請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王立民 | zh_TW |
| dc.contributor.advisor | Li-Min Wang | en |
| dc.contributor.author | 陳大衞 | zh_TW |
| dc.contributor.author | Da-Wei Chen | en |
| dc.date.accessioned | 2024-09-15T16:54:44Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | [1] M M Sharma, Prince Sharma, N K Karn and V P S Awana, “Comprehensive review on topological superconducting materials and interfaces,” IOP Publishing, 2022.
[2] F. Wilczek, “Majorana returns,” Nature Physics 5, p. 614–618, 2009. [3] Charles P. Poole, Horacio A. Farach, Richard J. Creswick, Ruslan Prozorov, “Energy gap and tunneling,”Superconductivity (Third Edition), Elsevier, 2014, pp. 501-576. [4] I.L. Landau and I.A. Parshin, “Increase in the superconducting transition temperature of thin films as a result of a normal metal deposition on their surface,” Physica B: Condensed Matter, Volumes 194–196, Part 2, pp. 2339-2340, 1994. [5] R. Mohan, “Green bismuth,” Nature Chemistry volume 2, p. 336, 2010. [6] Zheng Liu, Chao-Xing Liu, Y. S. Wu, W. H. Duan, Feng Liu, and Jian Wu, “Stable Nontrivial Z_2 Topology in Ultrathin Bi (111) Films: A First-Principles Study,” Phys. Rev. Lett. Vol. 107, 2011. [7] Leena Aggarwal, Penghao Zhu, Taylor L. Hughes & Vidya Madhavan, “Evidence for higher order topology in Bi and Bi_0.92 Sb_0.08,” Nature Communications, vol 12, 2021. [8] OmPrakash, Anil Kumar, A. Thamizhavel, S. Ramakrishnan, “Evidence for bulk superconductivity,” SCIENCE, Vol 355, Issue 6320, pp. 52-55, 2016. [9] Darshana Wickramaratne, Sergii Khmelevskyi, Daniel F. Agterberg, and I. I. Mazin, “ Ising Superconductivity and Magnetism in NbSe2,” Phys. Rev. X 10, 041003, 2020. [10] E. Revolinsky, G.A. Spiering, D.J. Beerntsen, “Superconductivity in the niobium-selenium system,” J. Phys. Chem. Solids Vol. 26, Issue 6, pp. 1029-1034, 1965. [11] Wen-Yu He, Benjamin T. Zhou, James J. He, Noah F. Q. Yuan, Ting Zhang & K. T. Law, “Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides,” Commun. Phys. vol. 1 40, 2018. [12] Mei-xiao wang, canhua liu, jin-peng xu, fang yang, lin miao, meng-yu yao, c. L. Gao, chenyi shen, xucun ma, x. Chen, zhu-an xu, ying liu, shou-cheng zhang, dong qian , jin-feng jia , and qi-kun xue, “The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films.,” Science vol. 336 52, pp. 52-55, 2012. [13] Jin-Peng Xu, Canhua Liu, Mei-Xiao Wang, Jianfeng Ge, Zhi-Long Liu, Xiaojun Yang, Yan Chen, Ying Liu, Zhu-An Xu, Chun-Lei Gao, Dong Qian, Fu-Chun Zhang, and Jin-Feng Jia, “Artificial Topological Superconductor by the Proximity Effect,” Phys. Rev. Lett. 112, 217001, 2014. [14] H. Onnes, “The Superconductivity of Mercury.,” Comm. Phys. Lab. Univ., pp. 122-124, 1911. [15] C. Kittel, Introduction to Solid state Physics (8th ed.), John Wiley & Sons, Inc, 2005. [16] F. London and H. London, “The electromagnetic equations of the supraconductor,”Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. , pp. 71-88, 1935. [17] Charles P. Poole, Jr., Horacio A. Farach, Richard J. Creswick, Superconductivity, Academic Press, 2007. [18] Gorter, C.J. and H. Casimir, “On supraconductivity I,” Physica, Volume 1, Issues 1–6, pp. 306-320, 1934. [19] C. Gorter, “Chapter I The Two Fluid Model for Superconductors and Helium,” Elsevier, pp. 1-16, 1955. [20] Y. B. Kim, C. F. Hempstead, and A. R. Strnad, “Flux Creep in Hard Superconductors,” Phys. Rev. 131, 2486, 1963. [21] V. Berezinski, “Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems,” Soviet Journal of Experimental and Theoretical Physics, 1972. [22] V. Berezinski, “Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems,” Soviet Journal of Experimental and Theoretical Physics, 1971. [23] Kosterlitz, J.M. and D.J. Thouless, “Ordering, metastability and phase,” Journal of Physics C: Solid State , 1973. [24] D. Saint, James and P.G. de Gennes, “Onset of superconductivity in decreasing fields,” Phys. Lett. 7, 306, pp. 306-308, 1963. [25] R. Sharma, Superconductivity: Basics and Applications to Magnets, Springer, 2015. [26] Chong Wang, Yong Xu, and Wenhui Duan, “Ising Superconductivity and Its Hidden Variants,” Acc. Mater. Res., pp. 526-533, 2021. [27] Hai-Zhou Lu and Shun-Qing Shen, “Finite-Temperature Conductivity and Magnetoconductivity of Topological Insulators,” Phys. Rev. Lett. 112, 146601, 2014. [28] Chiashain Chuang, Tak-Pong Woo, Akram M. Mahjoub, Takahiro Ouchi, Chang-Shun Hsu, Chia-Pei Chin, Nobuyuki Aoki, Li-Hung Lin, Yuichi Ochiai, Chi-Te Liang, “Weak localization and universal conductance fluctuations in multi-layer graphene,” Current Applied Physics 14, pp. 108-111, 2014. [29] 吳洺宏, “加壓熱處理下二硒化鈮單晶的超導特性之研究,” 碩士論文,國立臺灣大學物理學研究所, 2023. [30] N. K. Jain, M. S. Sawant, S. H. Nikam, S. Jhavar, “Metal Deposition: Plasma-Based Processes,” Encyclopedia of Plasma Technology, pp. 722-740, 2016. [31] Bragg., W. H. and Bragg W. L., “The Reflection of X-rays by Crystals,” Proc. R. Soc. Lond. A, 88, 1913. [32] D. Sanchez, A. Junod, J. Muller, H. Berger b, F. Levy , “Specific heat of 2H-NbSe2 in high magnetic fields,” Physica B 204 , pp. 167-175, 1995. [33] M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Theory of collective flux creep,” Phys. Rev. Lett. 63, 2303, 1989. [34] B. I. Halperin & David R. Nelson , “Resistive transition in superconducting films,” J Low Temp Phys 36, pp. 599-616, 1979. [35] Liu, W. E., Hankiewicz, E. M. & Culcer, D. , “Weak localization and antilocalization in topological materials with impurity spin-orbit interactions.,” Materials 10, 807, 2017. [36] Dong Shen, Chia Nung Kuo, Tien Wei Yang, I Nan Chen, Chin Shan Lue & Li Min Wang, “Two-dimensional superconductivity and magnetotransport from topological surface states in AuSn4 semimetal,” Communications Materials volume 1, 56, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95708 | - |
| dc.description.abstract | 拓樸超導體作為研究Majorana費米子的平台,無論是在量子計算或是量子存儲等領域都具有不錯的潛力,使得拓樸超導材料成為熱門的研究對象之一。而拓樸超導體的製程,可藉由拓樸絕緣體與超導體之間的鄰近效應而形成。此研究中使用了拓樸材料鉍(Bi)濺鍍於超導材料二硒化鈮(NbSe2)上,分析該異質結構的超導特性與電性傳輸特性。
在製程過程中,設計了能在維持高真空環境下將NbSe2表面撕除的機關,使Bi 濺鍍於乾淨的NbSe2表面上,以保證Bi/NbSe2界面的純淨度;並且透過X光繞射儀(XRD),比較了Bi、NbSe2與Bi/NbSe2的結構,用以確認製程出的材料為Bi/NbSe2的可信性。 在此研究中發現了Bi厚度的變化,對Bi/NbSe2異質結構材料產生了幾個有趣的現象:其一是產生了反鄰近效應,隨著Bi厚度增加到50 nm,超導相變溫度(𝑇c)也從 6.94 K 成長到7.2 K,並在Bi厚度來到100 nm時,𝑇c下降到7.09 K。其二是Bi厚度增加,對於上臨界垂直磁場(𝐻𝑐2⊥)具有先抑制後促進的現象產生,在從Bi厚度增加到20 nm時,𝐻𝑐2⊥從6.36 T降到4.28 T的低點,並在Bi厚度繼續增加100 nm時,𝐻𝑐2⊥逐漸增加至7.35 T。 此外,還發現三種Bi/NbSe2可能具有的特性:第一點是發現變化Bi厚度不會對𝐻𝑐2∥太大的改變,且𝐻𝑐2∥與𝐻𝑐3的比值比理論上的小,推測Bi/NbSe2保有了NbSe2本身具有的Ising超導特性,這也顯示Bi並無抑制Ising超導。第二點是發現Bi/NbSe2在低溫有BKT相變的現象,以及釘扎位能與取對數後磁場呈現線性關係,這兩點都是二維材料性質的展現。第三點是量測磁阻時發現有WAL效應的發生,而WAL效應正是在拓樸材料中很常見的現象。因此結合以上三點,Bi/NbSe2可能具有Ising 超導與二維超導的性質,且同時具有拓樸材料的潛力。 | zh_TW |
| dc.description.abstract | Topological superconductors can help study Majorana fermions, which have potential in fields such as quantum computing or quantum storage, making topological superconducting materials popular. Topological superconductors can be formed by the proximity effect between topological insulators and superconductors. In this study, the topological material bismuth (Bi) was sputtered on the superconducting material niobium diselenide (NbSe2 ) to analyse the superconducting properties and electrical transport properties of the material.
During the process, a mechanism is designed to tear off the NbSe2 surface while maintaining a high vacuum environment, allowing Bi to be sputtered on the clean NbSe2 surface to ensure the purity of the Bi/NbSe2 interface. The samples through X-ray diffractometer (XRD) were used to compare the structures of Bi, NbSe2 and Bi/NbSe2 to confirm the credibility that the material produced through the process is Bi/NbSe2. In this study, the change in Bi thickness produced several interesting phenomena for Bi/NbSe2. First is the inverse proximity effect. As the Bi thickness increases to 50 nm the Tc also grows, but then the Bi thickness reaches 100 nm the 𝑇c decreases. Second is that as the Bi thickness increases, 𝐻𝑐2⊥ has a phenomenon of suppression and then promotion. When the Bi thickness increases to 20 nm the 𝐻𝑐2⊥ drops, and then the Bi thickness increases to 100 nm, 𝐻𝑐2⊥ gradually increases. In addition, three possible properties of Bi/NbSe2 were found. First, Bi/NbSe2 retains the Ising superconducting properties of NbSe2 itself, and it is also shown that Bi does not inhibit Ising superconductivity. Second, Bi/NbSe2 has a BKT phase transition phenomenon at low temperatures, which is the behavior of the properties of two-dimensional materials. Third, Bi/NbSe2 has the occurrence of the WAL effect, and this is a common phenomenon in topological materials. Therefore, combining the above three points, Bi/NbSe2 may have the properties of Ising superconductivity, two-dimensional superconductivity, and the potential of topological materials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:54:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:54:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xii Ch1 緒論 1 1.1 拓樸超導體(topological superconductor, TSC) 1 1.2 鄰近&反鄰近效應(PE&IPE) 2 1.3 鉍(Bi)簡介&文獻回顧 3 1.4 二硒化鈮(NbSe_2)簡介&文獻回顧 4 1.5 研究動機 6 Ch2 理論背景簡介 7 2.1 超導體特性 7 2.1.1 零電阻(Zero Resistence) 7 2.1.2 邁斯納效應(Meissner effect) 8 2.1.3 一類超導體(Type I Superconductor)與二類超導體(Type II Superconductor) 8 2.2 超導體理論 10 2.2.1 倫敦方程式(London Equation) 10 2.2.2 二流體模型(Two-fluid Model) 12 2.2.3 相干長度(Coherence Length) 12 2.2.4 釘扎效應(Pinning Effect) 14 2.2.5 BKT相變(Berezinskii–Kosterlitz–Thouless transition) 15 2.2.6 表面超導(Surface Superconductivity) 16 2.2.7 Ising超導(Ising superconductivity) 17 2.2.8 弱局域效應(Weak Localization, WL)與弱反局域效應(Weak Anti- Localization, WAL) 17 Ch3 實驗方法 20 3.1 實驗流程 20 3.2 製備NbSe_2 21 3.3 薄膜製程 23 3.3.1 濺鍍系統 23 3.3.2 濺鍍原理 25 3.2.3 Bi單層薄膜& Bi/NbSe_2製程 25 3.2.4 Bi/NbSe_2製程 27 3.4 量測系統 28 3.4.1 X光繞射儀(X-ray Diffractometer, XRD) 28 3.4.2 原子力顯微鏡(Atomic Force Microscope, AFM) 29 3.4.3 SQUID量測系統 30 Ch4 實驗結果與討論 32 4.1 Bi單層薄膜 32 4.1.1 Bi薄膜之XRD量測 32 4.1.2 Bi之電阻率(ρ)對溫度(T)量測 34 4.2 Bi/NbSe_2雙層界面 35 4.2.1 XRD分析 35 4.2.2 零磁場下的R-T分析 38 4.2.3 外加磁場下的R-T分析 41 4.2.4 釘扎能分析 46 4.2.5 表面超導量測分析(H_c3) 50 4.2.6 BKT相變分析 53 4.2.7 磁阻分析(MR) 58 Ch5 結論 63 參考資料 64 | - |
| dc.language.iso | zh_TW | - |
| dc.title | Bi/NbSe2界面中的二維超導與反鄰近效應 | zh_TW |
| dc.title | 2D superconductivity and anti-proximity effect in Bi/NbSe2 interfaces | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳昭翰;尤孝雯 | zh_TW |
| dc.contributor.oralexamcommittee | Jau-Han Chen;Hsiao-Wen Yu | en |
| dc.subject.keyword | 鉍,二硒化鈮,反鄰近效應,拓樸超導,二維超導, | zh_TW |
| dc.subject.keyword | Bismuth,Niobium diselenide,Inverse Proximity Effect,Topological superconductivity,Two-dimensional superconductivity, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202404106 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 8.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
