Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95722
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林之謙zh_TW
dc.contributor.advisorJacob Je-Chian LINen
dc.contributor.author阮文通zh_TW
dc.contributor.authorNguyen Van Thongen
dc.date.accessioned2024-09-15T16:59:58Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-15-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] U.S. Energy Information Administration. Carbon dioxide emissions coefficients. Technical report, U.S. Energy Information Administration, 2023.

[2] Will Arnold. The structural engineer’s responsibility in this climate emergency. The Structural Engineer, 2020.

[3] Fumin Ren Yanxi Chen Quanze Zhao Shenhao Li Yang Lin Beijia Huang, Jin-ming Lei. Contribution and obstacle analysis of applying bim in promoting greenbuildings. Journal of Cleaner Production, 2021.

[4] Alain Guiavarch Bruno Peuportier, St´ephane Thiers. Eco-design of buildings using thermal simulation and life cycle assessment. Journal of Cleaner Production, 2013.

[5] Tomo Cerovsek. A review and outlook for a ‘building information model’ (bim): A multi-standpoint framework for technological development. Advanced Engineering Informatics, 2011.

[6] PCI Industry Handbook Committee. PCI Design Handbook Precast and Prestressed Concrete. PCI, 2010.

[7] Brian H.W. Guo Fatma Abdelaal. Stakeholders’ perspectives on bim and lca for green buildings. Journal of Building Engineering, 2022.

[8] United Nations Environment Programme Global Alliance for Buildings and Construction. 2022 global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and construction sector. Technical report, United Nations Environment Programme (2022), 2022.

[9] United Nations Environment Programme Global Alliance for Buildings and Construction. Global status report for buildings and construction - beyond foundations: Mainstreaming sustainable solutions to cut emissions from the buildings sector. Technical report, United Nations, 2024.

[10] K.M. Fowler and E.M. Raunch. Sustainable Building Rating Systems Summary.Pacific Northwest National Laboratory, 2006.

[11] Veronica Soebarto Wassim Jabi Hashem Alhumayani, Mohamed Gomaa. Environmental assessment of large-scale 3d printing in construction: A comparative study between cob and concrete. Journal of Cleaner Production, 2020.

[12] Nandini Agarwal Helen Burmeister and Tobias Hausotter. Mastering the transition towards energy efficiency in the buildings sector: The european union’s energy performance of buildings directive https://commission.europa.eu/.

[13] Brian Uy Huu-Tai Thai, Tuan Ngo. A review on modular construction for high-rise buildings. Structure, 2020.

[14] International Energy Agency: IEA. Co2 emissions in 2023, a new record high, but is there light at the end of the tunnel? Technical report, International Energy Agency: IEA, 2024.

[15] ASTM International. ASTM F2792-12a, Standard Terminology For Additive Manufacturing Technologies. ASTM International, 2012.

[16] Roman Putanowicz Izabela Hager, Anna Golonka. 3d printing of buildings and building components as the future of sustainable construction? Procedia Engineering, 2016.

[17] Orlando Gibbons John Orr and Will Arnold. A brief guide to calculating embodied carbon. The Structural Engineer, 2020.

[18] Kyle W. Williams Greg Sloditskie Julie B. Zimmerman John Quale, Matthew J. Eckelman. Construction matters: Comparing environmental impacts of building modular and conventional homes in the united states. Journal of Industrial Ecology, 2012.

[19] Limao Zhang Xianguo Wu Kai Guo, Qing Li. Bim-based green building evaluation and optimization: A case study. Journal of Cleaner Production, 2021.

[20] Mohammad Kamali and Kasun Hewage. A framework for comparative evaluation of the life cycle sustainability of modular and conventional buildings. In Modular and Offsite Construction (MOC) Summit Proceedings, 2015.

[21] Le Viet Hung Vu Van Linh Nguyen Huy Bien Nguyen Van Tuan Ta Phuong Bao, Nguyen Cong Hau Le Trung Thanh, Le Cao Chien. Development of a printer and a high performance concrete for 3d printing technology. In 2nd ACF Webinar, 3D Printing and Construction Automation, 2022.

[22] Qibo Liu and Zixin Wang. Green bim-based study on the green performance of university buildings in northern china. Energy, Sustainability and Society, 2022.

[23] Jack C. McCormac and Russell H. Brown. Design of Reinforced Concrete. Wiley, 2013.

[24] Ali Rajabipour Cat Kutay Milad Bazli, Hamed Ashrafi. 3d printing for remote housing: Benefits and challenges. Automation in Construction, 2023.

[25] Zubair Ahmed Memon Lokman Hakim Ismail Mohammed F. Al Kazee Qadir Buxalias Imran Latif Nur Izzi Md Yusoff Moad Alosta Mohmed Solla, Ahmed Elmesh and Abdalrhman Milad. Analysis of bim-based digitising of green building index(gbi): Assessment method. Buildings MDPI, 2022.

[26] Sameh El-Ashri Musa Alawneh, Motasem Matarneh. The world’s first 3d–printed office building in dubai. In 2018 PCI/NBC, 2018.

[27] Mohamad Yasser Baaj Ibrahim Mousleh Mustafa Batikha, Rahul Jotangia. 3d concrete printing for sustainable and economical construction: A comparative study. Automation in Construction, 2022.

[28] C. Bouyssou A. Mallet Ph. Roux M. Zakeri J. Dirrenberger N. Gaudilli`ere, R. Duballet. Building applications using lost formworks obtained through large-scale additive manufacturing of ultra-high-performance concrete. In 3D Concrete Printing Technology, 2019.

[29] Lu Na. Investigation of the desginers’ and general contrators’ perceptions of offsite construction techniques in the united states construction industry. Master’s thesis, the Graduate School of Clemson University, 2007.

[30] Christine Pasquire Nick Blismas and Alistair Gibb. Benefit evaluation for off-site production in construction. Construction Management and Economics, 2007.

[31] Rebekah Bramwell Eirini Karagianni Nikolas Hill, Eugenia Bonifazi and Billy Harris. 2018 GOVERNMENT GHG CONVERSION FACTORS FOR COMPANY REPORTING Methodology paper for emission factors: final report. Crown, 2018.

[32] Department of Economic and Social Affairs. United nations’ sustainable development goals https://sdgs.un.org/goals.

[33] Department of Economic and Social Affairs United Nation. World urbanization prospects the 2018 revision. Technical report, United Nations, 2019.

[34] Changhai Peng. Calculation of a building’s life cycle carbon emissions based on ecotect and building information modeling. Journal of Cleaner Production, 2016.

[35] O. Pons. Assessing the sustainability of prefabricated buildings. In Eco-efficient Construction and Building Materials, 2014.

[36] Frank Schultmann Rebekka Volk, Julian Stengel. Building information modeling (bim) for existing buildings — literature review and future needs. Automation in Construction, 2014.

[37] Sara Wilkinson Richard Reed, Anita Bilos and Karl-Werner Schulte. International comparison of sustainable rating tools. Journal of Sustainable Real Estate, 2020.

[38] Lavinia Chiara Tagliabue Simona Roggeri1, Paolo Olivari1. Green and transportable modular building: a prefabricated prototype of resilient and efficient house. IOP Publishing, 2021.

[39] Magnus Sparrevik and Simon Utstøl. Assessing life cycle greenhouse gas emissions in the norwegian defence sector for climate change mitigation. Journal of Cleaner Production, 2020.

[40] International Standard. ISO 29481-1:2010, Building information modelling — Information delivery manual. International Standard, 2010.

[41] International Standard. ISO 17296-2:2015, Additive manufacturing — General principles. International Standard, 2015.

[42] Sung Joon Suk George Ford Tae Hyoung Kim, Sung Ho Tae and Keun Hyek Yang. An optimization system for concrete life cycle cost and related co2 emissions. Sustainability MDPI, 2016.

[43] Ajaz Ahmad Mir Toiba Tabassum. A review of 3d printing technology-the future of sustainable construction. In Materials Today: Proceedings, 2023.

[44] UNFCCC. The paris agreement - publication. In Paris Climate Change Conference - November 2015, 2018.

[45] Nada Kassim Walaa S.E. Ismaeel. An environmental management plan for construction waste management. Ain Shams Engineering Journal, 2023.

[46] Alastair Watson. Digital buildings – challenges and opportunities. Advanced Engineering Informatics, 2011.

[47] Wann-Ming Wey and Kuei-Yang Wu. Interdependent urban renewal project selection under the consideration of resource constraints. Sage Journals, 2008.

[48] Guiwen Liu Asheem Shrestha Jinxi Jing Yingbo Ji, Kaijian Li. Comparing greenhouse gas emissions of precast in-situ and conventional construction methods. Journal of Cleaner Production, 2018.

[49] Vivian W.Y. Tam Yu Bian Shenghan Li I.M. Chethana S.Illankoon Sungkon Moon Zhikun Ding, Ze Fan. Green building evaluation system implementation. Building and Environment, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95722-
dc.description.abstract當前,建築行業顯著地貢獻了全球碳排放,迫切需要採取可持續的實踐來減輕環境影響。本論文提出了一個模型驅動的框架,用於估算和比較三種建築方法的碳排放:傳統現澆混凝土、預製構件和3D混凝土列印(3DCP)。該研究通過整合建築信息建模(BIM)和標準化建築數據庫,特別是RSMeans(適用於MasterFormat)和TT10-2019/BXD(適用於TCVN),來應對行業的環境挑戰。

研究方法涉及詳細的工程量計算、材料估算和結構元素(如柱、梁、板和牆)的排放計算。開發了一個Revit API來自動化這些過程,提高了效率和準確性。通過分析實驗室設施和講堂的兩個案例研究,驗證了該框架並提供了比較見解。

主要發現表明,傳統現澆混凝土和預製構件方法在環境影響上大致相同。然而,碳排放的分佈有所不同,現澆混凝土施工中約87-88%的碳排放被歸類為材料排放,而在預製構件中這一比例上升到96-98.3%。造成這一轉變的主要原因是現澆混凝土施工中的模板和養護過程的碳排放被分類為過程排放,而在預製構件中,這些排放被轉移到材料排放類別,因為組件是在場外生產的。儘管3DCP因其精確性和減少材料浪費而提供了最高的材料效率和最低的碳排放,但其廣泛應用仍面臨許多障礙,如缺乏正式的法規。

本論文通過提供一個可靠的碳排放估算工具,為可持續建築實踐做出了貢獻,促進行業利益相關者的知情決策。該研究強調了制定標準化法規以支持創新技術(如3DCP)採用的重要性。未來的研究應擴展該框架,涵蓋更多的建築元素和區域變異,並納入全生命周期評估,以提供對環境影響的全面視圖。
zh_TW
dc.description.abstractThe construction industry significantly contributes to global carbon emissions, necessitating sustainable practices to mitigate environmental impacts. This thesis presents a model-driven framework for estimating and comparing carbon emissions across three construction methods: traditional cast-in-place, prefabricated, and 3D concrete printing (3DCP). The study addresses the industry's environmental challenges by integrating Building Information Modeling (BIM) with standardized construction databases, specifically RSMeans for MasterFormat and TT10-2019/BXD for TCVN.

The methodology involves a detailed quantity takeoff, material estimation, and emissions calculation for structural elements, including columns, beams, slabs, and walls. A Revit API was developed to automate these processes, enhancing efficiency and accuracy. Two case studies, a laboratory facility and a lecture hall, were analyzed to validate the framework and provide comparative insights.

Key findings indicate that conventional cast-in-place and prefabrication methods exhibit relatively the same environmental impacts. However, the distribution of carbon emissions differs, with around 87-88% of carbon emissions in cast-in-place construction categorized as material emissions, while this percentage increases to 96-98.3% in prefabrication. A major cause of this shift is the transfer of carbon emissions from the formwork and curing processes in cast-in-place construction, classified as process emissions, to the material emissions category in prefabrication due to off-site production. Although 3DCP offers the highest material efficiency and the lowest carbon emissions due to its precision and reduced material waste, it still faces many obstacles to widespread implementation, such as the lack of official regulations.

This thesis contributes to sustainable construction practices by providing a robust tool for carbon emissions estimation, facilitating informed decision-making for industry stakeholders. The research underscores the need for standardized regulations to support the adoption of innovative technologies like 3DCP. Future studies should expand the framework to include additional construction elements and regional variations, incorporating full lifecycle assessments for a holistic view of environmental impacts.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:59:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:59:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
Abstract ii
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problems Statement and Research Motivation . . . . . . . . . . . . . . . 2
1.2.1 Problems Statement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Works 7
2.1 Carbon Emission Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Overview of the construction industry . . . . . . . . . . . . . . . . 7
2.1.2 Green building evaluation system . . . . . . . . . . . . . . . . . . 8
2.1.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Construction Method and Technology . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Construction Method . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Building Information Model (BIM) . . . . . . . . . . . . . . . . . 19
2.3 Gaps in Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Methodology 24
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Building Element and Construction Activities Association . . . . . . . . 25
3.3 Quantity Takeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Carbon Emission Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Expert Review, Feedback and Model Update . . . . . . . . . . . . . . . . 34
3.6 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Case Study 37
4.1 Case Study of Laboratory Facility . . . . . . . . . . . . . . . . . . . . . . 38
4.1.1 Project information . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Material Quantity Takeoff . . . . . . . . . . . . . . . . . . . . . . 38
4.1.3 Carbon Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Case Study of Lecture Hall . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Project information . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Material Quantity Takeoff . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Carbon Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Discussion 52
5.1 Carbon Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 3D Concrete Printing Feasibility . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusion 63
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References 66
-
dc.language.isoen-
dc.title應用建築資訊模型進行混凝土建築結構元件碳排放估算zh_TW
dc.titleBIM-driven carbon emissions estimation for concrete building structural elementsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝尚賢;吳日騰;林瑜琤zh_TW
dc.contributor.oralexamcommitteeShang-Hsien HSIEH;Rih-Teng WU;Yu-Cheng LINen
dc.subject.keyword碳排放,建築資訊模型,預製構件,傳統建築,3D列印混凝土,zh_TW
dc.subject.keywordCarbon Emission,Building Information Model (BIM),Prefabrication,Conventional Construction,3D Concrete Printing (3DCP),en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202403587-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved