Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95698
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊健志zh_TW
dc.contributor.advisorChien-Chih Yangen
dc.contributor.author徐立陽zh_TW
dc.contributor.authorLi-Yang Hsuen
dc.date.accessioned2024-09-15T16:51:47Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-15-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationBi, K., Y. Liang, T. Mengiste and A. Sharon. (2023). Killing softly: a roadmap of Botrytis cinerea pathogenicity. Trends Plant Sci, 28(2): 211-222.
Boutrot, F. and C. Zipfel (2017). Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol, 55: 257-286.
Cahill, M. A., J. A. Jazayeri, S. M. Catalano, S. Toyokuni, Z. Kovacevic and D. R. Richardson (2016). The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1866(2): 339-349.
Campbell, C., J. Huang and G. A. Payne (1980). Defense at the perimeter: the outer walls and the gates. Plant Disease: An Advanced Treatise: How Plants Defend Themselves, 5: 103-120.
Chisholm, S. T., G. Coaker, B. Day and B. J. Staskawicz (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124(4): 803-814.
Dean, R., J. A. Van Kan, Z. A. Pretorius, K. E. Hammond-Kosack, A. Di Pietro, P. D. Spanu, J. J. Rudd, M. Dickman, R. Kahmann, J. Ellis and G. D. Foster (2012). The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol, 13(4): 414-430.
Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1(4): 316-323.
Elad, Y., I. Pertot, A. M. Cotes Prado and A. Stewart (2016). Plant hosts of Botrytis spp.
Fernández-Bautista, N., J. A. Domínguez-Núñez, M. M. C. Moreno and M. Berrocal-Lobo (2016). Plant tissue trypan blue staining during phytopathogen infection. Bio-protocol, 6(24): e2078.
Fu, Z. Q. and X. Dong (2013). Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol, 64: 839-863.
Gaffney, T., L. Friedrich, B. Vernooij, D. Negrotto, G. Nye, S. Uknes, E. Ward, H. Kessmann and J. Ryals (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261(5122): 754-756.
Gou, M., X. Ran, D. W. Martin and C. J. Liu (2018). The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nat Plants, 4(5): 299-310.
Govrin, E. M. and A. Levine (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol, 10(13): 751-757.
Guo, K., W. Wang, W. Fan, Z. Wang, M. Zhu, X. Tang, W. Wu, X. Yang, X. Shao, Y. Sun, W. Zhang and X. Li (2018). Arabidopsis GAAP1 and GAAP3 modulate the unfolded protein response and the onset of cell death in response to ER stress. Front Plant Sci, 9: 348.
Hammerschmidt, R. and J. Kuć (1982). Lignification as a mechanism for induced systemic resistance in cucumber. Physiological Plant Pathology, 20(1): 61-71.
Heath, M. C. (2000). Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol, 3(4): 315-319.
Henry, G., P. Thonart and M. Ongena (2012). PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors.
Hofius, D., L. Li, A. Hafrén and N. S. Coll (2017). Autophagy as an emerging arena for plant-pathogen interactions. Curr Opin Plant Biol, 38: 117-123.
Ingle, R. A., M. Carstens and K. J. Denby (2006). PAMP recognition and the plant-pathogen arms race. Bioessays, 28(9): 880-889.
Jones, J. and K. Hammond-Kosack (2000). Responses to plant pathogens. Biochemistry and molecular biology of plants, Buchanan B, Gruissen W, Jones R, eds.(Rockville. MD.: ASPP): 1102-1157.
Jones, J. D. and J. L. Dangl (2006). The plant immune system. Nature, 444(7117): 323-329.
Kao, A.-L., T.-Y. Chang, S.-H. Chang, J.-C. Su, and C.-C. Yang (2005). Characterization of a novel Arabidopsis protein family AtMAPR homologous to 25-Dx/IZAg/Hpr6. 6 proteins. Botanical Bulletin of Academia Sinica, 46.
McDowell, J. M. and J. L. Dangl (2000). Signal transduction in the plant immune response. Trends Biochem Sci, 25(2): 79-82.
Mifsud, W. and A. Bateman (2002). Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biol, 3(12): Research0068.
Nürnberger, T., F. Brunner, B. Kemmerling and L. Piater (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev, 198: 249-266.
Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner and M. D. Hunt (1996). Systemic acquired resistance. Plant Cell, 8(10): 1809-1819.
Sharma, M. and D. Bhatt (2015). The circadian clock and defence signalling in plants. Mol Plant Pathol, 16(2): 210-218.
Shlezinger, N., A. Minz, Y. Gur, I. Hatam, Y. F. Dagdas, N. J. Talbot and A. Sharon (2011). Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog, 7(8): e1002185.
Tenberge, K. B., M. Beckedorf, B. Hoppe, A. Schouten, M. Solf and M. von den Driesch (2002). In situ localization of AOS in host-pathogen interactions. Microscopy and Microanalysis, 8(S02): 250-251.
Veloso, J. and J. A. L. van Kan (2018). Many shades of grey in botrytis-host plant interactions. Trends Plant Sci, 23(7): 613-622.
Windram, O., P. Madhou, S. McHattie, C. Hill, R. Hickman, E. Cooke, D. J. Jenkins, C. A. Penfold, L. Baxter, E. Breeze, S. J. Kiddle, J. Rhodes, S. Atwell, D. J. Kliebenstein, Y. S. Kim, O. Stegle, K. Borgwardt, C. Zhang, A. Tabrett, R. Legaie, J. Moore, B. Finkenstadt, D. L. Wild, A. Mead, D. Rand, J. Beynon, S. Ott, V. Buchanan-Wollaston and K. J. Denby (2012). Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell, 24(9): 3530-3557.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95698-
dc.description.abstractBotrytis cinerea是一種全球性傳播的營養壞死性真菌,植物受到感染後會導致灰黴病的發生,能感染廣泛宿主的特性使全球經濟作物都會受到B. cinerea影響。當植物在面臨B. cinerea感染的時候,會啟動一系列的防禦機制,例如:植物賀爾蒙的分泌、程序細胞凋亡 (Programmed cell death, PCD),其中PCD又包含了自噬作用 (Autophagy) 以及細胞凋亡 (Apoptosis),若是成功誘導Autophagy便能防禦B. cinerea的感染。AtMAPR3是阿拉伯芥中一個功能尚未被完全釐清的蛋白質,在過去的研究中,已經提出AtMAPR3參與在自噬作用以及木質素生合成 (Lignin biosynthesis) 路徑之中。透過Microarray的資料庫分析得知阿拉伯芥在被B. cinerea感染後會誘導AtMAPR3的表現量上升,這表明AtMAPR3的功能可能和阿拉伯芥防禦病原菌有關。AtMAPR3可能通過在其參與自噬作用的特性協助清除被B. cinerea感染而死亡細胞或者促進木質素生合成增強植物細胞壁幫助植物抵擋B. cinerea。在本研究中發現,我們發現AtMAPR3表現量在野生型阿拉伯芥被B. cinerea感染後的3小時時會被誘導表現,與對照組相比,表現量有明顯的增高趨勢。根據這一結果推論AtMAPR3可能在植物早期對抗B. cinerea感染的過程中扮演重要的角色,這些發現為我們進一步理解植物的抗病機制提供了新的研究方向,並揭示了AtMAPR3在植物防禦反應中的潛在重要性。未來的研究可以進一步探討AtMAPR3的具體功能和調控機制,此外研究 AtMAPR3 與其他植物防禦基因的相互作用,將有助於全面了解植物與病原菌之間的互動,並可為農業病蟲害的防治提供新的策略和方法。zh_TW
dc.description.abstractBotrytis cinerea is a globally disseminated necrotrophic fungus that causes gray mold disease in plants. Its ability to infect a wide range of hosts makes it a significant threat to global economic crops. When plants face B. cinerea infection, they activate a series of defense mechanisms, such as hormone secretion and programmed cell death (PCD). PCD includes autophagy and apoptosis; successful induction of autophagy can defend against B. cinerea infection. AtMAPR3 is a protein in Arabidopsis thaliana whose function is not yet fully understood. Previous studies have suggested that AtMAPR3 is involved in autophagy and lignin biosynthesis pathways. Analysis of microarray data revealed that AtMAPR3 expression is upregulated in Arabidopsis upon B. cinerea infection, indicating that AtMAPR3 may play a role in plant defense against pathogens. AtMAPR3 may help clear cells killed by B. cinerea infection through autophagy or enhance the plant cell wall by promoting lignin biosynthesis, thus aiding in resistance against B. cinerea. In this study, we found that AtMAPR3 gene expression is significantly induced in wild-type Arabidopsis within 3 hours of B. cinerea infection, compared to the control group. This result suggests that AtMAPR3 may play an important role in the early defense response against B. cinerea infection. These findings provide new insights into the plant disease resistance mechanism and highlight the potential importance of AtMAPR3 in plant defense responses. Future research can further explore the specific functions and regulatory mechanisms of AtMAPR3. Additionally, studying the interaction between AtMAPR3 and other plant defense genes will help in comprehensively understanding the interactions between plants and pathogens, potentially providing new strategies and methods for agricultural pest and disease control.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:51:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:51:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次 i
縮寫表 iv
中文摘要 vi
英文摘要 vii
章節1 引言 1
1.1 植物病原菌葡萄灰黴菌 (Botrytis cinerea) 1
1.1.1 B. cinerea對植物的感染 1
1.1.2 B. cinerea感染植物的機制 1
1.2 植物對病原菌的防禦機制 2
1.2.1 植物的免疫機制 2
1.2.2 植物對B. cinerea感染的防禦機制 4
1.3 阿拉伯芥新穎蛋白AtMAPR3 6
1.3.1 MAPR家族 6
1.3.2 AtMAPR3和B. cinerea感染的關係 7
章節 2 材料與方法 9
2.1 材料 9
2.1.1 阿拉伯芥野生種 9
2.1.2 阿拉伯芥mapr3基因敲除株 9
2.1.3 化學品 9
2.2 實驗方法 9
2.2.1 植物生長條件 9
2.2.2 抽取RNA 10
2.2.3 DNA酶處理 10
2.2.4 反轉錄 11
2.2.5 即時定量聚合酶連鎖反應 11
2.2.6 灰黴菌感染 12
2.2.7 木質素染色 12
2.2.8 Trypan Blue染色 12
2.2.9 ImageJ測量 13
2.2.10 Cellulase處理 13
章節 3 結果 14
3.1 B. cinerea感染野生型和AtMAPR3基因敲除型阿拉伯芥後24、48小時AtMAPR3基因表現量 14
3.2 B. cinerea對阿拉伯芥離體葉感染與Trypan Blue染色 15
3.3 木質素染色 17
3.4 Cellulase infiltrated實驗AtMAPR3基因表現量 17
3.5 B. cinerea感染後0、3、6、9、12小時AtMAPR3基因表現量 18
章節 4 討論 20
4.1 B. cinerea感染野生型和AtMAPR3基因敲除型阿拉伯芥後24、48小時AtMAPR3基因表現量 20
4.2 Trypan Blue染色結果 21
4.3 木質素染色結果 21
4.4 Cellulase infiltrated實驗AtMAPR3基因表現量 22
4.5 B. cinerea感染後0、3、6、9、12小時AtMAPR3基因表現量 23
4.5結論 24
圖次 25
表次 32
表1 即時定量聚合酶連鎖反應使用之引子 32
參考資料 33
論文口試問答集及討論建議 37
-
dc.language.isozh_TW-
dc.title研究AtMAPR3在植物防禦的生理作用zh_TW
dc.titleStudies on the physiological roles of AtMAPR3 in plant defenseen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳佩燁;李昆達zh_TW
dc.contributor.oralexamcommitteePei-Yeh Chen;Kung-Ta Leeen
dc.subject.keyword植物防禦,植物生理,灰色葡萄孢菌,阿拉伯芥,zh_TW
dc.subject.keywordAtMAPR3,Botrytis cinerea,Arabidopsis thaliana,plant defense,plant physiology,en
dc.relation.page40-
dc.identifier.doi10.6342/NTU202403654-
dc.rights.note未授權-
dc.date.accepted2024-08-14-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved