Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95724
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳振中zh_TW
dc.contributor.advisorJerry Chun Chung Chanen
dc.contributor.author李夏安zh_TW
dc.contributor.authorHsia-An Leeen
dc.date.accessioned2024-09-15T17:00:34Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-15-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationPrusiner, S. B. A Unifying Role for Prions in Neurodegenerative Diseases. Science. 2012, 336 (6088), 1511–1513.
Thal, D. R.; Rüb, U.; Orantes, M.; Braak, H. Phases of A Beta-Deposition in the Human Brain and Its Relevance for the Development of AD. Neurology. 2002, 58 (12), 1791–1800.
Braak, H.; Braak, E. Neuropathological Stageing of Alzheimer-Related Changes. Acta Neuropathol. 1991, 82 (4), 239–259.
Braak, H.; Tredici, K. D.; Rüb, U.; de Vos, R. A. I.; Jansen Steur, E. N. H.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging. 2003, 24 (2), 197–211.
Brettschneider, J.; Del Tredici, K.; Toledo, J. B.; Robinson, J. L.; Irwin, D. J.; Grossman, M.; Suh, E.; Van Deerlin, V. M.; Wood, E. M.; Baek, Y.; Kwong, L.; Lee, E. B.; Elman, L.; McCluskey, L.; Fang, L.; Feldengut, S.; Ludolph, A. C.; Lee, V. M.-Y.; Braak, H.; Trojanowski, J. Q. Stages of pTDP-43 Pathology in Amyotrophic Lateral Sclerosis. Ann. Neurol. 2013, 74 (1), 20–38.
Jucker, M.; Walker, L. C. Pathogenic Protein Seeding in Alzheimer Disease and Other Neurodegenerative Disorders. Ann. Neurol. 2011, 70 (4), 532–540.
Jucker, M.; Walker, L. C. Self-Propagation of Pathogenic Protein Aggregates in Neurodegenerative Diseases. Nature. 2013, 501 (7465), 45–51.
Kisilevsky, R.; Raimondi, S.; Bellotti, V. Historical and Current Concepts of Fibrillogenesis and In Vivo Amyloidogenesis: Implications of Amyloid Tissue Targeting. Front. Mol. Biosci. 2016, 3, 17.
Goedert, M. Alzheimer’s and Parkinson’s Diseases: The Prion Concept in Relation to Assembled Aβ, Tau, and α-Synuclein. Science. 2015, 349 (6248), 1255555.
Soto, C. Unfolding the Role of Protein Misfolding in Neurodegenerative Diseases. Nat. Rev. Neurosci. 2003, 4 (1), 49–60.
Caughey, B.; Jr, P. T. L. PROTOFIBRILS, PORES, FIBRILS, AND NEURODEGENERATION: Separating the Responsible Protein Aggregates from The Innocent Bystanders. Annu. Rev. Neurosci. 2003, 26, 267–298.
Lesné, S.; Kotilinek, L. Amyloid Plaques and Amyloid-β Oligomers: An Ongoing Debate. J. Neurosci. 2005, 25 (41), 9319–9320.
Rambaran, R. N.; Serpell, L. C. Amyloid Fibrils: Abnormal Protein Assembly. Prion. 2008, 2 (3), 112–117.
Breydo, L.; Uversky, V. N. Structural, Morphological, and Functional Diversity of Amyloid Oligomers. FEBS Lett. 2015, 589 (19), 2640–2648.
Jarrett, J. T.; Lansbury, P. T. Seeding “One-Dimensional Crystallization” of Amyloid: A Pathogenic Mechanism in Alzheimer’s Disease and Scrapie? Cell. 1993, 73 (6), 1055–1058.
Soto, C.; Estrada, L.; Castilla, J. Amyloids, Prions and the Inherent Infectious Nature of Misfolded Protein Aggregates. Trends Biochem. Sci. 2006, 31 (3), 150–155.
Soto, C.; Pritzkow, S. Protein Misfolding, Aggregation, and Conformational Strains in Neurodegenerative Diseases. Nat. Neurosci. 2018, 21 (10), 1332–1340.
Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (23), 13363–13383.
Jucker, M.; Walker, L. C. Propagation and Spread of Pathogenic Protein Assemblies in Neurodegenerative Diseases. Nat. Neurosci. 2018, 21 (10), 1341–1349.
Peng, C.; Trojanowski, J. Q.; Lee, V. M.-Y. Protein Transmission in Neurodegenerative Disease. Nat. Rev. Neurol. 2020, 16 (4), 199–212.
Tanaka, M.; Chien, P.; Yonekura, K.; Weissman, J. S. Mechanism of Cross-Species Prion Transmission: An Infectious Conformation Compatible withTwo Highly Divergent Yeast Prion Proteins. Cell. 2005, 121 (1), 49–62.
Aguzzi, A.; Nuvolone, M.; Zhu, C. The Immunobiology of Prion Diseases. Nat. Rev. Immunol. 2013, 13 (12), 888–902.
Matsubayashi, T.; Sanjo, N. Systematic Review of Clinical and Pathophysiological Features of Genetic Creutzfeldt-Jakob Disease Caused by a Val-to-Ile Mutation at Codon 180 in the Prion Protein Gene. Int. J. Mol. Sci. 2022, 23 (23), 15172.
Takada, L. T.; Geschwind, M. D. Prion Diseases. Semin. Neurol. 2013, 33, 348–356.
Masters, C. L.; Harris, J. O.; Gajdusek, D. C.; Gibbs Jr, C. J.; Bernoulli, C.; Asher, D. M. Creutzfeldt-Jakob Disease: Patterns of Worldwide Occurrence and the Significance of Familial and Sporadic Clustering. Ann. Neurol. 1979, 5 (2), 177–188.
Ladogana, A.; Puopolo, M.; Croes, E. A.; Budka, H.; Jarius, C.; Collins, S.; Klug, G. M.; Sutcliffe, T.; Giulivi, A.; Alperovitch, A.; Delasnerie-Laupretre, N.; Brandel, J.-P.; Poser, S.; Kretzschmar, H.; Rietveld, I.; Mitrova, E.; Cuesta, J. de P.; Martinez-Martin, P.; Glatzel, M.; Aguzzi, A.; Knight, R.; Ward, H.; Pocchiari, M.; van Duijn, C. M.; Will, R. G.; Zerr, I. Mortality from Creutzfeldt–Jakob Disease and Related Disorders in Europe, Australia, and Canada. Neurology. 2005, 64 (9), 1586–1591.
Brown, P.; Brandel, J.-P.; Sato, T.; Nakamura, Y.; MacKenzie, J.; Will, R. G.; Ladogana, A.; Pocchiari, M.; Leschek, E. W.; Schonberger, L. B. Iatrogenic Creutzfeldt-Jakob Disease, Final Assessment. Emerg. Infect. Dis. 2012, 18 (6), 901–907.
Preusser, M.; Ströbel, T.; Gelpi, E.; Eiler, M.; Broessner, G.; Schmutzhard, E.; Budka, H. Alzheimer-Type Neuropathology in a 28 Year Old Patient with Iatrogenic Creutzfeldt-Jakob Disease after Dural Grafting. J. Neurol. Neurosurg. Psychiatry. 2006, 77 (3), 413–416.
Kovacs, G. G.; Lutz, M. I.; Ricken, G.; Ströbel, T.; Höftberger, R.; Preusser, M.; Regelsberger, G.; Hönigschnabl, S.; Reiner, A.; Fischer, P.; Budka, H.; Hainfellner, J. A. Dura Mater Is a Potential Source of Aβ Seeds. Acta Neuropathol. (Berl.). 2016, 131 (6), 911–923.
Frontzek, K.; Lutz, M. I.; Aguzzi, A.; Kovacs, G. G.; Budka, H. Amyloid-β Pathology and Cerebral Amyloid Angiopathy Are Frequent in Iatrogenic Creutzfeldt-Jakob Disease after Dural Grafting. Swiss Med. Wkly. 2016, 146, w14287.
Hamaguchi, T.; Taniguchi, Y.; Sakai, K.; Kitamoto, T.; Takao, M.; Murayama, S.; Iwasaki, Y.; Yoshida, M.; Shimizu, H.; Kakita, A.; Takahashi, H.; Suzuki, H.; Naiki, H.; Sanjo, N.; Mizusawa, H.; Yamada, M. Significant Association of Cadaveric Dura Mater Grafting with Subpial Aβ Deposition and Meningeal Amyloid Angiopathy. Acta Neuropatho. 2016, 132 (2), 313–315.
Iwasaki, Y.; Imamura, K.; Iwai, K.; Kobayashi, Y.; Akagi, A.; Mimuro, M.; Miyahara, H.; Kitamoto, T.; Yoshida, M. Autopsied Case of Non-Plaque-Type Dura Mater Graft-Associated Creutzfeldt-Jakob Disease Presenting with Extensive Amyloid-β Deposition. Neuropathology. 2018, 38 (5), 549–556.
Cali, I.; Cohen, M. L.; Haїk, S.; Parchi, P.; Giaccone, G.; Collins, S. J.; Kofskey, D.; Wang, H.; McLean, C. A.; Brandel, J.-P.; Privat, N.; Sazdovitch, V.; Duyckaerts, C.; Kitamoto, T.; Belay, E. D.; Maddox, R. A.; Tagliavini, F.; Pocchiari, M.; Leschek, E.; Appleby, B. S.; Safar, J. G.; Schonberger, L. B.; Gambetti, P. Iatrogenic Creutzfeldt-Jakob Disease with Amyloid-β Pathology: An International Study. Acta Neuropathol. Commun. 2018, 6 (1), 5.
Ritchie, D. L.; Barria, M. A. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules. 2021, 11 (2), 207.
McDonald, A. J.; Leon, D. R.; Markham, K. A.; Wu, B.; Heckendorf, C. F.; Schilling, K.; Showalter, H. D.; Andrews, P. C.; McComb, M. E.; Pushie, M. J.; Costello, C. E.; Millhauser, G. L.; Harris, D. A. Altered Domain Structure of the Prion Protein Caused by Cu2+ Binding and Functionally Relevant Mutations: Analysis by Cross-Linking, MS/MS, and NMR. Structure. 2019, 27 (6), 907–922.
Grimaldi, I.; Leser, F. S.; Janeiro, J. M.; da Rosa, B. G.; Campanelli, A. C.; Romão, L.; Lima, F. R. S. The Multiple Functions of PrPC in Physiological, Cancer, and Neurodegenerative Contexts. J. Mol. Med. 2022, 100 (10), 1405–1425.
Brown, D. R.; Clive, C.; Haswell, S. J. Antioxidant Activity Related to Copper Binding of Native Prion Protein. J. Neurochem. 2001, 76 (1), 69–76.
Williams, W. M.; Stadtman, E. R.; Moskovitz, J. Ageing and Exposure to Oxidative Stress in Vivo Differentially Affect Cellular Levels of PrPC in Mouse Cerebral Microvessels and Brain Parenchyma. Neuropathol. Appl. Neurobiol. 2004, 30 (2), 161–168.
Gasperini, L.; Meneghetti, E.; Legname, G.; Benetti, F. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. Front. Neurosci. 2016, 10, 437.
Mouillet-Richard, S.; Ermonval, M.; Chebassier, C.; Laplanche, J. L.; Lehmann, S.; Launay, J. M.; Kellermann, O. Signal Transduction Through Prion Protein. Science. 2000, 289 (5486), 1925–1928.
Graner, E.; Mercadante, A. F.; Zanata, S. M.; Forlenza, O. V.; Cabral, A. L. B.; Veiga, S. S.; Juliano, M. A.; Roesler, R.; Walz, R.; Minetti, A.; Izquierdo, I.; Martins, V. R.; Brentani, R. R. Cellular Prion Protein Binds Laminin and Mediates Neuritogenesis. Mol. Brain Res. 2000, 76 (1), 85–92.
Li, C.; Yu, S.; Nakamura, F.; Pentikäinen, O. T.; Singh, N.; Yin, S.; Xin, W.; Sy, M.-S. Pro-Prion Binds Filamin A, Facilitating Its Interaction with Integrin Β1, and Contributes to Melanomagenesis. J. Biol. Chem. 2010, 285 (39), 30328–30339.
McLennan, N. F.; Brennan, P. M.; McNeill, A.; Davies, I.; Fotheringham, A.; Rennison, K. A.; Ritchie, D.; Brannan, F.; Head, M. W.; Ironside, J. W.; Williams, A.; Bell, J. E. Prion Protein Accumulation and Neuroprotection in Hypoxic Brain Damage. Am. J. Pathol. 2004, 165 (1), 227–235.
Jeong, J.-K.; Seo, J.-S.; Moon, M.-H.; Lee, Y.-J.; Seol, J.-W.; Park, S.-Y. Hypoxia-Inducible Factor-1 Alpha Regulates Prion Protein Expression to Protect against Neuron Cell Damage. Neurobiol. Aging. 2012, 33 (5), 1006.e1-1006.e10.
Makarava, N.; Katorcha, E.; Chang, J. C.-Y.; Lau, J. T. Y.; Baskakov, I. V. Deficiency in ST6GAL1, One of the Two Α2,6-Sialyltransferases, Has Only a Minor Effect on the Pathogenesis of Prion Disease. Front. Mol. Biosci. 2022, 9.
Gil, M.; Kim, Y. K.; Kim, K.-E.; Kim, W.; Park, C.-S.; Lee, K. J. Cellular Prion Protein Regulates Invasion and Migration of Breast Cancer Cells through MMP-9 Activity. Biochem. Biophys. Res. Commun. 2016, 470 (1), 213–219.
Pan, Y.; Zhao, L.; Liang, J.; Liu, J.; Shi, Y.; Liu, N.; Zhang, G.; Jin, H.; Gao, J.; Xie, H.; Wang, J.; Liu, Z.; Fan, D. Cellular Prion Protein Promotes Invasion and Metastasis of Gastric Cancer. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2006, 20 (11), 1886–1888.
Li, Q.-Q.; Sun, Y.-P.; Ruan, C.-P.; Xu, X.-Y.; Ge, J.-H.; He, J.; Xu, Z.-D.; Wang, Q.; Gao, W.-C. Cellular Prion Protein Promotes Glucose Uptake through the Fyn-HIF-2α-Glut1 Pathway to Support Colorectal Cancer Cell Survival. Cancer Sci. 2011, 102 (2), 400–406.
Fevrier, B.; Vilette, D.; Archer, F.; Loew, D.; Faigle, W.; Vidal, M.; Laude, H.; Raposo, G. Cells Release Prions in Association with Exosomes. Proc. Natl. Acad. Sci. 2004, 101 (26), 9683–9688.
Quek, C.; Hill, A. F. The Role of Extracellular Vesicles in Neurodegenerative Diseases. Biochem. Biophys. Res. Commun. 2017, 483 (4), 1178–1186.
Zhang, Y.; Zhao, Y.; Zhang, L.; Yu, W.; Wang, Y.; Chang, W. Cellular Prion Protein as a Receptor of Toxic Amyloid-β42 Oligomers Is Important for Alzheimer’s Disease. Front. Cell. Neurosci. 2019, 13, 339.
Ugalde, C. L.; Finkelstein, D. I.; Lawson, V. A.; Hill, A. F. Pathogenic Mechanisms of Prion Protein, Amyloid-β and α-Synuclein Misfolding: The Prion Concept and Neurotoxicity of Protein Oligomers. J. Neurochem. 2016, 139 (2), 162–180.
Shafiq, M.; Da Vela, S.; Amin, L.; Younas, N.; Harris, D. A.; Zerr, I.; Altmeppen, H. C.; Svergun, D.; Glatzel, M. The Prion Protein and Its Ligands: Insights into Structure-Function Relationships. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2022, 1869 (6), 119240.
Wille, H.; Requena, J. R. The Structure of PrPSc Prions. Pathogens. 2018, 7 (1), 20.
Ma, J.; Zhang, X. Prion Protein Conversion and Lipids. Prions and Diseases. Springer International Publishing: Cham, 2023, pp 163–177.
Artikis, E.; Kraus, A.; Caughey, B. Structural Biology of Ex Vivo Mammalian Prions. J. Biol. Chem. 2022, 298 (8), 102181.
Ma, J.; Wang, F. Prion Disease and the ‘Protein-Only Hypothesis’. Essays Biochem. 2014, 56, 181–191.
Baskakov, I. V. Prion Conversion and Deformed Templating. Prions and Diseases. Springer International Publishing: Cham, 2023, pp 89–105.
Alves Conceição, C.; Assis de Lemos, G.; Barros, C. A.; Vieira, T. C. R. G. What Is the Role of Lipids in Prion Conversion and Disease? Front. Mol. Neurosci. 2022, 15, 1032541.
Botto, L.; Cunati, D.; Coco, S.; Sesana, S.; Bulbarelli, A.; Biasini, E.; Colombo, L.; Negro, A.; Chiesa, R.; Masserini, M.; Palestini, P. Role of Lipid Rafts and GM1 in the Segregation and Processing of Prion Protein. PLoS One. 2014, 9 (5), e98344.
Zhou, Z.; Xiao, G. Conformational Conversion of Prion Protein in Prion Diseases. Acta Biochim. Biophys. Sin. 2013, 45 (6), 465–476.
Sulatskaya, A. I.; Sulatsky, M. I.; Stepanenko, O. V.; Povarova, O. I.; Kuznetsova, I. M.; Turoverov, K. K. Denaturing Effect of Guanidine Hydrohloride on Amyloid Fibrils. Biophys. J. 2020, 118 (3), 509a.
Lemarre, P.; Pujo-Menjouet, L.; Sindi, S. S. A Unifying Model for the Propagation of Prion Proteins in Yeast Brings Insight into the [PSI+] Prion. PLoS Comput. Biol. 2020, 16 (5), e1007647.
Rudd, P. M.; Wormald, M. R.; Wing, D. R.; Prusiner, S. B.; Dwek, R. A. Prion Glycoprotein:  Structure, Dynamics, and Roles for the Sugars. Biochemistry. 2001, 40 (13), 3759–3766.
Tolar, M.; Abushakra, S.; Sabbagh, M. The Path Forward in Alzheimer’s Disease Therapeutics: Reevaluating the Amyloid Cascade Hypothesis. Alzheimers Dement. 2020, 16 (11), 1553–1560.
Zhao, J.; Liu, X.; Xia, W.; Zhang, Y.; Wang, C. Targeting Amyloidogenic Processing of APP in Alzheimer’s Disease. Front. Mol. Neurosci. 2020, 13, 137.
Kamenetz, F.; Tomita, T.; Hsieh, H.; Seabrook, G.; Borchelt, D.; Iwatsubo, T.; Sisodia, S.; Malinow, R. APP Processing and Synaptic Function. Neuron. 2003, 37 (6), 925–937.
Eimer, W. A.; Kumar, D. K. V.; Shanmugam, N. K. N.; Rodriguez, A. S.; Mitchell, T.; Washicosky, K. J.; György, B.; Breakefield, X. O.; Tanzi, R. E.; Moir, R. D. Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron. 2018, 99 (1), 56-63.e3.
Luo, J.; Wärmländer, S. K. T. S.; Gräslund, A.; Abrahams, J. P. Reciprocal Molecular Interactions between the Aβ Peptide Linked to Alzheimer’s Disease and Insulin Linked to Diabetes Mellitus Type II. ACS Chem. Neurosci. 2016, 7 (3), 269–274.
Michaels, T. C. T.; Šarić, A.; Curk, S.; Bernfur, K.; Arosio, P.; Meisl, G.; Dear, A. J.; Cohen, S. I. A.; Dobson, C. M.; Vendruscolo, M.; Linse, S.; Knowles, T. P. J. Dynamics of Oligomer Populations Formed during the Aggregation of Alzheimer’s Aβ42 Peptide. Nat. Chem. 2020, 12 (5), 445–451.
Huang, Y.; Liu, R. The Toxicity and Polymorphism of β-Amyloid Oligomers. Int. J. Mol. Sci. 2020, 21 (12), 4477.
Müller, M. K.; Jacobi, E.; Sakimura, K.; Malinow, R.; von Engelhardt, J. NMDA Receptors Mediate Synaptic Depression, but Not Spine Loss in the Dentate Gyrus of Adult Amyloid Beta (Aβ) Overexpressing Mice. Acta Neuropathol. Commun. 2018, 6 (1), 110.
Miller, E. C.; Teravskis, P. J.; Dummer, B. W.; Zhao, X.; Huganir, R. L.; Liao, D. Tau Phosphorylation and Tau Mislocalization Mediate Soluble Aβ Oligomer-Induced AMPA Glutamate Receptor Signaling Deficits. Eur. J. Neurosci. 2014, 39 (7), 1214–1224.
Fernández-Pérez, E. J.; Sepúlveda, F. J.; Peoples, R.; Aguayo, L. G. Role of Membrane GM1 on Early Neuronal Membrane Actions of Aβ during Onset of Alzheimer’s Disease. Biochim. Biophys. Acta BBA - Mol. Basis Dis. 2017, 1863 (12), 3105–3116.
Gan, K. J.; Silverman, M. A. Dendritic and Axonal Mechanisms of Ca2+ Elevation Impair BDNF Transport in Aβ Oligomer–Treated Hippocampal Neurons. Mol. Biol. Cell. 2015, 26 (6), 1058–1071.
Zhao, N.; Yan, Q.-W.; Xia, J.; Zhang, X.-L.; Li, B.-X.; Yin, L.-Y.; Xu, B. Treadmill Exercise Attenuates Aβ-Induced Mitochondrial Dysfunction and Enhances Mitophagy Activity in APP/PS1 Transgenic Mice. Neurochem. Res. 2020, 45 (5), 1202–1214.
Vincent, B.; Sunyach, C.; Orzechowski, H.-D.; St George-Hyslop, P.; Checler, F. p53-Dependent Transcriptional Control of Cellular Prion by Presenilins. J. Neurosci. 2009, 29 (20), 6752–6760.
Penke, B.; Szűcs, M.; Bogár, F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer’s Pathogenesis. Molecules. 2020, 25 (7), 1659.
Gomes, T. A. M.; dos Santos Silva, M. P.; Gomes, M. P. S. M.; Barh, D.; de Carvalho Azevedo, V. A.; Dutra, J. da C. F. The Role of PrPC in Alzheimer’s Disease Related Amyloid-β Hypothesis: A Systematic Review. Brain Disord. 2023, 11, 100098.
Amin, L.; Harris, D. A. Aβ Receptors Specifically Recognize Molecular Features Displayed by Fibril Ends and Neurotoxic Oligomers. Nat. Commun. 2021, 12 (1), 3451.
Takahashi, R. H.; Yokotsuka, M.; Tobiume, M.; Sato, Y.; Hasegawa, H.; Nagao, T.; Gouras, G. K. Accumulation of Cellular Prion Protein within β‐amyloid Oligomer Plaques in Aged Human Brains. Brain Pathol. 2021, 31 (5), e12941.
Foley, A. R.; Roseman, G. P.; Chan, K.; Smart, A.; Finn, T. S.; Yang, K.; Lokey, R. S.; Millhauser, G. L.; Raskatov, J. A. Evidence for Aggregation-Independent, PrPC-Mediated Aβ Cellular Internalization. Proc. Natl. Acad. Sci. 2020, 117 (46), 28625–28631.
Corbett, G. T.; Wang, Z.; Hong, W.; Colom-Cadena, M.; Rose, J.; Liao, M.; Asfaw, A.; Hall, T. C.; Ding, L.; DeSousa, A.; Frosch, M. P.; Collinge, J.; Harris, D. A.; Perkinton, M. S.; Spires-Jones, T. L.; Young-Pearse, T. L.; Billinton, A.; Walsh, D. M. PrP Is a Central Player in Toxicity Mediated by Soluble Aggregates of Neurodegeneration-Causing Proteins. Acta Neuropathol. 2020, 139 (3), 503–526.
Jarosz-Griffiths, H. H.; Corbett, N. J.; Rowland, H. A.; Fisher, K.; Jones, A. C.; Baron, J.; Howell, G. J.; Cowley, S. A.; Chintawar, S.; Cader, M. Z.; Kellett, K. A. B.; Hooper, N. M. Proteolytic Shedding of the Prion Protein via Activation of Metallopeptidase ADAM10 Reduces Cellular Binding and Toxicity of Amyloid-β Oligomers. J. Biol. Chem. 2019, 294 (17), 7085–7097.
König, A. S.; Rösener, N. S.; Gremer, L.; Tusche, M.; Flender, D.; Reinartz, E.; Hoyer, W.; Neudecker, P.; Willbold, D.; Heise, H. Structural Details of Amyloid β Oligomers in Complex with Human Prion Protein as Revealed by Solid-State MAS NMR Spectroscopy. J. Biol. Chem. 2021, 296, 100499.
Pagano, K.; Galante, D.; D’Arrigo, C.; Corsaro, A.; Nizzari, M.; Florio, T.; Molinari, H.; Tomaselli, S.; Ragona, L. Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity. Mol. Neurobiol. 2019, 56 (3), 1957–1971.
Liu, S.; Li, S.; Lin, J.; Li, J.; Yang, H. Aptamer-Induced-Dimerization Strategy Attenuates AβO Toxicity through Modulating the Trophic Activity of PrPC Signaling. J. Am. Chem. Soc. 2022, 144 (21), 9264–9270.
Soleimani Zohr Shiri, M.; Henderson, W.; Mucalo, M. R. A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh. Materials. 2019, 12 (12), 1896.
Paul, B. K.; Mitra, R. K. Water Solubilization Capacity of Mixed Reverse Micelles: Effect of Surfactant Component, the Nature of the Oil, and Electrolyte Concentration. J. Colloid Interface Sci. 2005, 288 (1), 261–279.
Liu, Y.; Goebl, J.; Yin, Y. Templated Synthesis of Nanostructured Materials. Chem. Soc. Rev. 2013, 42 (7), 2610–2653.
LLC, G. B. pET-28a(+) Sequence and Map. https://www.snapgene.com/plasmids/pet_and_duet_vectors_(novagen)/pET-28a(%2B)
Panja, S.; Aich, P.; Jana, B.; Basu, T. How Does Plasmid DNA Penetrate Cell Membranes in Artificial Transformation Process of Escherichia Coli? Mol. Membr. Biol. 2008, 25 (5), 411–422.
Asif, A.; Mohsin, H.; Tanvir, R.; Rehman, Y. Revisiting the Mechanisms Involved in Calcium Chloride Induced Bacterial Transformation. Front. Microbiol. 2017, 8, 2169.
Lim, Y.; Su, C.-H.; Liao, Y.-C.; Lee, S.-Y. Impedimetric Analysis on the Mass Transfer Properties of Intact and Competent E. Coli Cells. Biochim. Biophys. Acta BBA - Biomembr. 2019, 1861 (1), 9–16.
LLC, G. B. pCOLADuet-1 Sequence and Map. https://www.snapgene.com/plasmids/pet_and_duet_vectors_(novagen)/pCOLADuet-1
Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science. 1989, 246 (4926), 64–71.
Hillenkamp, F.; Karas, M. Mass Spectrometry of Peptides and Proteins by Matrix-Assisted Ultraviolet Laser Desorption/Ionization. Methods in Enzymology. Academic Press, 1990, 193, 280–295.
Yang, Z.; Ren, Z.; Cheng, Y.; Sun, W.; Xi, Z.; Jia, W.; Li, G.; Wang, Y.; Guo, M.; Li, D. Review and Prospect on Portable Mass Spectrometer for Recent Applications. Vacuum. 2022, 199, 110889.
Cech, N. B.; Enke, C. G. Practical Implications of Some Recent Studies in Electrospray Ionization Fundamentals. Mass Spectrom. Rev. 2001, 20 (6), 362–387.
Proteomics, C. MALDI-TOF Mass Spectrometry. https://www.creative-proteomics.com/technology/maldi-tof-mass-spectrometry.htm
Comstock, M. J. Time-of-Flight Mass Spectrometry, Copyright, 1993 Advisory Board, Foreword. Time-of-Flight Mass Spectrometry. American Chemical Society, 1993, Vol. 549, pp i–vi.
van der Loop, T.; Panman, M.; Lotze, S.; Zhang, J.; Vad, T.; Bakker, H.; Sager, W.; Woutersen, S. Structure and Dynamics of Water in Nonionic Reverse Micelles: A Combined Time-Resolved Infrared and Small Angle X-ray Scattering Study. J. Chem. Phys. 2012, 137, 044503.
Mathew, D. S.; Juang, R.-S. Improved Back Extraction of Papain from AOT Reverse Micelles Using Alcohols and a Counter-Ionic Surfactant. Biochem. Eng. J. 2005, 25 (3), 219–225.
Chuo, S. C.; Abd-Talib, N.; Mohd-Setapar, S. H.; Hassan, H.; Nasir, H. M.; Ahmad, A.; Lokhat, D.; Ashraf, G. M. Reverse Micelle Extraction of Antibiotics Using an Eco-Friendly Sophorolipids Biosurfactant. Sci. Rep. 2018, 8 (1), 477.
Lin, Y.-L.; Cheng, Y.-S.; Ho, C.-I.; Guo, Z.-H.; Huang, S.-J.; Org, M.-L.; Oss, A.; Samoson, A.; Chan, J. C. C. Preparation of Fibril Nuclei of Beta-Amyloid Peptides in Reverse Micelles. Chem. Commun. 2018, 54 (74), 10459–10462.
Determination of particle size using dynamic light scattering | Norlab. https://www.norlab.com/library/overview-article/13196
Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S. A.; Krishna, V.; Grover, R. K.; Roy, R.; Singh, S. Mechanism of Thioflavin T Binding to Amyloid Fibrils. J. Struct. Biol. 2005, 151 (3), 229–238.
Biancalana, M.; Koide, S. Molecular Mechanism of Thioflavin-T Binding to Amyloid Fibrils. Biochim. Biophys. Acta BBA - Proteins Proteomics. 2010, 1804 (7), 1405–1412.
Wolfe, L. S.; Calabrese, M. F.; Nath, A.; Blaho, D. V.; Miranker, A. D.; Xiong, Y. Protein-Induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T. Proc. Natl. Acad. Sci. 2010, 107 (39), 16863–16868.
Tiwari, A. Transmission Electron Microscope (TEM) - Biology Ease, 2021.
Harris, J. R. Negative Staining across Holes: Application to Fibril and Tubular Structures. Micron. 2008, 39 (2), 168–176.
De Carlo, S.; Harris, J. R. Negative Staining and Cryo-Negative Staining of Macromolecules and Viruses for TEM. Micron. 2011, 42 (2), 117–131.
Zhang, L.; Song, J.; Cavigiolio, G.; Ishida, B. Y.; Zhang, S.; Kane, J. P.; Weisgraber, K. H.; Oda, M. N.; Rye, K.-A.; Pownall, H. J.; Ren, G. Morphology and Structure of Lipoproteins Revealed by an Optimized Negative-Staining Protocol of Electron Microscopy. J. Lipid Res. 2011, 52 (1), 175–184.
Binnig, G.; Quate, C. F.; Gerber, Ch. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56 (9), 930–933.
Palermo, V.; Liscio, A.; Talarico, A. M.; Zhi, L.; Müllen, K.; Samorì, P. Unconventional Nanotubes Self-Assembled in Alumina Channels: Morphology and Surface Potential of Isolated Nanostructures at Surfaces. Philos. Trans. Math. Phys. Eng. Sci. 2007, 365 (1855), 1577–1588.
Tapping mode. https://www.parksystems.com/park-spm-modes/91-standard-imaging-mode/2204-tapping-mode
Johnson, D. J.; Miles, N. J.; Hilal, N. Quantification of Particle-Bubble Interactions Using Atomic Force Microscopy: A Review. Adv. Colloid Interface Sci. 2006, 127 (2), 67–81.
Eaton, P.; West, P. Atomic Force Microscopy. Oxford University Press, 2010.
林宏旻; 陳彥甫; 張家榮. 新世代原子力顯微鏡成像技術-PeakForce Tapping 模式與其衍生量測模式. 科儀新知. 2012, 191, 35–45.
Hua, Y. PeakForce-QNM Advanced Applications Training 2014.
Nanomechanical Property Mapping. https://www.nanophys.kth.se/nanolab/afm/icon/bruker-help/Content/ForceVolume/Mechanical%20Property%20Mapping.htm#Stiffnes
Gomes, L. A.; Hipp, S. A.; Rijal Upadhaya, A.; Balakrishnan, K.; Ospitalieri, S.; Koper, M. J.; Largo-Barrientos, P.; Uytterhoeven, V.; Reichwald, J.; Rabe, S.; Vandenberghe, R.; von Arnim, C. A. F.; Tousseyn, T.; Feederle, R.; Giudici, C.; Willem, M.; Staufenbiel, M.; Thal, D. R. Aβ-Induced Acceleration of Alzheimer-Related τ-Pathology Spreading and Its Association with Prion Protein. Acta Neuropathol. 2019, 138 (6), 913–941.
Wang, L.-Q.; Zhao, K.; Yuan, H.-Y.; Wang, Q.; Guan, Z.; Tao, J.; Li, X.-N.; Sun, Y.; Yi, C.-W.; Chen, J.; Li, D.; Zhang, D.; Yin, P.; Liu, C.; Liang, Y. Cryo-EM Structure of an Amyloid Fibril Formed by Full-Length Human Prion Protein. Nat. Struct. Mol. Biol. 2020, 27 (6), 598–602.
Wang, L.-Q.; Zhao, K.; Yuan, H.-Y.; Li, X.-N.; Dang, H.-B.; Ma, Y.; Wang, Q.; Wang, C.; Sun, Y.; Chen, J.; Li, D.; Zhang, D.; Yin, P.; Liu, C.; Liang, Y. Genetic Prion Disease–Related Mutation E196K Displays a Novel Amyloid Fibril Structure Revealed by Cryo-EM. Sci. Adv. 2021, 7 (37), eabg9676.
Schmidt, M.; Rohou, A.; Lasker, K.; Yadav, J. K.; Schiene-Fischer, C.; Fändrich, M.; Grigorieff, N. Peptide Dimer Structure in an Aβ(1–42) Fibril Visualized with Cryo-EM. Proc. Natl. Acad. Sci. 2015, 112 (38), 11858–11863.
Gremer, L.; Schölzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R. B. G.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; Willbold, D.; Schröder, G. F. Fibril Structure of Amyloid-β(1-42) by Cryo-Electron Microscopy. Science. 2017, 358 (6359), 116–119.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95724-
dc.description.abstract普里昂蛋白 (PrP) 是引發人類庫賈氏症、狂牛症以及羊搔癢症的主要蛋白質,其異常折疊造成腦組織空洞化。先前的研究指出,普里昂蛋白為乙型類澱粉蛋白 42 (Aβ42) 寡聚物具高親和性的受體。此外,PrP 與 Aβ42 寡聚物的結合被認為與阿茲海默症的惡化過程有密切相關性。為了探討 PrP 與 Aβ42 的相互作用,本研究運用直徑平均為 28 nm 的逆相微胞來共培養 PrP 和 Aβ42 單體,並使用動態光散射儀確認逆相微胞的大小,以及利用硫磺素 T 螢光檢測法和穿透式電子顯微鏡探討在共培養的條件下 PrP 和 Aβ42 能否產生共寡聚物。實驗結果顯示,逆相微胞中的限制性物理空間能增加 PrP 與 Aβ42 寡聚物的相互作用,比單獨培養PrP時形成較多 β-sheet 的結構。本研究進一步使用原子力顯微鏡來量測 PrP、Aβ42 以及共培養 PrP—Aβ42 纖維的高度及硬度值,結果顯示三者的硬度值在統計上並沒有顯著的差異。zh_TW
dc.description.abstractPrion protein (PrP) is the culprit that causes human Creutzfeldt-Jakob disease, mad cow disease and scrapie in sheep. Its abnormal folding causes the spongy form of brain tissues in patients. Previous studies have shown that PrP is a high-affinity receptor for the oligomers of beta amyloid 42 peptides (Aβ42). Moreover, the binding between PrP and Aβ42 oligomers is closely associated to the progression of Alzheimer's disease. In order to investigate the interaction between PrP and Aβ42, this study used reverse micelles (RM) with an average diameter of 28 nm to co-incubate PrP and Aβ42 monomers. The size of RM was monitored by dynamic light scattering (DLS), and the interaction between PrP and Aβ42 was investigated by Thioflavin-T (ThT) assay and transmission electron microscopy (TEM). The results showed that the confined physical space of the RM can enhance the binding of PrP and Aβ42 oligomers. The resultant PrP–Aβ42 aggregates had more β-sheet structure than the aggregates formed by PrP alone. We then used atomic force microscopy (AFM) to measure the height and Young’s modulus of the fibrils of PrP, Aβ42 and PrP–Aβ42. The results indicate that the Young's modulus of the three types of fibrils have no significant difference.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T17:00:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T17:00:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 II
中文摘要 VI
Abstract VII
縮寫表 VIII
目次 XI
圖次 XIV
表次 XIX
第一章 緒論 1
1.1 神經退化性疾病與致病蛋白的聚集 1
1.1.1 普里昂蛋白在神經退化性疾病的關鍵作用與傳播機制 3
1.1.2 普里昂蛋白與乙型類澱粉蛋白的關係 6
1.2 普里昂蛋白 7
1.2.1 結構與功能 7
1.2.2 錯誤折疊與轉化機制 10
1.3 乙型類澱粉蛋白 14
1.3.1 胜肽的形成與聚集 15
1.3.2 寡聚物與致病機制 17
1.4 普里昂蛋白與乙型類澱粉蛋白 42 的相互作用 21
1.5 逆相微胞系統 25
1.6 研究動機 29
第二章 實驗方法及鑑定技術 30
2.1 化學藥品與儀器 30
2.2 蛋白製備 34
2.2.1 普里昂蛋白 35
2.2.2 乙型類澱粉蛋白 41
2.3 蛋白鑑定 46
2.3.1 電噴灑游離法質譜儀 46
2.3.2 基質輔助雷射脫附游離/飛行時間式質譜儀 47
2.4 樣品製備 49
2.4.1 PrP 單體製備 49
2.4.2 Aβ42 單體製備 49
2.4.3 使用逆相微胞製備共聚物 50
2.4.4 反向萃取蛋白共聚物 50
2.5 鑑定技術 51
2.5.1 動態光散射粒徑分析儀 51
2.5.2 硫磺素 T 螢光檢測法 52
2.5.3 斑點印跡法 53
2.5.4 穿透式電子顯微鏡 55
2.5.5 原子力顯微鏡 57
2.5.5.1 基本原理 57
2.5.5.2 實驗使用之設備與物件 62
2.5.5.3 樣品製備 66
2.5.5.4 恆定力輕敲式掃描模式 67
2.5.5.5 定量材料性質之曲線分析 69
第三章 類澱粉樣蛋白的自聚集與共培養 74
3.1 蛋白純化與鑑定 74
3.1.1 PrP 74
3.1.2 Aβ42 75
3.2 單體自聚集纖維化的測試 77
3.2.1 PrP 77
3.2.2 Aβ42 79
3.3 逆相微胞製備寡聚物與性質鑑定 81
3.3.1 RM-(PrP) 81
3.3.2 RM-(Aβ42) 85
3.3.3 RM-(Aβ42)/(PrP) 87
3.3.4 類澱粉樣纖維的結構特徵和機械性質量測 90
3.4 逆相微胞作 PrP 與 Aβ42 共培養的系統 95
3.4.1 pH 值的影響 95
3.4.2 Aβ42 濃度的影響 96
3.4.3 空間限制的影響 99
3.5 章節總結 101
第四章 結論與未來展望 102
4.1 論文總結 102
4.2 未來展望 103
參考文獻 104
附錄 115
附錄 A 鹽類濃度與 pH 值對 PrP 單體自聚集的影響 115
附錄 B Aβ42 HPLC 標準曲線 119
附錄 C Aβ42 於不同環境下的濃度測試 121
附錄 D PrP, Aβ42, PrP–Aβ42 於不同擬合範圍的硬度值分析 123
-
dc.language.isozh_TW-
dc.title利用原子力顯微鏡測量老鼠普里昂蛋白與乙型類澱粉蛋白 42 共培養之類澱粉樣纖維zh_TW
dc.titleCharacterization of Co-Incubated Amyloid Fibrils of Mouse Prion Protein and Beta Amyloid Peptide 42 by Atomic Force Microscopyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃英碩;陳佩燁;黃人則zh_TW
dc.contributor.oralexamcommitteeIng-Shouh Hwang ;Rita Pei-Yeh Chen;Joseph Jen-Tse Huangen
dc.subject.keyword普里昂蛋白,乙型類澱粉蛋白,逆相微胞,寡聚物,原子力顯微鏡,zh_TW
dc.subject.keywordprion protein,beta-amyloid,reverse micelles,oligomers,atomic force microscopy,en
dc.relation.page132-
dc.identifier.doi10.6342/NTU202404166-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2029-08-09-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-09
10.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved