine Ecology Progress Series, 273, 89-96.
Welsh, R. M., Zaneveld, J. R., Rosales, S. M., Payet, J. P., Burkepile, D. E., & Thurber, R. V. (2016). Bacterial predation in a marine host-associated microbiome. The ISME Journal, 10(6), 1540-1544.
Wijgerde, T., Diantari, R., Lewaru, M. W., Verreth, J. A., & Osinga, R. (2011). Extracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis. Journal of Experimental Biology, 214(20), 3351-3357.
Willis, C., Desai, D., & LaRoche, J. (2019). Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiology Letters, 366(13), fnz152.
Xu, M., Cai, Z., Cheng, K., Chen, G., & Zhou, J. (2024). Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Applied and Environmental microbiology, 90(4), e02274-02223.
Yang, C.-S., Chen, M.-H., Arun, A., Chen, C. A., Wang, J.-T., & Chen, W.-M. (2010). Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. International Journal of Systematic and Evolutionary Microbiology, 60(5), 1158-1162.
Yang, S.-H., Tseng, C.-H., Huang, C.-R., Chen, C.-P., Tandon, K., Lee, S. T., Chiang, P.-W., Shiu, J.-H., Chen, C. A., & Tang, S.-L. (2017). Long-term survey is necessary to reveal various shifts of microbial composition in corals. Frontiers in Microbiology, 8, 1094.
Yang, S. H., Lee, S. T., Huang, C. R., Tseng, C. H., Chiang, P. W., Chen, C. P., Chen, H. J., & Tang, S. L. (2016). Prevalence of potential nitrogen‐fixing, green sulfur bacteria in the skeleton of reef‐building coral I sopora palifera. Limnology and Oceanography, 61(3), 1078-1086.
Yu, X., Yu, K., Liao, Z., Chen, B., Deng, C., Yu, J., Yao, Q., Qin, Z., & Liang, J. (2021). Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea. Science of the Total Environment, 792, 148438.
Zou, Y., Chen, Y., Wang, L., Zhang, S., & Li, J. (2022). Differential responses of bacterial communities in coral tissue and mucus to bleaching. Coral Reefs, 41(4), 951-960.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95735-
dc.description.abstract珊瑚礁是地球上十分重要的生態系之一,近年來,大量人為活動及氣候變遷使珊瑚白化事件愈趨嚴重。面對珊瑚白化的困境, Peixoto等人於2017年提出了新名詞:珊瑚有益微生物 (beneficial microorganisms for corals, BMC),假設透過BMC的接種可以幫助珊瑚渡過環境逆境,且目前也有數篇研究證實了BMC具有幫助珊瑚渡過熱逆境的潛力。作為許多健康珊瑚的核心菌群,有研究指出內生桿菌 (Endozoicomonas) 可以執行許多維持珊瑚健康的重要功能,例如: 參與醣循環、DMSP代謝、活性氧物質清除等,具有作為BMC的潛力。因此,本研究以台灣北海岸的萼形柱珊瑚 (Stylophora pistillata) 為對象,設計了為期18天的珊瑚升溫及內生桿菌接種實驗,分別測試了四株可培養且具不同代謝功能的內生桿菌:E. montiporae CL-33、E. acroporae Acr-14、E. penghunesis 4G、E. ruthgatesiae 8E,於實驗期間透過珊瑚共生藻光化學效能 (Fv/Fm) 測定、珊瑚影像紀錄、珊瑚菌相分析,評估熱逆境下接種內生桿菌對珊瑚的影響。並假設在升溫逆境下接種內生桿菌的珊瑚相較以過濾人工海水 (filtered-artificial sea water, FASW) 處理的珊瑚可以有較好的生理表現。經實驗發現,升溫逆境下接種內生桿菌對珊瑚沒有影響。熱逆境下四株內生桿菌處理組及FASW處理組的珊瑚共生藻光化學效能 (Fv/Fm) 表現都會下降 (Fv/Fm <0.6),且珊瑚在各組都出現不同程度的組織脫落或死亡,實驗中觀察到的不同熱壓力反應主要都來自珊瑚群體差異。而根據細菌16S rRNA 基因 V6-V8定序結果分析,四株內生桿菌都可以在接種的珊瑚中被偵測到,但接種內生桿菌對珊瑚菌相沒有明顯影響。本研究是首次對內生桿菌進行溫度逆境下作為珊瑚有益菌之潛力測試,經實驗發現接種內生桿菌並不會對珊瑚造成影響,未來需要更進一步的實驗證實本次實驗所觀察到的結果。zh_TW
dc.description.abstractCoral reefs are among of the most important ecosystems on Earth. In recent years, human activities and global warming have resulted in sever coral bleaching. In response to this challenge, Peixoto et al. (2017) proposed the concepta “Beneficial Microorganisms for Corals (BMC) ”, which suggests that microbiome manipulation can improve coral fitness under environmental stresses. To date, several studies have confirmed that BMCs can benefit corals under thermal stresses. Endozoicomonas is a core member of coral microbiomes and plays many crucial roles in coral holobiont such as carbon cycle, DMSP metabolism, and ROS scavenging, making it a potential BMC. In this study, we conducted an 18-day Endozoicomonas inoculation and heating experiment on the coral, Stylophora pistillata, from the northern coast of Taiwan. Four Endozoicomonas strains (E. montiporae CL-33, E. acroporae Acr-14, E. penghunesis 4G, and E. ruthgatesiae 8E) were selected to examine their influences on coral response to the thermal stress. Heat stress drove decreases in coral symbiotic algae photosynthetic efficiency in all Endozoicomonas-inoculation and control (filtered-artificial seawater, FASW) groups. In addition, different levels of coral tissue loss and mortality were also observed disregarding the treatment. Sequencing of bacterial 16S rRNA gene V6-V8 hypervariable regions detected all four Endozoicomonas strains in inoculated corals. However, the inoculation didn’t significantly change the overall structure of coral microbiomes. This study is the first to test the potential of Endozoicomonas as a BMC for thermal stresses. We found that Endozoicomons inoculation do not affect coral under thermal stresses, but further experiment are required to confirm the phenomenon we observed.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:10:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:10:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
目次 v
圖次 viii
表次 ix
壹、緒論 1
1. 氣候變遷下的珊瑚礁 1
1.1 珊瑚礁生態系的重要性 1
1.2 珊瑚面對的環境逆境 1
1.3 珊瑚白化機制 2
2. 珊瑚共棲菌 3
2.1 珊瑚共棲菌的重要性 3
2.2 珊瑚共棲菌多樣性與組成變動 3
3. 珊瑚有益微生物 4
3.1 珊瑚有益微生物相關假說 4
3.2 珊瑚有益微生物的水缸試驗 5
4. 內生桿菌 5
4.1 內生桿菌基本介紹 6
4.2 內生桿菌在白化期間的相對豐度變化 6
4.3 四株可培養之珊瑚內生桿菌菌株 7
4.3.1 Endozoicomonas acroporae Acr-14 7
4.3.2 Endozoicomonas ruthgatesiae 8E 8
4.3.3 Endozoicomonas montiporae CL-33 8
4.3.4 Endozoicomonas penghunesis 4G 9
5. 研究動機與目的 9
貳、材料與方法 11
1. 珊瑚樣本及內生桿菌 11
2. 珊瑚升溫及內生桿菌接種實驗 12
2.1 水缸系統及珊瑚飼養條件 12
2.2 實驗設計 12
2.3 內生桿菌接種 13
2.4 共生藻最大光化學效能 (Fv/Fm) 測量 13
2.5 珊瑚健康評估 14
3. 珊瑚共棲菌定序樣本製備 14
3.1 珊瑚樣本保存 14
3.2 總DNA萃取 14
3.3 細菌16S rRNA基因V6-V8擴增子製備 16
3.3.1 細菌16S rRNA基因變異區選擇 16
3.3.2 V6-V8擴增子製備 16
4. 定序 17
4.1 Illumina MiSeq pair-end 定序及序列資料分析 17
4.2 菌相分析 18
5. 統計分析 19
參、結果 21
1. 珊瑚共生藻光化學效能 (Fv/Fm) 變化 21
2. 珊瑚健康變化 22
3. 序列分析 22
4. 珊瑚菌相組成 23
5. 各處理組中的指標ASV 25
6. 四株接種珊瑚之內生桿菌在珊瑚內的相對豐度 25
6.1 內生桿菌ASV 25
6.2 四株內生桿菌各組間相對豐度比較 26
7. 珊瑚樣本內菌群多樣性 (Alpha多樣性) 27
8. 珊瑚菌相組成差異分析 (Beta多樣性) 27
肆、討論 29
1. 實驗期間的珊瑚生理變化 29
1.1 內生桿菌對熱逆境下的珊瑚健康沒有影響 29
1.2 不同珊瑚群體對熱逆境的反應不同 29
1.3 珊瑚健康變化 30
2. 四株內生桿菌成功在珊瑚樣本中被偵測到 31
2.1 四株內生桿菌並不存在於本實驗採集之北海岸的萼形柱珊瑚 31
2.2 內生桿菌接種後和實驗珊瑚的共棲關係 31
3. 台灣北海岸萼形柱珊瑚與內生桿菌之共棲關係 32
4. 珊瑚菌相組成 34
4.1 不同批次珊瑚的菌相組成與多樣性差異 34
4.2 不同處理組珊瑚菌相組成與多樣性差異 34
4.3 不同細菌分類在珊瑚內的相對豐度差異 35
4.4 珊瑚群體間的菌相組成差異 36
5. 各處理組中的指標ASV 36
伍、結論與未來展望 38
圖與表 40
參考文獻 74
附錄 85
-
dc.language.isozh_TW-
dc.title溫度逆境下為萼形柱珊瑚接種內生桿菌之影響zh_TW
dc.titleThe effect of Endozoicomonas inoculation on the coral Stylophora pistillata under thermal stressen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor謝志豪zh_TW
dc.contributor.coadvisorChih-hao Hsiehen
dc.contributor.oralexamcommittee識名信也;劉勃佑zh_TW
dc.contributor.oralexamcommitteeShinya Shikina ;Po-Yu Liuen
dc.subject.keyword內生桿菌,珊瑚有益微生物,萼形柱珊瑚,熱壓力,珊瑚白化,zh_TW
dc.subject.keywordEndozoicomonas,beneficial microorganisms for corals (BMC),Stylophora pistillata,heat stress,coral bleaching,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202403187-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2029-07-22-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
5.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved