請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9572完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳瑞華 | |
| dc.contributor.author | Che-Hung Shen | en |
| dc.contributor.author | 沈哲宏 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:29:19Z | - |
| dc.date.available | 2008-09-11 | |
| dc.date.available | 2021-05-20T20:29:19Z | - |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-01 | |
| dc.identifier.citation | Aaronson, S. A. (1991). 'Growth factors and cancer.' Science 254(5035): 1146-53.
Abraham, M. T., M. A. Kuriakose, et al. (2001). 'Motility-related proteins as markers for head and neck squamous cell cancer.' Laryngoscope 111(7): 1285-9. Adam, L., R. K. Vadlamudi, et al. (2001). 'Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/beta -catenin nuclear signaling in breast cancer cells by modulating the intercellular stability.' J Biol Chem 276(30): 28443-50. Adjei, A. A. (2001). 'Blocking oncogenic Ras signaling for cancer therapy.' J Natl Cancer Inst 93(14): 1062-74. Albanese, C., J. Johnson, et al. (1995). 'Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions.' J Biol Chem 270(40): 23589-97. Almoguera, C., D. Shibata, et al. (1988). 'Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.' Cell 53(4): 549-54. Aplin, A. E., A. Howe, et al. (1998). 'Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins.' Pharmacol Rev 50(2): 197-263. Apolloni, A., I. A. Prior, et al. (2000). 'H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway.' Mol Cell Biol 20(7): 2475-87. Arthur, W. T. and K. Burridge (2001). 'RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity.' Mol Biol Cell 12(9): 2711-20. Arthur, W. T., L. A. Petch, et al. (2000). 'Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism.' Curr Biol 10(12): 719-22. Aspenstrom, P., A. Ruusala, et al. (2007). 'Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases.' Exp Cell Res 313(17): 3673-9. Aubele, M., G. Auer, et al. (2007). 'PTK (protein tyrosine kinase)-6 and HER2 and 4, but not HER1 and 3 predict long-term survival in breast carcinomas.' Br J Cancer 96(5): 801-7. Bader, A. G., S. Kang, et al. (2005). 'Oncogenic PI3K deregulates transcription and translation.' Nat Rev Cancer 5(12): 921-9. Barker, K. T., L. E. Jackson, et al. (1997). 'BRK tyrosine kinase expression in a high proportion of human breast carcinomas.' Oncogene 15(7): 799-805. Bellovin, D. I., K. J. Simpson, et al. (2006). 'Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma.' Oncogene 25(52): 6959-67. Benbow, U. and C. E. Brinckerhoff (1997). 'The AP-1 site and MMP gene regulation: what is all the fuss about?' Matrix Biol 15(8-9): 519-26. Bernards, A. and J. Settleman (2005). 'GAPs in growth factor signalling.' Growth Factors 23(2): 143-9. Berra, E., G. Pages, et al. (2000). 'MAP kinases and hypoxia in the control of VEGF expression.' Cancer Metastasis Rev 19(1-2): 139-45. Bjorge, J. D., A. Jakymiw, et al. (2000). 'Selected glimpses into the activation and function of Src kinase.' Oncogene 19(49): 5620-35. Blume-Jensen, P. and T. Hunter (2001). 'Oncogenic kinase signalling.' Nature 411(6835): 355-65. Boguski, M. S. and F. McCormick (1993). 'Proteins regulating Ras and its relatives.' Nature 366(6456): 643-54. Boon, L. M., J. B. Mulliken, et al. (2005). 'RASA1: variable phenotype with capillary and arteriovenous malformations.' Curr Opin Genet Dev 15(3): 265-9. Born, M., L. Quintanilla-Fend, et al. (2005). 'Simultaneous over-expression of the Her2/neu and PTK6 tyrosine kinases in archival invasive ductal breast carcinomas.' J Pathol 205(5): 592-6. Bos, J. L. (1988). 'Ras oncogenes in hematopoietic malignancies.' Hematol Pathol 2(2): 55-63. Bos, J. L. (1989). 'ras oncogenes in human cancer: a review.' Cancer Res 49(17): 4682-9. Bos, J. L., E. R. Fearon, et al. (1987). 'Prevalence of ras gene mutations in human colorectal cancers.' Nature 327(6120): 293-7. Bos, J. L., H. Rehmann, et al. (2007). 'GEFs and GAPs: critical elements in the control of small G proteins.' Cell 129(5): 865-77. Boureux, A., E. Vignal, et al. (2007). 'Evolution of the Rho family of ras-like GTPases in eukaryotes.' Mol Biol Evol 24(1): 203-16. Bradley, W. D., S. E. Hernandez, et al. (2006). 'Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane.' Mol Biol Cell 17(11): 4827-36. Braga, V. M., M. Betson, et al. (2000). 'Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes.' Mol Biol Cell 11(11): 3703-21. Brouns, M. R., S. F. Matheson, et al. (2000). 'The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development.' Development 127(22): 4891-903. Brouns, M. R., S. F. Matheson, et al. (2001). 'p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation.' Nat Cell Biol 3(4): 361-7. Brunner, G., J. Pohl, et al. (1989). 'Induction of urokinase activity and malignant phenotype in bladder carcinoma cells after transfection of the activated Ha-ras oncogene.' J Cancer Res Clin Oncol 115(2): 139-44. Burbelo, P. D., S. Miyamoto, et al. (1995). 'p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking.' J Biol Chem 270(52): 30919-26. Burridge, K. and K. Wennerberg (2004). 'Rho and Rac take center stage.' Cell 116(2): 167-79. Cammarano, M. S. and A. Minden (2001). 'Dbl and the Rho GTPases activate NF kappa B by I kappa B kinase (IKK)-dependent and IKK-independent pathways.' J Biol Chem 276(28): 25876-82. Carpenter, G., L. King, Jr., et al. (1978). 'Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro.' Nature 276(5686): 409-10. Carpino, N., D. Wisniewski, et al. (1997). 'p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells.' Cell 88(2): 197-204. Chakraborty, G., S. Jain, et al. (2008). 'Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms.' Cancer Res 68(1): 152-61. Chakravarty, G., D. Hadsell, et al. (2003). 'p190-B RhoGAP regulates mammary ductal morphogenesis.' Mol Endocrinol 17(6): 1054-65. Chakravarty, G., D. Roy, et al. (2000). 'P190-B, a Rho-GTPase-activating protein, is differentially expressed in terminal end buds and breast cancer.' Cell Growth Differ 11(7): 343-54. Chan, L. C., K. K. Karhi, et al. (1987). 'A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia.' Nature 325(6105): 635-7. Chang, J. H., S. Gill, et al. (1995). 'c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation.' J Cell Biol 130(2): 355-68. Chardin, P. (2006). 'Function and regulation of Rnd proteins.' Nat Rev Mol Cell Biol 7(1): 54-62. Chen, H. Y., C. H. Shen, et al. (2004). 'Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin.' Mol Cell Biol 24(24): 10558-72. Cherfils, J. and P. Chardin (1999). 'GEFs: structural basis for their activation of small GTP-binding proteins.' Trends Biochem Sci 24(8): 306-11. Chien, U. H., M. Lai, et al. (1979). 'Heteroduplex analysis of the sequence relationships between the genomes of Kirsten and Harvey sarcoma viruses, their respective parental murine leukemia viruses, and the rat endogenous 30S RNA.' J Virol 31(3): 752-60. Chin, L., A. Tam, et al. (1999). 'Essential role for oncogenic Ras in tumour maintenance.' Nature 400(6743): 468-72. Ching, Y. P., C. M. Wong, et al. (2003). 'Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma.' J Biol Chem 278(12): 10824-30. Coussens, L. M. and Z. Werb (1996). 'Matrix metalloproteinases and the development of cancer.' Chem Biol 3(11): 895-904. Cowin, P., T. M. Rowlands, et al. (2005). 'Cadherins and catenins in breast cancer.' Curr Opin Cell Biol 17(5): 499-508. Daub, H., K. Gevaert, et al. (2001). 'Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16.' J Biol Chem 276(3): 1677-80. Derry, J. J., G. S. Prins, et al. (2003). 'Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells.' Oncogene 22(27): 4212-20. Derry, J. J., S. Richard, et al. (2000). 'Sik (BRK) phosphorylates Sam68 in the nucleus and negatively regulates its RNA binding ability.' Mol Cell Biol 20(16): 6114-26. Dovas, A. and J. R. Couchman (2005). 'RhoGDI: multiple functions in the regulation of Rho family GTPase activities.' Biochem J 390(Pt 1): 1-9. Dubois, R. N., S. B. Abramson, et al. (1998). 'Cyclooxygenase in biology and disease.' Faseb J 12(12): 1063-73. Easty, D. J., P. J. Mitchell, et al. (1997). 'Loss of expression of receptor tyrosine kinase family genes PTK7 and SEK in metastatic melanoma.' Int J Cancer 71(6): 1061-5. Eerola, I., L. M. Boon, et al. (2003). 'Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations.' Am J Hum Genet 73(6): 1240-9. Ellenbroek, S. I. and J. G. Collard (2007). 'Rho GTPases: functions and association with cancer.' Clin Exp Metastasis 24(8): 657-72. Ellis, C., M. Moran, et al. (1990). 'Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases.' Nature 343(6256): 377-81. Engers, R., M. Mueller, et al. (2006). 'Prognostic relevance of Tiam1 protein expression in prostate carcinomas.' Br J Cancer 95(8): 1081-6. Engers, R., T. P. Zwaka, et al. (2000). 'Tiam1 mutations in human renal-cell carcinomas.' Int J Cancer 88(3): 369-76. Etienne-Manneville, S. (2004). 'Cdc42--the centre of polarity.' J Cell Sci 117(Pt 8): 1291-300. Etienne-Manneville, S. and A. Hall (2003). 'Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity.' Nature 421(6924): 753-6. Fransson, S., A. Ruusala, et al. (2006). 'The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking.' Biochem Biophys Res Commun 344(2): 500-10. Freeman, J. L., A. Abo, et al. (1996). 'Rac 'insert region' is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65.' J Biol Chem 271(33): 19794-801. Fritz, G., C. Brachetti, et al. (2002). 'Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters.' Br J Cancer 87(6): 635-44. Fritz, G., I. Just, et al. (1999). 'Rho GTPases are over-expressed in human tumors.' Int J Cancer 81(5): 682-7. Fukata, M., T. Watanabe, et al. (2002). 'Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170.' Cell 109(7): 873-85. Gawler, D. J., L. J. Zhang, et al. (1995). 'CaLB: a 43 amino acid calcium-dependent membrane/phospholipid binding domain in p120 Ras GTPase-activating protein.' Oncogene 10(5): 817-25. Gibbs, J. B., M. D. Schaber, et al. (1988). 'Purification of ras GTPase activating protein from bovine brain.' Proc Natl Acad Sci U S A 85(14): 5026-30. Giehl, K. (2005). 'Oncogenic Ras in tumour progression and metastasis.' Biol Chem 386(3): 193-205. Gingras, A. C., S. P. Gygi, et al. (1999). 'Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism.' Genes Dev 13(11): 1422-37. Griffith, J., J. Black, et al. (2004). 'The structural basis for autoinhibition of FLT3 by the juxtamembrane domain.' Mol Cell 13(2): 169-78. Guasch, R. M., P. Scambler, et al. (1998). 'RhoE regulates actin cytoskeleton organization and cell migration.' Mol Cell Biol 18(8): 4761-71. Gum, R., E. Lengyel, et al. (1996). 'Stimulation of 92-kDa gelatinase B promoter activity by ras is mitogen-activated protein kinase kinase 1-independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP-1 sequences.' J Biol Chem 271(18): 10672-80. Haegebarth, A., W. Bie, et al. (2006). 'Protein tyrosine kinase 6 negatively regulates growth and promotes enterocyte differentiation in the small intestine.' Mol Cell Biol 26(13): 4949-57. Haegebarth, A., D. Heap, et al. (2004). 'The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2.' J Biol Chem 279(52): 54398-404. Hakem, A., O. Sanchez-Sweatman, et al. (2005). 'RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis.' Genes Dev 19(17): 1974-9. Hall, A. (2005). 'Rho GTPases and the control of cell behaviour.' Biochem Soc Trans 33(Pt 5): 891-5. Han, J., K. Luby-Phelps, et al. (1998). 'Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav.' Science 279(5350): 558-60. Hanahan, D. and J. Folkman (1996). 'Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.' Cell 86(3): 353-64. Hanahan, D. and R. A. Weinberg (2000). 'The hallmarks of cancer.' Cell 100(1): 57-70. Hancock, J. F. (2003). 'Ras proteins: different signals from different locations.' Nat Rev Mol Cell Biol 4(5): 373-84. Hannon, G. J. and D. Beach (1994). 'p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest.' Nature 371(6494): 257-61. Hansen, S. H., M. M. Zegers, et al. (2000). 'Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf-MEK-extracellular signal-regulated kinase pathway.' Mol Cell Biol 20(24): 9364-75. Haskell, M. D., A. L. Nickles, et al. (2001). 'Phosphorylation of p190 on Tyr1105 by c-Src is necessary but not sufficient for EGF-induced actin disassembly in C3H10T1/2 fibroblasts.' J Cell Sci 114(Pt 9): 1699-708. Henkemeyer, M., D. J. Rossi, et al. (1995). 'Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein.' Nature 377(6551): 695-701. Herbert, T. P., A. R. Tee, et al. (2002). 'The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites.' J Biol Chem 277(13): 11591-6. Hernandez, S. E., J. Settleman, et al. (2004). 'Adhesion-dependent regulation of p190RhoGAP in the developing brain by the Abl-related gene tyrosine kinase.' Curr Biol 14(8): 691-6. Hill, C. S., J. Wynne, et al. (1995). 'The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF.' Cell 81(7): 1159-70. Hinz, M., D. Krappmann, et al. (1999). 'NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition.' Mol Cell Biol 19(4): 2690-8. Hong, E., J. Shin, et al. (2004). 'Solution structure and backbone dynamics of the non-receptor protein-tyrosine kinase-6 Src homology 2 domain.' J Biol Chem 279(28): 29700-8. Hu, K. Q. and J. Settleman (1997). 'Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation.' Embo J 16(3): 473-83. Hubbard, S. R. and J. H. Till (2000). 'Protein tyrosine kinase structure and function.' Annu Rev Biochem 69: 373-98. Ikeda, N., Y. Nakajima, et al. (2001). 'The association of K-ras gene mutation and vascular endothelial growth factor gene expression in pancreatic carcinoma.' Cancer 92(3): 488-99. Innocenti, M., E. Frittoli, et al. (2003). 'Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1.' J Cell Biol 160(1): 17-23. Irby, R. B., W. Mao, et al. (1999). 'Activating SRC mutation in a subset of advanced human colon cancers.' Nat Genet 21(2): 187-90. Jaffe, A. B. and A. Hall (2005). 'Rho GTPases: biochemistry and biology.' Annu Rev Cell Dev Biol 21: 247-69. Jarzynka, M. J., B. Hu, et al. (2007). 'ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion.' Cancer Res 67(15): 7203-11. Jiang, W., R. Sordella, et al. (2005). 'An FF domain-dependent protein interaction mediates a signaling pathway for growth factor-induced gene expression.' Mol Cell 17(1): 23-35. Johnson, L., K. Mercer, et al. (2001). 'Somatic activation of the K-ras oncogene causes early onset lung cancer in mice.' Nature 410(6832): 1111-6. Jones, M. B., H. Krutzsch, et al. (2002). 'Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer.' Proteomics 2(1): 76-84. Joneson, T. and D. Bar-Sagi (1999). 'Suppression of Ras-induced apoptosis by the Rac GTPase.' Mol Cell Biol 19(9): 5892-901. Jordan, P., R. Brazao, et al. (1999). 'Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors.' Oncogene 18(48): 6835-9. Jung, F., J. Haendeler, et al. (2002). 'Hypoxic induction of the hypoxia-inducible factor is mediated via the adaptor protein Shc in endothelial cells.' Circ Res 91(1): 38-45. Kahn, R. A. and A. G. Gilman (1984). 'Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin.' J Biol Chem 259(10): 6228-34. Kamai, T., T. Tsujii, et al. (2003). 'Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer.' Clin Cancer Res 9(7): 2632-41. Kamai, T., T. Yamanishi, et al. (2004). 'Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer.' Clin Cancer Res 10(14): 4799-805. Kamalati, T., H. E. Jolin, et al. (2000). 'Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation.' Oncogene 19(48): 5471-6. Kamalati, T., H. E. Jolin, et al. (1996). 'Brk, a breast tumor-derived non-receptor protein-tyrosine kinase, sensitizes mammary epithelial cells to epidermal growth factor.' J Biol Chem 271(48): 30956-63. Kasprzycka, M., M. Majewski, et al. (2006). 'Expression and oncogenic role of Brk (PTK6/Sik) protein tyrosine kinase in lymphocytes.' Am J Pathol 168(5): 1631-41. Kazlauskas, A., C. Ellis, et al. (1990). 'Binding of GAP to activated PDGF receptors.' Science 247(4950): 1578-81. Keely, P., L. Parise, et al. (1998). 'Integrins and GTPases in tumour cell growth, motility and invasion.' Trends Cell Biol 8(3): 101-6. Kheradmand, F., E. Werner, et al. (1998). 'Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change.' Science 280(5365): 898-902. Khwaja, A., P. Rodriguez-Viciana, et al. (1997). 'Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.' Embo J 16(10): 2783-93. Kim, H., J. Jung, et al. (2007). 'Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6.' Biochem Biophys Res Commun 362(4): 829-34. Kim, H. and S. T. Lee (2005). 'An intramolecular interaction between SH2-kinase linker and kinase domain is essential for the catalytic activity of protein-tyrosine kinase-6.' J Biol Chem 280(32): 28973-80. Kim, S. K. (2000). 'Cell polarity: new PARtners for Cdc42 and Rac.' Nat Cell Biol 2(8): E143-5. Kiyoi, H., M. Towatari, et al. (1998). 'Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product.' Leukemia 12(9): 1333-7. Kolch, W., A. Kotwaliwale, et al. (2002). 'The role of Raf kinases in malignant transformation.' Expert Rev Mol Med 4(8): 1-18. Kolibaba, K. S. and B. J. Druker (1997). 'Protein tyrosine kinases and cancer.' Biochim Biophys Acta 1333(3): F217-48. Konishi, T., C. L. Huang, et al. (2000). 'The K-ras gene regulates vascular endothelial growth factor gene expression in non-small cell lung cancers.' Int J Oncol 16(3): 501-11. Kuriyan, J. and D. Cowburn (1997). 'Modular peptide recognition domains in eukaryotic signaling.' Annu Rev Biophys Biomol Struct 26: 259-88. Kusama, T., M. Mukai, et al. (2006). 'Inactivation of Rho GTPases by p190 RhoGAP reduces human pancreatic cancer cell invasion and metastasis.' Cancer Sci 97(9): 848-53. Lee, S. T., K. M. Strunk, et al. (1993). 'A survey of protein tyrosine kinase mRNAs expressed in normal human melanocytes.' Oncogene 8(12): 3403-10. Lin, H. S., G. J. Berry, et al. (2004). 'Identification of tyrosine kinases overexpressed in head and neck cancer.' Arch Otolaryngol Head Neck Surg 130(3): 311-6. Liu, A. X., N. Rane, et al. (2001). 'RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells.' Mol Cell Biol 21(20): 6906-12. Liu, L., Y. Gao, et al. (2006). 'Identification of STAT3 as a specific substrate of breast tumor kinase.' Oncogene 25(35): 4904-12. Llor, X., M. S. Serfas, et al. (1999). 'BRK/Sik expression in the gastrointestinal tract and in colon tumors.' Clin Cancer Res 5(7): 1767-77. Lowy, D. R. and B. M. Willumsen (1993). 'Function and regulation of ras.' Annu Rev Biochem 62: 851-91. Lozano, E., M. Betson, et al. (2003). 'Tumor progression: Small GTPases and loss of cell-cell adhesion.' Bioessays 25(5): 452-63. Lukong, K. E., D. Larocque, et al. (2005). 'Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression.' J Biol Chem 280(46): 38639-47. Lukong, K. E. and S. Richard (2008). 'Breast tumor kinase BRK requires kinesin-2 subunit KAP3A in modulation of cell migration.' Cell Signal 20(2): 432-42. Macaluso, M., G. Russo, et al. (2002). 'Ras family genes: an interesting link between cell cycle and cancer.' J Cell Physiol 192(2): 125-30. Madaule, P. and R. Axel (1985). 'A novel ras-related gene family.' Cell 41(1): 31-40. Malliri, A., R. A. van der Kammen, et al. (2002). 'Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours.' Nature 417(6891): 867-71. Malliri, A., S. van Es, et al. (2004). 'The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions.' J Biol Chem 279(29): 30092-8. Marais, R., Y. Light, et al. (1997). 'Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases.' J Biol Chem 272(7): 4378-83. Margolis, B., N. Li, et al. (1990). 'The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-gamma.' Embo J 9(13): 4375-80. Marinissen, M. J., M. Chiariello, et al. (2001). 'Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway.' Genes Dev 15(5): 535-53. Matheson, S. F., K. Q. Hu, et al. (2006). 'Distinct but overlapping functions for the closely related p190 RhoGAPs in neural development.' Dev Neurosci 28(6): 538-50. Matos, P. and P. Jordan (2005). 'Expression of Rac1b stimulates NF-kappaB-mediated cell survival and G1/S progression.' Exp Cell Res 305(2): 292-9. McFall, A., A. Ulku, et al. (2001). 'Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase.' Mol Cell Biol 21(16): 5488-99. Milanini, J., F. Vinals, et al. (1998). 'p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts.' J Biol Chem 273(29): 18165-72. Milburn, M. V., L. Tong, et al. (1990). 'Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins.' Science 247(4945): 939-45. Minard, M. E., L. S. Kim, et al. (2004). 'The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression.' Breast Cancer Res Treat 84(1): 21-32. Minoguchi, M., S. Minoguchi, et al. (2003). 'STAP-2/BKS, an adaptor/docking protein, modulates STAT3 activation in acute-phase response through its YXXQ motif.' J Biol Chem 278(13): 11182-9. Mira, J. P., V. Benard, et al. (2000). 'Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway.' Proc Natl Acad Sci U S A 97(1): 185-9. Mitchell, P. J., K. T. Barker, et al. (1994). 'Cloning and characterisation of cDNAs encoding a novel non-receptor tyrosine kinase, brk, expressed in human breast tumours.' Oncogene 9(8): 2383-90. Mitchell, P. J., K. T. Barker, et al. (1997). 'Characterisation and chromosome mapping of the human non receptor tyrosine kinase gene, brk.' Oncogene 15(12): 1497-502. Mitchell, P. J., E. A. Sara, et al. (2000). 'A novel adaptor-like protein which is a substrate for the non-receptor tyrosine kinase, BRK.' Oncogene 19(37): 4273-82. Moran, M. F., C. A. Koch, et al. (1990). 'Src homology region 2 domains direct protein-protein interactions in signal transduction.' Proc Natl Acad Sci U S A 87(21): 8622-6. Moran, M. F., P. Polakis, et al. (1991). 'Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein.' Mol Cell Biol 11(4): 1804-12. Nichols, G. L. (2003). 'Tyrosine kinase inhibitors as cancer therapy.' Cancer Invest 21(5): 758-71. Nishikawa, R., X. D. Ji, et al. (1994). 'A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity.' Proc Natl Acad Sci U S A 91(16): 7727-31. Normanno, N., C. Bianco, et al. (2003). 'Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment.' Endocr Relat Cancer 10(1): 1-21. O'Brien, L. E., T. S. Jou, et al. (2001). 'Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly.' Nat Cell Biol 3(9): 831-8. Ostrander, J. H., A. R. Daniel, et al. (2007). 'Breast tumor kinase (protein tyrosine kinase 6) regulates heregulin-induced activation of ERK5 and p38 MAP kinases in breast cancer cells.' Cancer Res 67(9): 4199-209. Palazzo, A. F., T. A. Cook, et al. (2001). 'mDia mediates Rho-regulated formation and orientation of stable microtubules.' Nat Cell Biol 3(8): 723-9. Pan, Y., F. Bi, et al. (2004). 'Expression of seven main Rho family members in gastric carcinoma.' Biochem Biophys Res Commun 315(3): 686-91. Pasqualucci, L., P. Neumeister, et al. (2001). 'Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas.' Nature 412(6844): 341-6. Paul, M. K. and A. K. Mukhopadhyay (2004). 'Tyrosine kinase - Role and significance in Cancer.' Int J Med Sci 1(2): 101-115. Peacock, J. G., A. L. Miller, et al. (2007). 'The Abl-related gene tyrosine kinase acts through p190RhoGAP to inhibit actomyosin contractility and regulate focal adhesion dynamics upon adhesion to fibronectin.' Mol Biol Cell 18(10): 3860-72. Pells, S., M. Divjak, et al. (1997). 'Developmentally-regulated expression of murine K-ras isoforms.' Oncogene 15(15): 1781-6. Petro, B. J., R. C. Tan, et al. (2004). 'Differential expression of the non-receptor tyrosine kinase BRK in oral squamous cell carcinoma and normal oral epithelium.' Oral Oncol 40(10): 1040-7. Preudhomme, C., C. Roumier, et al. (2000). 'Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma.' Oncogene 19(16): 2023-32. Prior, I. A., C. Muncke, et al. (2003). 'Direct visualization of Ras proteins in spatially distinct cell surface microdomains.' J Cell Biol 160(2): 165-70. Pruitt, K. and C. J. Der (2001). 'Ras and Rho regulation of the cell cycle and oncogenesis.' Cancer Lett 171(1): 1-10. Qiu, H. and W. T. Miller (2002). 'Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition.' J Biol Chem 277(37): 34634-41. Qiu, H. and W. T. Miller (2004). 'Role of the Brk SH3 domain in substrate recognition.' Oncogene 23(12): 2216-23. Qiu, H., F. Zappacosta, et al. (2005). 'Interaction between Brk kinase and insulin receptor substrate-4.' Oncogene 24(36): 5656-64. Qiu, R. G., J. Chen, et al. (1995). 'A role for Rho in Ras transformation.' Proc Natl Acad Sci U S A 92(25): 11781-5. Quinlan, M. P. (1999). 'Rac regulates the stability of the adherens junction and its components, thus affecting epithelial cell differentiation and transformation.' Oncogene 18(47): 6434-42. Raftopoulou, M. and A. Hall (2004). 'Cell migration: Rho GTPases lead the way.' Dev Biol 265(1): 23-32. Rak, J., J. L. Yu, et al. (2000). 'Oncogenes and angiogenesis: signaling three-dimensional tumor growth.' J Investig Dermatol Symp Proc 5(1): 24-33. Reuther, G. W., Q. T. Lambert, et al. (2001). 'Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA.' J Biol Chem 276(29): 27145-51. Richard, D. E., E. Berra, et al. (1999). 'p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1.' J Biol Chem 274(46): 32631-7. Rittinger, K., P. A. Walker, et al. (1997). 'Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue.' Nature 389(6652): 758-62. Robinson, D. R., Y. M. Wu, et al. (2000). 'The protein tyrosine kinase family of the human genome.' Oncogene 19(49): 5548-57. Rodenhuis, S., R. J. Slebos, et al. (1988). 'Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung.' Cancer Res 48(20): 5738-41. Roof, R. W., M. D. Haskell, et al. (1998). 'Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP-p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex formation.' Mol Cell Biol 18(12): 7052-63. Salh, B., A. Marotta, et al. (2002). 'Dysregulation of phosphatidylinositol 3-kinase and downstream effectors in human breast cancer.' Int J Cancer 98(1): 148-54. Sander, E. E., S. van Delft, et al. (1998). 'Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase.' J Cell Biol 143(5): 1385-98. Saraste, M., P. R. Sibbald, et al. (1990). 'The P-loop--a common motif in ATP- and GTP-binding proteins.' Trends Biochem Sci 15(11): 430-4. Sato, H., Y. Kida, et al. (1992). 'Expression of genes encoding type IV collagen-degrading metalloproteinases and tissue inhibitors of metalloproteinases in various human tumor cells.' Oncogene 7(1): 77-83. Scheffzek, K., M. R. Ahmadian, et al. (1997). 'The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.' Science 277(5324): 333-8. Schmandt, R. E., M. Bennett, et al. (2006). 'The BRK tyrosine kinase is expressed in high-grade serous carcinoma of the ovary.' Cancer Biol Ther 5(9): 1136-41. Schmitz, A. A., E. E. Govek, et al. (2000). 'Rho GTPases: signaling, migration, and invasion.' Exp Cell Res 261(1): 1-12. Schnelzer, A., D. Prechtel, et al. (2000). 'Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b.' Oncogene 19(26): 3013-20. Serfas, M. S. and A. L. Tyner (2003). 'Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases.' Oncol Res 13(6-10): 409-19. Settleman, J., C. F. Albright, et al. (1992). 'Association between GTPase activators for Rho and Ras families.' Nature 359(6391): 153-4. Shaulian, E. and M. Karin (2001). 'AP-1 in cell proliferation and survival.' Oncogene 20(19): 2390-400. Sheng, H., C. S. Williams, et al. (1998). 'Induction of cyclooxygenase-2 by activated Ha-ra | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9572 | - |
| dc.description.abstract | 乳癌激酶是一種非受體型酪胺酸激酶與Src有高度相似性,其蛋白質結構由典型的SH3區塊、SH2區塊以及酪胺酸激酶區所組成。乳癌激酶已於乳癌、黑色素細胞瘤以及大腸癌等癌症中被報導具有高度表現性,也被認為在細胞癌化機轉(oncogenesis)中扮演重要角色。但是目前對於乳癌激酶的活性調控及其所參與的信息傳導路徑,乃至於生物功能的了解均十分有限。因此,探查乳癌激酶所作用的受質與其所參與的信息傳導途徑,能進一步揭開乳癌激酶的生物功能及致癌機轉。在此,我們找到了一新的乳癌激酶受質-p190RhoGAP-A (p190)。乳癌激酶透過磷酸化p190促使p190與p120RasGAP (p120)結合,此蛋白質複合體具有能抑制Rho及活化Ras的能力。乳癌激酶也藉由磷酸化p190抑制Rho及活化Ras,並且刺激細胞移動、促進細胞的侵入行為以及導致細胞增生。此外我們也發現若利用干擾蛋白破壞p190與p120之間的結合,將弱化乳癌激酶調控Rho及Ras的能力,也減弱其對細胞行為及生長的影響,並進一步降低乳癌激酶的致癌性(tumorigenicity)。因此p190在乳癌激酶所作用的信息傳導路徑及於生物功能上扮演重要功能。 | zh_TW |
| dc.description.abstract | Breast tumor kinase (Brk), a Src-like nonreceptor tyrosine kinase, is overexpressed in breast cancer and several other cancer types. Our previous study indicates that Brk promotes cell migration and tumor invasion by phosphorylating the focal adhesion protein paxillin. Here, we report the identification of p190RhoGAP-A (p190) as a Brk substrate. Brk phosphorylates p190 at the Y1105 residue both in vitro and in vivo, thereby promoting the association of p190 with p120RasGAP (p120). As a consequence, Brk stimulates p190 and attenuates p120 functions, leading to RhoA inactivation and Ras activation, respectively. In carcinoma cells expressing high levels of Brk, endogenous Brk functions as a key contributor to EGF-induced p190 tyrosine phosphorylation. We present evidence showing that p190 phosphorylation plays essential roles in both migratory and proliferative effects of Brk. Furthermore, disruption of p190 phosphorylation-induced p190/p120 complex in breast cancer cells abolishes not only the abilities of Brk to regulate RhoA and Ras, but also the stimulatory effects of Brk on proliferation, migration, invasion, transformation and tumorigenicity. Together, our findings reveal a previously unknown function of Brk in regulating both RhoA and Ras by phosphorylating p190, and provide evidence for the crucial roles of this Brk-elicited signaling pathway in promoting breast malignancy. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:29:19Z (GMT). No. of bitstreams: 1 ntu-97-D92448004-1.pdf: 1621934 bytes, checksum: 60d5c393d8fa2822197209f0407d619f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Table of Contents……………………………………………………..02
中文摘要……………………………………………………………….04 Abstract………………………………………………………………...05 Literature Review…………………………………………………..…06 1. Mechanisms that control tumor progression……………………………….07 2. The roles of protein tyrosine kinases in cancers…………………………..08 2.1 PTK classification ……………………………………………………….08 2.2 The mechanisms of PTK activity regulation…………………………..10 2.3 PTK activation in cancers……………………………………………….11 3. Overview of Brk: expression, regulation and functions……………………13 3.1 Brk sequence features and domain structure…………………………13 3.2 Brk expression in normal and cancer tissues…………………………15 3.3 Brk-mediated signaling pathways and its biological functions………16 4. Ras and Rho small GTPases………………………………………………...19 4.1 Overview of small GTPases…………………………………………….19 4.1.1 Discovery, classification, and structure of small GTPases……19 4.1.2 The regulation of GTPases activity of small G proteins……….21 4.2 Ras GTPases…………………………………………………………….23 4.2.1 Ras family…………………………………………………………..23 4.2.2 Effectors and functions of Ras……………………………………24 4.2.3 Ras and cancer…………………………………………………….26 4.2.3.1 Ras in cell transformation………………………………...27 4.2.3.2 Ras in tumor cell invasion and metastasis……………...28 4.2.3.3 Ras in angiogenesis………………………………………29 4.3 Rho GTPases……………………………………………………………30 4.3.1 Rho family………………………………………………………….30 4.3.2 Effectors and functions of Rho GTPases……………………….32 4.3.3 Rho GTPases and cancer………………………………………..35 4.3.3.1 Altered Rho GTPases signaling in cancers…………….35 Alterations of Rho proteins in cancers……………………35 Alterations of Rho regulators in cancers…………………36 Alterations of Rho effectors in cancers…………………..37 4.3.3.2 Rho GTPases in tumorigenesis and tumor metastasis.38 5. The cross-talk between Rho and Ras………………………………………41 5.1 p120RasGAP…………………………………………………………….41 5.2 p190RhoGAP…………………………………………………………….42 5.3 The cross-talk between RhoA and Ras………………………………..43 Experimental rationale………………………………………………..45 Brk phosphorylates p190RhoGAP to regulate Rho and Ras and to promote breast carcinoma growth, migration and invasion……..46 Introduction………………………………………………………………………..47 Materials and methods…………………………………………………………..51 Cell culture, transfection and retroviral infection…………………………...51 Plasmid constructions…………………………………………………………51 RNA interference………………………………………………………………52 Antibodies………………………………………………………………………52 Assay for GTP-bound Rho, Rac and Ras…………………………………..53 Migration and invasion assays……………………………………………….53 Immunoprecipitations and GST fusion proteins…………………………….53 In vitro kinase assay……………………………………………………………54 Immunofluorescence analysis………………………………………………...54 Soft agar colony formation assay…………………………………………….54 Tumorigenesis in mice…………………………………………………………55 Results…………………………………………………………………………….56 Brk inhibits stress fiber formation and promotes cell spreading…………..56 Brk interacts with p190 and phosphorylates p190 at Y1105………………57 Brk stimulates the functions of p190 to inactivate Rho and to active Ras.59 Brk mediates EGF-induced p190 tyrosine phosphorylation……………….60 p190 is critical for the migratory and mitogenic effects of Brk……………..62 Disruption of the p190/p120 complex blocks the tumor promoting activities of Brk in breast cancer cells…………………………………………………64 Discussion…………………………………………………………………………66 Reference……………………………………………………………..71 Figure………………………………………………………………….88 | |
| dc.language.iso | en | |
| dc.subject | 細胞移動 | zh_TW |
| dc.subject | 乳癌激酶 | zh_TW |
| dc.subject | 細胞增生 | zh_TW |
| dc.title | 乳癌激酶促進癌細胞生長及移動之機制研究 | zh_TW |
| dc.title | The Mechanisms of Breast Tumor Kinase in Promoting Tumor Cell Growth and Migration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 呂勝春,張智芬,施修明,孟子青 | |
| dc.subject.keyword | 乳癌激酶,細胞增生,細胞移動, | zh_TW |
| dc.subject.keyword | Brk,Cell proliferation,Cell migration, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 1.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
