請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95716
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳育任 | zh_TW |
dc.contributor.advisor | Yuh-Renn Wu | en |
dc.contributor.author | 邱靖容 | zh_TW |
dc.contributor.author | Chin-Jung Chiu | en |
dc.date.accessioned | 2024-09-15T16:57:04Z | - |
dc.date.available | 2024-09-16 | - |
dc.date.copyright | 2024-09-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | K. Gupta, M. Chakraverty, B. Vinay, A. R. Khan, and V. Meshram, “Non-classical scaling approaches for ultra deep sub micron technology,” in 2013 International Conference on Emerging Trends in Communication, Control, Signal Processing and Computing Applications (C2SPCA), pp. 1–6, IEEE, 2013.
J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridge University Press, 2003. S.Keller,H.Li,M.Laurent,Y.Hu,N.Pfaff,J.Lu,D.F.Brown,N.A.Fichtenbaum, J. S. Speck, S. P. DenBaars, et al., “Recent progress in metal-organic chemical vapordeposition of (0001) n-polar group-III nitrides,” Semiconductor Science and Technology, vol. 29, no. 11, p. 113001, 2014. A. K. Al-Khalidi, Advanced gallium nitride technology for microwave power amplifiers. PhD thesis, University of Glasgow, 2015. H. Zhang, C. Huang, K. Song, H. Yu, C. Xing, D. Wang, Z. Liu, and H. Sun, “Compositionally graded III-nitride alloys: Building blocks for efficient ultraviolet optoelectronics and power electronics,” Reports on Progress in Physics, vol. 84, no. 4, p. 044401, 2021. K. Shinohara, D. C. Regan, Y. Tang, A. L. Corrion, D. F. Brown, J. C. Wong, J. F. Robinson, H. H. Fung, A. Schmitz, T. C. Oh, S. J. Kim, P. S. Chen, R. G. Nagele, A. D. Margomenos, and M. Micovic, “Scaling of GaN HEMTs and schottky diodes for submillimeter-wave MMIC applications,” IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 2982–2996, 2013. H. Hamza K., D. Nirmal, and L. Arivazhagan, “Impact of AlGaN back barrier in AlGaN/GaN HEMT on GaN substrate,” in 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), pp. 290–293, 2020. Y.-R. Wu, Transport Issues and Multi-Functional Devices Based on Nitrides and Other Polar Heterostructures. Phd thesis, The University of Michigan, 2006. R. N. Hall, “Electron-hole recombination in germanium,” Physical review, vol. 87, no. 2, p. 387, 1952. W. Shockley and W. Read Jr, “Statistics of the recombinations of holes and electrons,” Physical review, vol. 87, no. 5, p. 835, 1952. U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of wurtzite GaN,” Journal of Applied Physics, vol. 82, pp. 1649–1655, 08 1997. E. Henriksen, S. Syed, Y. Ahmadian, M. Manfra, K. Baldwin, A. Sergent, R. Molnar, and H. Stormer, “Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field-effect transistor,” Applied Physics Letters, vol. 86, no. 25, 2005. Y. Tomita, H. Ikegami, and H. I. Fujishiro, “Monte Carlo study of high-field electron transport characteristics in AlGaN/GaN heterostructure considering dislocation scattering,” physica status solidi c, vol. 4, no. 7, pp. 2695–2699, 2007. Q. Meng, Q. Lin, Z. Wang, Y. Wang, W. Jing, D. Xian, N. Zhao, K. Yao, F. Zhang, B. Tian, and Z. Jiang, “Numerical investigation of GaN HEMT terahertz detection model considering multiple scattering mechanisms,” Nanomaterials, vol. 13, no. 4, 2023. D. Jena, A. C. Gossard, and U. K. Mishra, “Dislocation scattering in a twodimensional electron gas,” Applied Physics Letters, vol. 76, pp. 1707–1709, 03 2000. X. Xu, X. Liu, X. Han, H. Yuan, J. Wang, Y. Guo, H. Song, G. Zheng, H. Wei, S. Yang, Q. Zhu, and Z. Wang, “Dislocation scattering in AlxGa1−xN∕GaN heterostructures,” Applied Physics Letters, vol. 93, p. 182111, 11 2008. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys., vol. 54, pp. 437–672, Apr 1982. C. Jacoboni and L. Reggiani, “The monte carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Reviews of modern Physics, vol. 55, no. 3, p. 645, 1983. M. Shur, “Gan based transistors for high power applications1this paper was first published in the material research society symposium proceedings, symposium e, fall, 1997.1,” Solid-State Electronics, vol. 42, no. 12, pp. 2131–2138, 1998. S. Keller, Y.-F. Wu, G. Parish, N. Ziang, J. Xu, B. Keller, S. DenBaars, and U. Mishra,“Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 552–559, 2001. D. S. Lee, B. Lu, M. Azize, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, “Impact of GaN channel scaling in InAlN/GaN HEMTs,” in 2011 International Electron Devices Meeting, pp. 19.2.1–19.2.4, 2011. J. D. Albrecht, R. P. Wang, P. P. Ruden, M. Farahmand, and K. F. Brennan, “Electron transport characteristics of GaN for high temperature device modeling,” Journal of Applied Physics, vol. 83, pp. 4777–4781, 05 1998. T. Li, R. P. Joshi, and C. Fazi, “Monte Carlo evaluations of degeneracy and interface roughness effects on electron transport in AlGaN–GaN heterostructures,” Journal of Applied Physics, vol. 88, pp. 829–837, 07 2000. R. P. Joshi, “Temperature‐dependent electron mobility in GaN: Effects of space charge and interface roughness scattering,” Applied Physics Letters, vol. 64, pp. 223–225, 01 1994. D. Klaassen, “A unified mobility model for device simulation—II. temperature dependence of carrier mobility and lifetime,” Solid-State Electronics, vol. 35, no. 7, pp. 961–967, 1992. D. Caughey and R. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proceedings of the IEEE, vol. 55, no. 12, pp. 2192–2193, 1967. C.-Y. Hsieh, H.-Y. Chen, P.-T. Tu, J.-C. Chen, H.-Y. Yang, P.-C. Yeh, D. Hsieh, H.-H. Liu, Y.-K. Fu, S.-S. Sheu, H.-C. Kuo, Y.-R. Wu, W.-C. Lo, and S.-C. Chang, “Gan on Si RF performance with different AlGaN back barrier,” in 2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), pp. 1–2, 2023. H. Berger, “Models for contacts to planar devices,” Solid-State Electronics, vol. 15, no. 2, pp. 145–158, 1972. J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semiconductors,” Phys. Rev., vol. 54, pp. 647–648, Oct 1938. N. K. Subramani, M. Bouslama, R. Sommet, and J.-C. Nallatamby, “Time domain drain lag measurement and TCAD-based device simulations of AlGaN/GaN HEMT: Investigation of physical mechanism,” in 2019 14th European microwave integrated circuits conference (EuMIC), pp. 21–24, IEEE, 2019. D. Marti, S. Tirelli, V. Teppati, L. Lugani, J.-F. Carlin, M. Malinverni, N. Grandjean, and C. R. Bolognesi, “94-GHz Large-Signal Operation of AlInN/GaN HighElectron-Mobility Transistors on Silicon With Regrown Ohmic Contacts,” IEEE Electron Device Letters, vol. 36, no. 1, pp. 17–19, 2015. D. F. Brown, A. Williams, K. Shinohara, A. Kurdoghlian, I. Milosavljevic, P. Hashimoto, R. Grabar, S. Burnham, C. Butler, P. Willadsen, and M. Micovic, “Wband power performance of AlGaN/GaN DHFETs with regrown n+ GaN ohmic contacts by MBE,” in 2011 International Electron Devices Meeting, pp. 19.3.1–19.3.4, 2011. Y.-R. Wu, M. Singh, and J. Singh, “Device scaling physics and channel velocities in AIGaN/GaN HFETs: velocities and effective gate length,” IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 588–593, 2006. W. Dongfang, Y. Tingting, W. Ke, C. Xiaojuan, and L. Xinyu, “Gate-structure optimization for high frequency power AlGaN/GaN HEMTs,” Journal of Semiconductors, vol. 31, no. 5, p. 054003, 2010. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95716 | - |
dc.description.abstract | 本文主要分析AlGaN/GaN高電子遷移率電晶體的電子遷移率、缺陷對元件的影響、以及高頻特性優化。首先,在電子遷移率方面,我們分析了差排及界面粗糙度對電子遷移率的影響,發現高差排密度及粗糙的界面會顯著降低電子遷移率。而透過元件加不同偏壓,可以發現元件中電子濃度較高時,屏蔽效應較強,可以有效減少差排散射的影響。而當波函數靠近界面時,電子在界面處的分佈較集中,則會增強界面粗糙散射的效應,降低電子遷移率。此外,本文也討論了溫度對電子遷移率的影響,當溫度降低時,聲子散射率顯著下降,因此電子遷移率隨之上升。因此在低溫下,則是界面粗糙及差排散射對電子遷移率的影響變得更加顯著。
而在分析缺陷對元件的影響以及高頻特性優化前,我們首先擬合了實驗量測的數據。接著透過模擬分析實驗量測到的汲極遲滯的現象,發現不同厚度的背屏障層阻擋緩衝層碳摻雜引起的缺陷效果不同,因此較薄的背屏障層可能會有較高的汲極遲滯現象。而在結構優化方面,我們首先透過降低接觸電阻提升電流及通道轉導,從而提高元件的fT。接著,我們探討了閘極長度縮短對元件特性的影響,過短的閘極長度會引發短通道效應,使得通道轉導下降,影響fT的提升。 為了解決短通道效應,我們研究了減薄通道厚度及增加碳摻雜濃度的方法。減薄通道厚度可以提升閘極對通道的控制力,抑制短通道效應及漏電流。然而,過薄的通道厚度可能導致在背屏障層與緩衝層交界處形成第二通道,增加漏電路徑。此外,適當的碳摻雜可以有效減少漏電流,但過高的碳摻雜濃度會降低元件二維電子氣濃度,反而不利於元件特性的提升。本文通過實驗數的據擬合及模擬分析,探討了AlGaN/GaN高電子遷移率電晶體的結構優化及缺陷的影響。此外為追求更佳之高頻表現,也提供四元AlInGaN/GaN高電子遷移率電晶體結構,為元件設計及特性提升提供參考依據。 | zh_TW |
dc.description.abstract | This thesis mainly analyzes the electron mobility in AlGaN/GaN HEMTs, the impact of traps on device performance, and the optimization of high-frequency characteristics. Firstly, we examine the influence of dislocations and interface roughness on electron mobility. High dislocation density and rough interfaces significantly reduce mobility. By applying different biases to the device, we find that higher electron density enhances screening effects, effectively reducing the impact of dislocation scattering. Conversely, when the wave function is closer to the interface, electron distribution near the interface increases, enhancing the effect of interface roughness scattering and reducing electron mobility. Additionally, the thesis discusses the effect of temperature on electron mobility, finding that as temperature decreases, phonon scattering rates significantly drop, thus increasing mobility. Therefore, at low temperatures, interface roughness and dislocation scattering become more pronounced.
Before analyzing the impact of defects and optimizing high-frequency characteristics, experimental measurement data were fitted. Through simulation, we analyzed the observed drain lag phenomenon. Different back-barrier thicknesses have varying abilities to block buffer C-doped-induced traps. Thinner back barriers result in higher drain lag. For structural optimization, reducing contact resistance significantly improves current and transconductance, thereby increasing fT. We also explored the effects of reducing gate length, which, if too short, induces short channel effects that limit fT improvement. To suppress the short channel effects, we investigated reducing channel thickness and increasing C-doped concentration. Thinner channels enhance gate control over the channel, suppress short channel effects, and reduce leakage current. However, excessively thin channels may form a second channel at the back-barrier and buffer interface, increasing leakage paths. Additionally, appropriate C-doping effectively reduces leakage current, but excessively high C-doping concentrations decrease 2DEG concentration, adversely affecting device performance. This thesis, through experimental data fitting and simulation analysis, explores the structural optimization and the impact of defects in AlGaN/GaN HEMTs.To achieve better high-frequency performance, we also propose AlInGaN/GaN HEMTs structure, providing valuable insights for device design and performance enhancement. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:57:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-15T16:57:04Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements ii
摘要iii Abstract v Contents vii List of Figures x List of Tables xiv Chapter1 Introduction 1 1.1 Background 1 1.1.1 Material property 2 1.1.2 Structure of AlGaN/GaN HEMTs 4 1.2 Motivation 6 1.3 Thesis overview 6 Chapter2 Methodology 8 2.1 Two dimensional drift-diffusion charge control solver 8 2.1.1 Poisson and drift-diffusion equation 8 2.1.2 Heat diffusion equation 11 2.1.3 Simulation flow 12 2.2 1D Schrödinger equation 13 2.3 Field-dependent mobility by Monte Carlo Method 14 2.3.1 Acoustic phonon scattering 15 2.3.2 Polar optical phonon scattering 16 2.3.3 Dislocation scattering 17 2.3.4 Interface roughness scattering 18 2.3.5 Monte Carlo Method 19 Chapter3 Field-dependent Mobility in AlGaN/GaN HEMTs by Monte Carlo Method 20 3.1 The impact of scattering mechanisms on mobility 20 3.1.1 AlGaN/GaN HEMTs field-dependent mobility 21 3.1.2 Dislocation scattering 23 3.1.3 Interface roughness scattering 25 3.2 Applying bias on device influence electron mobility 29 3.2.1 Dislocation scattering with different bias 31 3.2.2 Interface roughness scattering with different bias 32 3.3 Channel thickness influence electron mobility 33 3.4 Temperature dependent mobility 36 3.4.1 Monte Carlo method 36 3.4.2 Thermal model 39 3.5 Temperature dependent mobility apply on devices 40 3.6 Summary 41 Chapter4 Structural Challenges and Optimization in AlGaN/GaN HEMTs 43 4.1 Experimental data fitting 43 4.1.1 TLM simulation 44 4.1.2 Drain current 45 4.1.3 Gate leakage current (Poole-Frenkel Model) 47 4.2 Impact of traps on device performance 48 4.2.1 Drain lag 48 4.2.2 Trap distribution and its influence on device 50 4.3 Optimization and scaling issues of AlGaN/GaN HEMTs 53 4.3.1 Contact resistance 55 4.3.2 Short channel effect (SCE) 56 4.3.3 Channel thickness 59 4.3.4 C-doped buffer 62 4.3.5 Second channel 64 4.4 Optimal high-frequency performance: AlInGaN/GaN HEMTs 65 4.5 Summary 67 Chapter5 Conclusion 70 References 72 Appendix A—Parameters for Drain Lag Simulation 77 Appendix B—Parameters for Optimization of AlGaN/GaN HEMTs 78 Appendix C—Parameters for Optimization of AlInGaN/GaN HEMTs 80 | - |
dc.language.iso | en | - |
dc.title | 氮化鋁鎵/氮化鎵高電子遷移率電晶體之電子遷移率與缺陷分析及結構優化 | zh_TW |
dc.title | Electron Mobility and Traps Analysis and Structural Optimization in AlGaN/GaN High Electron Mobility Transistors | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃建璋;葉伯淳 | zh_TW |
dc.contributor.oralexamcommittee | Jian-Jang Huang;Po-Chun Yeh | en |
dc.subject.keyword | 氮化鎵,電子遷移率,載子傳輸,背屏障層,高頻元件, | zh_TW |
dc.subject.keyword | GaN,Electron mobility,Carrier transport,Back barrier layer,RF device, | en |
dc.relation.page | 80 | - |
dc.identifier.doi | 10.6342/NTU202404081 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。