Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95728
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明zh_TW
dc.contributor.advisorChung-Ming Chenen
dc.contributor.author柯紀綸zh_TW
dc.contributor.authorChi-Lun Koen
dc.date.accessioned2024-09-15T17:01:44Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-15-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citationGeorge J, Rapsomaniki E, Pujades-Rodriguez M, Shah AD, Denaxas S, Herrett E, et al. How Does Cardiovascular Disease First Present in Women and Men? Incidence of 12 Cardiovascular Diseases in a Contemporary Cohort of 1,937,360 People. Circulation. 2015;132:1320-8. doi:10.1161/circulationaha.114.013797.
2. Alama M, Labos C, Emery H, Iwanochko RM, Freeman M, Husain M, et al. Diagnostic and prognostic significance of transient ischemic dilation (TID) in myocardial perfusion imaging: A systematic review and meta-analysis. J Nucl Cardiol. 2018;25:724-37. doi:10.1007/s12350-017-1040-7.
3. Krohn JB, Nguyen YN, Akhavanpoor M, Erbel C, Domschke G, Linden F, et al. Identification of Specific Coronary Artery Disease Phenotypes Implicating Differential Pathophysiologies. Front Cardiovasc Med. 2022;9:778206. doi:10.3389/fcvm.2022.778206.
4. McCubrey RO, Mason SM, Le VT, Bride DL, Horne BD, Meredith KG, et al. A highly predictive cardiac positron emission tomography (PET) risk score for 90-day and one-year major adverse cardiac events and revascularization. J Nucl Cardiol. 2023;30:46-58. doi:10.1007/s12350-022-03028-y.
5. Sciagrà R, Lubberink M, Hyafil F, Saraste A, Slart R, Agostini D, et al. EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging. European journal of nuclear medicine and molecular imaging. 2021;48:1040-69. doi:10.1007/s00259-020-05046-9.
6. Lindstrom M, DeCleene N, Dorsey H, Fuster V, Johnson CO, LeGrand KE, et al. Global Burden of Cardiovascular Diseases and Risks Collaboration, 1990-2021. Journal of the American College of Cardiology. 2022;80:2372-425. doi:10.1016/j.jacc.2022.11.001.
7. Assante R, Zampella E, Cantoni V, Green R, D'Antonio A, Mannarino T, et al. Prognostic value of myocardial perfusion imaging by cadmium zinc telluride single-photon emission computed tomography in patients with suspected or known coronary artery disease: a systematic review and meta-analysis. European journal of nuclear medicine and molecular imaging. 2023;50:3647-58. doi:10.1007/s00259-023-06344-8.
8. Totzeck M, Aide N, Bauersachs J, Bucerius J, Georgoulias P, Herrmann K, et al. Nuclear medicine in the assessment and prevention of cancer therapy-related cardiotoxicity: prospects and proposal of use by the European Association of Nuclear Medicine (EANM). European journal of nuclear medicine and molecular imaging. 2023;50:792-812. doi:10.1007/s00259-022-05991-7.
9. Dewey M, Siebes M, Kachelrieß M, Kofoed KF, Maurovich-Horvat P, Nikolaou K, et al. Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. Nat Rev Cardiol. 2020;17:427-50. doi:10.1038/s41569-020-0341-8.
10. Zhang J, Ji C, Zhai X, Tong H, Hu J. Frontiers and hotspots evolution in anti-inflammatory studies for coronary heart disease: A bibliometric analysis of 1990-2022. Front Cardiovasc Med. 2023;10:1038738. doi:10.3389/fcvm.2023.1038738.
11. Cramm JM, Tsiachristas A, Walters BH, Adams SA, Bal R, Huijsman R, et al. The management of cardiovascular disease in the Netherlands: analysis of different programmes. Int J Integr Care. 2013;13:e028. doi:10.5334/ijic.889.
12. Boiten HJ, van der Sijde JN, Ruitinga PR, Valkema R, Geleijnse ML, Sijbrands EJ, et al. Long-term prognostic value of exercise technetium-99m tetrofosmin myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol. 2012;19:907-13. doi:10.1007/s12350-012-9585-y.
13. Wang XH, Li MD, Xie FX, Liang H, Yang L, Wei XF, et al. Prognostic utility of (99m)Tc-MIBI single photon emission computerized tomography myocardial perfusion imaging in patients with ischemia and non-obstructive coronary artery disease. Front Cardiovasc Med. 2023;10:1115135. doi:10.3389/fcvm.2023.1115135.
14. van Dijk JD, van Dalen JA, Mouden M, Ottervanger JP, Knollema S, Slump CH, et al. Value of automatic patient motion detection and correction in myocardial perfusion imaging using a CZT-based SPECT camera. J Nucl Cardiol. 2018;25:419-28. doi:10.1007/s12350-016-0571-7.
15. Bergström G, Persson M, Adiels M, Björnson E, Bonander C, Ahlström H, et al. Prevalence of Subclinical Coronary Artery Atherosclerosis in the General Population. Circulation. 2021;144:916-29. doi:10.1161/circulationaha.121.055340.
16. Nazir MS, Shome J, Villa ADM, Ryan M, Kassam Z, Razavi R, et al. 2D high resolution vs. 3D whole heart myocardial perfusion cardiovascular magnetic resonance. European heart journal cardiovascular Imaging. 2022;23:811-9. doi:10.1093/ehjci/jeab103.
17. Leucker TM, Valenta I, Schindler TH. Positron Emission Tomography-Determined Hyperemic Flow, Myocardial Flow Reserve, and Flow Gradient-Quo Vadis? Front Cardiovasc Med. 2017;4:46. doi:10.3389/fcvm.2017.00046.
18. Slart RH, Glauche J, Golestani R, Zeebregts CJ, Jansen JW, Dierckx RA, et al. PET and MRI for the evaluation of regional myocardial perfusion and wall thickening after myocardial infarction. European journal of nuclear medicine and molecular imaging. 2012;39:1065-9. doi:10.1007/s00259-012-2085-0.
19. Lehner S, Nowak I, Zacherl M, Brosch-Lenz J, Fischer M, Ilhan H, et al. Quantitative myocardial perfusion SPECT/CT for the assessment of myocardial tracer uptake in patients with three-vessel coronary artery disease: Initial experiences and results. J Nucl Cardiol. 2022;29:2511-20. doi:10.1007/s12350-021-02735-2.
20. Monroy-Gonzalez AG, Tio RA, de Groot JC, Boersma HH, Prakken NH, De Jongste MJL, et al. Long-term prognostic value of quantitative myocardial perfusion in patients with chest pain and normal coronary arteries. J Nucl Cardiol. 2019;26:1844-52. doi:10.1007/s12350-018-1448-8.
21. Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. European journal of nuclear medicine and molecular imaging. 2015;42:1929-40. doi:10.1007/s00259-015-3139-x.
22. Wang R, Garg S, Gao C, Kawashima H, Ono M, Hara H, et al. Impact of established cardiovascular disease on 10-year death after coronary revascularization for complex coronary artery disease. Clinical research in cardiology : official journal of the German Cardiac Society. 2021;110:1680-91. doi:10.1007/s00392-021-01922-y.
23. von Felten E, Benz DC, Benetos G, Baehler J, Patriki D, Rampidis GP, et al. Prognostic value of regional myocardial flow reserve derived from (13)N-ammonia positron emission tomography in patients with suspected coronary artery disease. European journal of nuclear medicine and molecular imaging. 2021;49:311-20. doi:10.1007/s00259-021-05459-0.
24. Williams MC, Mirsadraee S, Dweck MR, Weir NW, Fletcher A, Lucatelli C, et al. Computed tomography myocardial perfusion vs (15)O-water positron emission tomography and fractional flow reserve. European radiology. 2017;27:1114-24. doi:10.1007/s00330-016-4404-5.
25. Seraphim A, Knott KD, Augusto JB, Menacho K, Tyebally S, Dowsing B, et al. Noninvasive Ischaemia Testing in Patients With Prior Coronary Artery Bypass Graft Surgery: Technical Challenges, Limitations, and Future Directions. Front Cardiovasc Med. 2021;8:795195. doi:10.3389/fcvm.2021.795195.
26. Bhatnagar P, Wickramasinghe K, Wilkins E, Townsend N. Trends in the epidemiology of cardiovascular disease in the UK. Heart. 2016;102:1945-52. doi:10.1136/heartjnl-2016-309573.
27. Yang H, Faust E, Gao E, Sethi S, Kitt TM, Kristy RM, et al. Evaluating the use of pharmacological stress agents during single-photon emission computed tomography myocardial perfusion imaging tests after inadequate exercise stress test. J Nucl Cardiol. 2022;29:1788-95. doi:10.1007/s12350-021-02546-5.
28. Nakazato R, Berman DS, Hayes SW, Fish M, Padgett R, Xu Y, et al. Myocardial perfusion imaging with a solid-state camera: simulation of a very low dose imaging protocol. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2013;54:373-9. doi:10.2967/jnumed.112.110601.
29. Patel KK, Al Badarin F, Chan PS, Spertus JA, Courter S, Kennedy KF, et al. Randomized Comparison of Clinical Effectiveness of Pharmacologic SPECT and PET MPI in Symptomatic CAD Patients. JACC Cardiovascular imaging. 2019;12:1821-31. doi:10.1016/j.jcmg.2019.04.020.
30. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circulation Cardiovascular imaging. 2012;5:700-7. doi:10.1161/circimaging.112.978270.
31. Duvall WL, Sweeny JM, Croft LB, Barghash MH, Kulkarni NK, Guma KA, et al. Comparison of high efficiency CZT SPECT MPI to coronary angiography. J Nucl Cardiol. 2011;18:595-604. doi:10.1007/s12350-011-9382-z.
32. Li J, Walker DR, Biesbrock G, Kristy RM, Yang H, Gao E, et al. Factors that impact a patient's experience when undergoing single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) in the US: A survey of patients, imaging center staff, and physicians. J Nucl Cardiol. 2021;28:1507-18. doi:10.1007/s12350-019-01863-0.
33. Bateman TM. Advantages and disadvantages of PET and SPECT in a busy clinical practice. J Nucl Cardiol. 2012;19 Suppl 1:S3-11. doi:10.1007/s12350-011-9490-9.
34. Duvall WL, Slomka PJ, Gerlach JR, Sweeny JM, Baber U, Croft LB, et al. High-efficiency SPECT MPI: comparison of automated quantification, visual interpretation, and coronary angiography. J Nucl Cardiol. 2013;20:763-73. doi:10.1007/s12350-013-9735-x.
35. Mansour N, Nekolla SG, Reyes E, Angelidis G, Georgoulias P, Anagnostopoulos C, et al. Multi-center study of inter-rater reproducibility, image quality, and diagnostic accuracy of CZT versus conventional SPECT myocardial perfusion imaging. J Nucl Cardiol. 2023;30:528-39. doi:10.1007/s12350-022-03054-w.
36. Alahdab F, Al Rifai M, Ahmed AI, Al-Mallah MH. Advances in Digital PET Technology and Its Potential Impact on Myocardial Perfusion and Blood Flow Quantification. Curr Cardiol Rep. 2023;25:261-8. doi:10.1007/s11886-023-01850-5.
37. Klein R, Celiker-Guler E, Rotstein BH, deKemp RA. PET and SPECT Tracers for Myocardial Perfusion Imaging. Seminars in nuclear medicine. 2020;50:208-18. doi:10.1053/j.semnuclmed.2020.02.016.
38. Maaniitty T, Knuuti J, Saraste A. 15O-Water PET MPI: Current Status and Future Perspectives. Seminars in nuclear medicine. 2020;50:238-47. doi:10.1053/j.semnuclmed.2020.02.011.
39. Ngo V, Martineau P, Harel F, Pelletier-Galarneau M. Improving Detection of CAD and Prognosis with PET/CT Quantitative Absolute Myocardial Blood Flow Measurements. Curr Cardiol Rep. 2022;24:1855-64. doi:10.1007/s11886-022-01805-2.
40. Sohn JH, Behr SC, Hernandez Pampaloni M, Seo Y. Quantitative Assessment of Myocardial Ischemia With Positron Emission Tomography. Journal of thoracic imaging. 2023;38:247-59. doi:10.1097/rti.0000000000000579.
41. He Z, de Amorim Fernandes F, do Nascimento EA, Garcia EV, Mesquita CT, Zhou W. Incremental value of left ventricular shape parameters measured by gated SPECT MPI in predicting the super-response to CRT. J Nucl Cardiol. 2022;29:1537-46. doi:10.1007/s12350-020-02469-7.
42. Panjer M, Dobrolinska M, Wagenaar NRL, Slart R. Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis. J Nucl Cardiol. 2022;29:1686-97. doi:10.1007/s12350-021-02721-8.
43. Dondi M, Rodella C, Giubbini R, Camoni L, Karthikeyan G, Vitola JV, et al. Inter-reader variability of SPECT MPI readings in low- and middle-income countries: Results from the IAEA-MPI Audit Project (I-MAP). J Nucl Cardiol. 2020;27:465-78. doi:10.1007/s12350-018-1407-4.
44. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. European journal of nuclear medicine and molecular imaging. 2010;37:1887-902. doi:10.1007/s00259-010-1488-z.
45. Daou D, Sabbah R, Coaguila C, Alattar Y, Boulahdour H. A new era in gated myocardial perfusion imaging: Feasibility of data-driven cardiac contraction gating with multiple pinhole CZT SPECT. J Nucl Cardiol. 2018;25:257-68. doi:10.1007/s12350-017-1010-0.
46. Tsai SY, Wang SY, Shiau YC, Wu YW. Mechanical dyssynchrony and diastolic dysfunction are common in LVH: a pilot correlation study using Doppler echocardiography and CZT gated-SPECT MPI. Sci Rep. 2018;8:4182. doi:10.1038/s41598-018-22213-z.
47. Ko CL, Wu YW, Cheng MF, Yen RF, Wu WC, Tzen KY. Data-driven respiratory motion tracking and compensation in CZT cameras: a comprehensive analysis of phantom and human images. J Nucl Cardiol. 2015;22:308-18. doi:10.1007/s12350-014-9963-8.
48. Agostini D, Marie PY, Ben-Haim S, Rouzet F, Songy B, Giordano A, et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). European journal of nuclear medicine and molecular imaging. 2016;43:2423-32. doi:10.1007/s00259-016-3467-5.
49. Nudi F, Iskandrian AE, Schillaci O, Peruzzi M, Frati G, Biondi-Zoccai G. Diagnostic Accuracy of Myocardial Perfusion Imaging With CZT Technology: Systemic Review and Meta-Analysis of Comparison With Invasive Coronary Angiography. JACC Cardiovascular imaging. 2017;10:787-94. doi:10.1016/j.jcmg.2016.10.023.
50. Miller RJH, Han D, Rozanski A, Gransar H, Friedman JD, Hayes S, et al. CZT camera systems may provide better risk stratification for low-risk patients. J Nucl Cardiol. 2021;28:2927-36. doi:10.1007/s12350-020-02128-x.
51. Kajander SA, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circulation Cardiovascular imaging. 2011;4:678-84. doi:10.1161/circimaging.110.960732.
52. Bailly M, Thibault F, Metrard G, Courtehoux M, Angoulvant D, Ribeiro MJ. Precision of Myocardial Blood Flow and Flow Reserve Measurement During CZT SPECT Perfusion Imaging Processing: Intra- and Interobserver Variability. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2023;64:260-5. doi:10.2967/jnumed.122.264454.
53. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. Journal of the American College of Cardiology. 2014;64:1464-75. doi:10.1016/j.jacc.2014.05.069.
54. Schepis T, Gaemperli O, Treyer V, Valenta I, Burger C, Koepfli P, et al. Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2007;48:1783-9. doi:10.2967/jnumed.107.044099.
55. Dunet V, Klein R, Allenbach G, Renaud J, deKemp RA, Prior JO. Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs. J Nucl Cardiol. 2016;23:499-510. doi:10.1007/s12350-015-0151-2.
56. Packard RR, Huang SC, Dahlbom M, Czernin J, Maddahi J. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2014;55:1438-44. doi:10.2967/jnumed.114.141093.
57. Harjulahti E, Maaniitty T, Nammas W, Stenström I, Biancari F, Bax JJ, et al. Global and segmental absolute stress myocardial blood flow in prediction of cardiac events: [(15)O] water positron emission tomography study. European journal of nuclear medicine and molecular imaging. 2021;48:1434-44. doi:10.1007/s00259-020-05093-2.
58. Gould KL, Johnson NP, Roby AE, Nguyen T, Kirkeeide R, Haynie M, et al. Regional, Artery-Specific Thresholds of Quantitative Myocardial Perfusion by PET Associated with Reduced Myocardial Infarction and Death After Revascularization in Stable Coronary Artery Disease. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2019;60:410-7. doi:10.2967/jnumed.118.211953.
59. Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N, et al. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2013;54:873-9. doi:10.2967/jnumed.112.109652.
60. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van' t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. The New England journal of medicine. 2009;360:213-24. doi:10.1056/NEJMoa0807611.
61. Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928-34. doi:10.1161/01.cir.103.24.2928.
62. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. The New England journal of medicine. 2012;367:991-1001. doi:10.1056/NEJMoa1205361.
63. Morris PD, Ryan D, Morton AC, Lycett R, Lawford PV, Hose DR, et al. Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc Interv. 2013;6:149-57. doi:10.1016/j.jcin.2012.08.024.
64. van Diemen PA, Driessen RS, Kooistra RA, Stuijfzand WJ, Raijmakers PG, Boellaard R, et al. Comparison Between the Performance of Quantitative Flow Ratio and Perfusion Imaging for Diagnosing Myocardial Ischemia. JACC Cardiovascular imaging. 2020;13:1976-85. doi:10.1016/j.jcmg.2020.02.012.
65. Driessen RS, Danad I, Stuijfzand WJ, Raijmakers PG, Schumacher SP, van Diemen PA, et al. Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis. Journal of the American College of Cardiology. 2019;73:161-73. doi:10.1016/j.jacc.2018.10.056.
66. Johnson NP, Gould KL. Coronary Physiology: Simulations Can't Beat the Real Thing! JACC Cardiovascular imaging. 2020;13:1986-8. doi:10.1016/j.jcmg.2020.02.014.
67. Otaki Y, Manabe O, Miller RJH, Manrique A, Nganoa C, Roth N, et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with (15)O-water PET. J Nucl Cardiol. 2021;28:1477-86. doi:10.1007/s12350-019-01854-1.
68. Timmins R, Klein R, Petryk J, Marvin B, Wei L, deKemp RA, et al. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model. Medical physics. 2015;42:5075-83. doi:10.1118/1.4927723.
69. Wells RG, Timmins R, Klein R, Lockwood J, Marvin B, deKemp RA, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2014;55:1685-91. doi:10.2967/jnumed.114.139782.
70. Wells RG, Marvin B, Poirier M, Renaud J, deKemp RA, Ruddy TD. Optimization of SPECT Measurement of Myocardial Blood Flow with Corrections for Attenuation, Motion, and Blood Binding Compared with PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2017;58:2013-9. doi:10.2967/jnumed.117.191049.
71. Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circulation Cardiovascular imaging. 2009;2:412-24. doi:10.1161/CIRCIMAGING.109.854893.
72. Leppo JA, Meerdink DJ. Comparison of the myocardial uptake of a technetium-labeled isonitrile analogue and thallium. Circ Res. 1989;65:632-9. doi:10.1161/01.res.65.3.632.
73. Slomka P, Berman DS, Germano G. Myocardial blood flow from SPECT. J Nucl Cardiol. 2017;24:278-81. doi:10.1007/s12350-015-0386-y.
74. Nkoulou R, Fuchs TA, Pazhenkottil AP, Kuest SM, Ghadri JR, Stehli J, et al. Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2016;57:1887-92. doi:10.2967/jnumed.115.165498.
75. de Souza A, Harms HJ, Martell L, Bibbo C, Harrington M, Sullivan K, et al. Accuracy and Reproducibility of Myocardial Blood Flow Quantification by Single Photon Emission Computed Tomography Imaging in Patients With Known or Suspected Coronary Artery Disease. Circulation Cardiovascular imaging. 2022;15:e013987. doi:10.1161/circimaging.122.013987.
76. Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol. 2010;17:709-18. doi:10.1007/s12350-010-9244-0.
77. Bateman TM. Reducing Radiation While Improving the Quality and Efficiency of Nuclear Cardiology Procedures. JACC Cardiovascular imaging. 2021;14:1829-31. doi:10.1016/j.jcmg.2021.05.001.
78. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. Journal of the American College of Cardiology. 2010;55:1965-74. doi:10.1016/j.jacc.2010.01.028.
79. DePuey EG, Bommireddipalli S, Clark J, Leykekhman A, Thompson LB, Friedman M. A comparison of the image quality of full-time myocardial perfusion SPECT vs wide beam reconstruction half-time and half-dose SPECT. J Nucl Cardiol. 2011;18:273-80. doi:10.1007/s12350-011-9340-9.
80. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927-34. doi:10.1007/s12350-009-9137-2.
81. Einstein AJ, Blankstein R, Andrews H, Fish M, Padgett R, Hayes SW, et al. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2014;55:1430-7. doi:10.2967/jnumed.114.138222.
82. Aghakhan Olia N, Kamali-Asl A, Hariri Tabrizi S, Geramifar P, Sheikhzadeh P, Farzanefar S, et al. Deep learning-based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance. European journal of nuclear medicine and molecular imaging. 2022;49:1508-22. doi:10.1007/s00259-021-05614-7.
83. Jaudet C, Weyts K, Lechervy A, Batalla A, Bardet S, Corroyer-Dulmont A. The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics. Front Oncol. 2021;11:692973. doi:10.3389/fonc.2021.692973.
84. Mehranian A, Wollenweber SD, Walker MD, Bradley KM, Fielding PA, Su KH, et al. Image enhancement of whole-body oncology [(18)F]-FDG PET scans using deep neural networks to reduce noise. European journal of nuclear medicine and molecular imaging. 2022;49:539-49. doi:10.1007/s00259-021-05478-x.
85. Zhu M, Zhao M, Yao M, Guo R. A generative adversarial network with "zero-shot" learning for positron image denoising. Sci Rep. 2023;13:1051. doi:10.1038/s41598-023-28094-1.
86. Zhou B, Tsai YJ, Chen X, Duncan JS, Liu C. MDPET: A Unified Motion Correction and Denoising Adversarial Network for Low-Dose Gated PET. IEEE transactions on medical imaging. 2021;40:3154-64. doi:10.1109/tmi.2021.3076191.
87. Wang T, Lei Y, Tang H, He Z, Castillo R, Wang C, et al. A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: A feasibility study. J Nucl Cardiol. 2020;27:976-87. doi:10.1007/s12350-019-01594-2.
88. Zhao C, Shi S, He Z, Malhotra S, Wang C, Zhao Z, et al. Spatial-temporal V-Net for automatic segmentation and quantification of right ventricle on gated myocardial perfusion SPECT images. Medical physics. 2023;50:7415-26. doi:10.1002/mp.16805.
89. Zhang Y, Wang F, Wu H, Yang Y, Xu W, Wang S, et al. An automatic segmentation method with self-attention mechanism on left ventricle in gated PET/CT myocardial perfusion imaging. Comput Methods Programs Biomed. 2023;229:107267. doi:10.1016/j.cmpb.2022.107267.
90. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13:24-33. doi:10.1016/j.nuclcard.2005.12.004.
91. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283-91. doi:10.1161/circulationaha.107.743963.
92. Slomka PJ, Pan T, Berman DS, Germano G. Advances in SPECT and PET Hardware. Progress in cardiovascular diseases. 2015;57:566-78. doi:10.1016/j.pcad.2015.02.002.
93. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. Journal of the American College of Cardiology. 2011;58:740-8. doi:10.1016/j.jacc.2011.01.065.
94. Ko KY, Ko CL, Lee CM, Cheng JS, Wu YW, Hsu RB, et al. Myocardial Flow Assessment After Heart Transplantation Using Dynamic Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography With (201)Tl and (99m)Tc Tracers and Validated by (13)N-NH(3) Positron Emission Tomography. Circulation Cardiovascular imaging. 2023;16:e015034. doi:10.1161/circimaging.122.015034.
95. Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32:1012-24. doi:10.1093/eurheartj/ehq500.
96. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900-7. doi:10.1161/01.Cir.0000072790.23090.41.
97. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision. 1988;1:321-31. doi:10.1007/BF00133570.
98. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. Journal of the American College of Cardiology. 2009;54:150-6. doi:10.1016/j.jacc.2009.02.069.
99. DeGrado TR, Hanson MW, Turkington TG, Delong DM, Brezinski DA, Vallée JP, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol. 1996;3:494-507. doi:10.1016/s1071-3581(96)90059-8.
100. Shiraishi S, Sakamoto F, Tsuda N, Yoshida M, Tomiguchi S, Utsunomiya D, et al. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera. Circulation journal : official journal of the Japanese Circulation Society. 2015;79:623-31. doi:10.1253/circj.CJ-14-0932.
101. Hsu B, Chen FC, Wu TC, Huang WS, Hou PN, Chen CC, et al. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. European journal of nuclear medicine and molecular imaging. 2014;41:2294-306. doi:10.1007/s00259-014-2881-9.
102. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539-42.
103. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959;197:1205-10. doi:10.1152/ajplegacy.1959.197.6.1205.
104. Crone C. THE PERMEABILITY OF CAPILLARIES IN VARIOUS ORGANS AS DETERMINED BY USE OF THE 'INDICATOR DIFFUSION' METHOD. Acta Physiol Scand. 1963;58:292-305. doi:10.1111/j.1748-1716.1963.tb02652.x.
105. Iida H, Eberl S, Kim KM, Tamura Y, Ono Y, Nakazawa M, et al. Absolute quantitation of myocardial blood flow with (201)Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling. European journal of nuclear medicine and molecular imaging. 2008;35:896-905. doi:10.1007/s00259-007-0654-4.
106. Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation. 1977;56:188-91. doi:10.1161/01.cir.56.2.188.
107. Boschi A, Uccelli L, Marvelli L, Cittanti C, Giganti M, Martini P. Technetium-99m Radiopharmaceuticals for Ideal Myocardial Perfusion Imaging: Lost and Found Opportunities. Molecules. 2022;27. doi:10.3390/molecules27041188.
108. Wells RG, Small GR, Ruddy TD. Myocardial blood flow quantification with SPECT. J Med Imaging Radiat Sci. 2024;55:S51-s8. doi:10.1016/j.jmir.2024.02.016.
109. Acampa W, Zampella E, Assante R, Genova A, De Simini G, Mannarino T, et al. Quantification of myocardial perfusion reserve by CZT-SPECT: A head to head comparison with (82)Rubidium PET imaging. J Nucl Cardiol. 2021;28:2827-39. doi:10.1007/s12350-020-02129-w.
110. Giubbini R, Bertoli M, Durmo R, Bonacina M, Peli A, Faggiano I, et al. Comparison between N(13)NH(3)-PET and (99m)Tc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol. 2021;28:1906-18. doi:10.1007/s12350-019-01939-x.
111. Agostini D, Roule V, Nganoa C, Roth N, Baavour R, Parienti JJ, et al. First validation of myocardial flow reserve assessed by dynamic (99m)Tc-sestamibi CZT-SPECT camera: head to head comparison with (15)O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. European journal of nuclear medicine and molecular imaging. 2018;45:1079-90. doi:10.1007/s00259-018-3958-7.
112. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215-24. doi:10.1161/circulationaha.111.050427.
113. Chan SY, Brunken RC, Czernin J, Porenta G, Kuhle W, Krivokapich J, et al. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. Journal of the American College of Cardiology. 1992;20:979-85. doi:10.1016/0735-1097(92)90201-w.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95728-
dc.description.abstract心血管疾病是全球的頭號死因,其中冠狀動脈心臟病貢獻了很大的比例。冠狀動脈心臟病的診療過程中,心肌灌注掃描是一項重要的功能性評估工具。傳統靜態掃描只能評估相對血流與相對血流儲備,對於多血管疾病造成的平衡性缺血、瀰漫性或微小血管疾病難以有效偵測。動態心肌灌注掃描可以用來定量心肌血流的絕對值,進而克服這些問題。但過去礙於時間解析度的問題,動態心肌灌注掃描需要以正子斷層掃描進行。雖然近年半導體攝影機引進之後有機會可以用較低成本及更為普及的單光子斷層進行動態心肌灌注掃描達成血流定量,常用的鎝-99m標記的心肌灌流藥物受限於較差的生理特性;而鉈-201雖有較佳的生理特性,但有較高的輻射劑量及影像雜訊。本論文旨在開發和驗證一種使用深度學習方法的低劑量鉈-201動態單光子斷層心肌灌注掃描造影方式,其目的是在減少輻射暴露的同時,提升影像品質和心肌血流定量的準確度。
首先,本文對標準劑量動態心肌灌注掃描造影方式進行了改良與驗證,利用可變時間解析度先驗知識降低影像雜訊,及深度學習驅動的自動化處理減少人為誤差,並與黃金標準的動態正子斷層心肌灌注掃描測量結果進行比較。接著,本文設計了一種模擬低劑量動態研究的方法,生成配對的低劑量和全劑量動態單光子斷層掃描資料集。深度學習模型被訓練來對這些低劑量影像降噪,並從降噪後的影像定量出心肌血流,並將結果與正子掃描及全劑量測量結果進行比較,以評估其準確性。本研究還將心肌血流定量結果與冠狀動脈心臟病的存在及患者的預後進行了相關性分析。
結果顯示,對全劑量鉈-201動態單光子斷層掃描影像降噪進而定量出的心肌血流與正子掃描的定量結果有窄的一致性界線。定量出的壓力心肌血流能夠有效預測冠狀動脈狹窄,其結果與傳統的總灌注缺損相當,甚至對於缺損較輕微的案例能夠更為準確的預測冠狀動脈心臟病的存在。較高的壓力心肌血流與較低的主要不良心血管事件及全因死亡的概率相關,更表明此方法具有預後價值。對於模擬出僅有20%光子密度的低劑量動態影像所定量出的血流數值與正子掃描有寬的一致性界線。而經由深度學習降噪模型處理過後可以有效的縮窄一致性界線。由降噪後的低劑量影像定量出的壓力心肌血流也能預測冠狀動脈狹窄,對於缺損輕微的案例也能更為準確地預測冠狀動脈心臟病的存在。低劑量降噪影像的定量結果也能預測主要不良心血管事件及全因死亡。
本論文探討了深度學習技術在低劑量動態鉈-201單光子斷層心肌灌注掃描中輔助心肌血流量量化的應用,旨在減少患者輻射暴露的同時保持診斷準確性。研究顯示,深度學習顯著提升了低劑量掃描的影像品質,使其可與標準劑量圖像相當。經與正子掃描定量結果驗證,降噪後的低劑量掃描能有效預測冠狀動脈心臟病,並在早期疾病檢測和預後評估方面優於傳統方法。本論文還強調了鉈-201在高流量條件下具有更優異的線性萃取分率,以實現精確的血流量化。儘管樣本量較小等限制存在,研究結果表明,深度學習輔助的低劑量鉈-201單光子斷層心肌灌注掃描是動態正子斷層心肌灌注掃描一個有前景的替代方案,提供了一種在核醫心臟學中更易於獲取的診斷方法。
zh_TW
dc.description.abstractCardiovascular diseases are the global leading cause of death, with coronary artery disease (CAD) contributing significantly to this statistic. Myocardial perfusion imaging (MPI) is an essential functional assessment tool for the diagnosis and treatment of CAD. Traditional static MPI can only evaluate relative blood flow and relative flow reserve, making it difficult to effectively detect balanced ischemia caused by multivessel, diffuse, or microvascular diseases. Dynamic MPI can quantify the absolute value of myocardial blood flow (MBF), thereby overcoming these issues. However, owing to limitations in time resolution, dynamic MPI traditionally requires positron emission tomography (PET). Although the introduction of semiconductor cameras in recent years has made it possible to achieve blood flow quantification through dynamic MPI using more cost-effective and widely available single-photon emission computed tomography (SPECT), the commonly used Tc-99m-labeled perfusion agents are limited by their poor physiological characteristics. Although Tl-201 has better physiological characteristics, it has higher radiation dosimetry and image noise. This thesis focuses on developing and validating a low-dose dynamic Tl-201 SPECT MPI protocol with the assistance of deep learning methods. The primary aim is to create a protocol that enhances the image quality and quantification accuracy of MBF while minimizing radiation exposure.
A standard-dose dynamic SPECT MPI protocol was initially validated against gold-standard dynamic PET measurements. We developed a variable temporal resolution prior to reduce image noise during the reconstruction process and a deep learning-driven automatic process to reduce human processing error. Subsequently, a method to simulate low-dose dynamic studies was devised, generating a paired low-dose and full-dose dynamic SPECT dataset. Deep learning models were trained to denoise these low-dose images, and the MBF was quantified from the denoised images. The results were compared with those of PET to evaluate accuracy. Furthermore, this study correlated MBF measurements with the presence of CAD and patient prognosis.
These findings indicate that MBF measurements from denoised full-dose SPECT scans have narrow limits of agreement with PET measurements. The quantified stress MBF can effectively predict CAD. Stress MBF outperformed conventional stress total perfusion deficit (TPD) in patients with minor perfusion defects. Moreover, a higher stress MBF was associated with lower probabilities of major adverse cardiovascular events (MACE) and all-cause mortality, demonstrating the prognostic value of this approach. In simulated low-dose scans containing only 20% count density, the quantified MBF measurements have wider limits of agreement with PET measurements. The deep learning denoise model can effectively narrow these limits. Stress MBF from low-dose scans can also predict CAD and outperform TPD in patients with minor defects. Low-dose measurements also predict MACE and all-cause mortality.
This thesis explores deep learning techniques to assist in the quantification of MBF using low-dose dynamic Tl-201 SPECT MPI, aiming to reduce patient radiation exposure while maintaining diagnostic accuracy. Research has demonstrated that deep learning significantly improves the quality of low-dose SPECT images, making them comparable to standard-dose images. Validated against PET measurements, denoised low-dose scans effectively predicted CAD and outperformed traditional methods in early disease detection and prognosis assessment. The study also highlighted Tl-201's superior linear extraction fraction for accurate flow quantification under high-flow conditions. Despite limitations such as small sample size, the findings suggest that deep learning-assisted low-dose SPECT MPI is a promising alternative to dynamic PET MPI, offering a more accessible approach in nuclear cardiology.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T17:01:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T17:01:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
目次 ii
圖次 iv
表次 vi
Acknowledgements vii
中文摘要 viii
Abstract xi
Chapter 1. Introduction 1
1.1. Coronary artery disease 1
1.2. Myocardial perfusion imaging 3
1.3. Absolute flow quantification 7
1.4. Challenges of flow quantification with SPECT MPI 9
1.4.1. Hardware-related technical challenges 9
1.4.2. Physiological and inherited challenges from SPECT MPI 11
1.5. Possible assistance of deep learning to improve MPI 13
1.5.1. Deep learning for image denoise 13
1.5.2. Deep learning for myocardial segmentation 14
1.6. Objectives 15
Chapter 2. Materials and Methods 19
2.1. Study subjects 19
2.1.1. Static MPI 19
2.1.2. Dynamic MPI 20
2.2. The denoise model for static MPI 21
2.3. The segmentation model for static MPI 24
2.4. Stress and imaging protocol 28
2.4.1. Adenosine dynamic PET MPI study 28
2.4.2. Paired adenosine Tl-201 SPECT MPI study 29
2.4.3. Dynamic dipyridamole Tl-201 SPECT MPI study 31
2.6. Dynamic SPECT MPI process 34
2.6.1. Conventional image reconstruction 34
2.6.2. Proposed image reconstruction with noise suppression 35
2.6.3. Automatic heart orientation and segmentation 41
2.6.4. Motion correction 43
2.6.5. Kinetic modeling 44
2.6.6. Extraction fraction correction 48
2.7. Dynamic denoising model design and training 49
2.7.1. Training data preparation 50
2.7.2. Model design and training 52
Chapter 3. Results 54
3.1. Characteristics of dynamic study cohorts 54
3.2. The assistant static MPI denoise model 57
3.3. The assistant static MPI segmentation model 59
3.4. Variable temporal resolution prior reconstruction 61
3.5. Determine the extraction fraction model 62
3.6. Agreement of dynamic SPECT with ammonia PET 64
3.7. Associations with angiographic results 65
3.8. Association with patient survival 68
3.9. Low-dose dynamic SPECT 70
3.9.1. Agreement of original low-dose SPECT with PET 70
3.9.2. Determine the most suitable denoise model 71
3.9.3. Agreement of denoised SPECT quantification with PET 72
3.9.4. Association with angiographic result in low-dose condition 73
3.9.5. Association with patient survival in low-dose condition 76
Chapter 4. Discussion and conclusion 77
References 84
Abbreviations 112
-
dc.language.isoen-
dc.title深度學習輔助低劑量半導體單光子斷層心肌灌注掃描血流定量zh_TW
dc.titleDeep Learning-Assisted Blood Flow Quantification with Low-Dose Myocardial Perfusion Imaging using a CZT Cameraen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee吳文超;顏若芳;鄭媚方;吳彥雯zh_TW
dc.contributor.oralexamcommitteeWen-Chau Wu;Ruoh-Fang Yen;Mei-Fang Cheng;Yen-Wen Wuen
dc.subject.keyword冠狀動脈心臟病,心肌灌注掃描,單光子斷層掃描,血流定量,深度學習,降噪,影像重建,zh_TW
dc.subject.keywordcoronary artery disease (CAD),myocardial perfusion imaging (MPI),single-photon emission computed tomography (SPECT),flow quantification,deep learning,noise reduction,image reconstruction,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202403219-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
4.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved