請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林士駿 | zh_TW |
| dc.contributor.advisor | Shih-Chun Lin | en |
| dc.contributor.author | 于士程 | zh_TW |
| dc.contributor.author | Shih-Cheng Yu | en |
| dc.date.accessioned | 2024-09-15T16:51:29Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] K. Andreev, S. S. Kowshik, A. Frolov, and Y. Polyanskiy. Low complexity energy efficient random access scheme for the asynchronous fading MAC. In 2019 IEEE
90th Vehicular Technology Conference (VTC2019-Fall), pages 1–5, 2019. [2] L. Applebaum, W. U. Bajwa, M. F. Duarte, and R. Calderbank. Asynchronous code-division random access using convex optimization. Physical Communication, 5(2):129–147, 2012. [3] X. Chen, T.-Y. Chen, and D. Guo. Capacity of Gaussian many-access channels. IEEE Transactions on Information Theory, 63(6):3516–3539, 2017. [4] X. Chen, L. Liu, D. Guo, and G. W. Wornell. Asynchronous massive access and neighbor discovery using OFDMA. IEEE Transactions on Information Theory, 69(4):2364–2384, 2023. [5] S. Deryat, S.-C. Yu, H.-W. Young, E. A. Jorswieck, P.-H. Lin, and S.-C. Lin. Joint delay and user activity detection in asynchronous massive access. WOCC24, 2024. [6] A. Fengler, A. Lancho, K. Narayanan, and Y. Polyanskiy. On the advantages of asynchrony in the unsourced MAC. In 2023 IEEE International Symposium on Information Theory (ISIT), pages 2523–2528, 2023. [7] H. A. Inan, S. Ahn, P. Kairouz, and A. Ozgur. A group testing approach to random access for short-packet communication. In 2019 IEEE International Symposium on Information Theory (ISIT), pages 96–100,2019. [8] H. A. Inan, P. Kairouz, and A. Ozgur. Sparse combinatorial group testing. IEEE Transactions on Information Theory, 66(5):2729–2742, 2020. [9] S. S. Kowshik, K. Andreev, A. Frolov, and Y. Polyanskiy. Short-packet low-power coded access for massive MAC. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pages 827–832, 2019. [10] S.-C. Lin, T.-H. Chang, E. A. Jorswieck, and P.-H. Lin. Information theory, mathematical optimization, and their crossroads in 6G system design. Springer Se ries in Wireless Technology, 1st edition, 2023. [11] K.-H. Liu, X. Li, H. Zhao, and G. Fan. Joint active user detection and channel estimation for massive grant-free access via difference of convex programming. In IEEE Global Communications Conference (GLOBECOM), Dec. 2023. [12] Y. Polyanskiy. A perspective on massive random-access. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 2523–2527, 2017. [13] Qualcomm. 3GPP release 17: Completing the first phase of the 5G evolution, Mar.2022. [14] I. Trots, Y. Tasinkevych, and A. Nowicki. Orthogonal golay codes with local beam pattern correction in ultrasonic imaging. IEEE Signal Processing Letters,22(10):1681–1684, 2015. [15] H.-P. Wang, R. Gabrys, and A. Vardy. Tropical group testing. IEEE Transactions on Information Theory, 69(9):6098–6120, 2023. [16] J.-S. Wu, P.-H. Lin, M. A. Mross, and E. A. Jorswieck. Worst-case per-user er ror bound for asynchronous unsourced multiple access. In IEEE International Symposium on Information Theory (ISIT), 2024. [17] S.-W. Wu, C.-Y. Chen, and Z. Liu. How to construct mutually orthogonal comple mentary sets with non-power-of-two lengths? IEEE Transactions on Information Theory, 67(6):3464–3470, 2021. [18] S.-W. Wu, C.-Y. Chen, and Z. Liu. How to construct mutually orthogonal comple mentary sets with non-power-of-two lengths? IEEE Transactions on Information Theory, 67(6):3464–3472, 2021. [19] C.-H. Yang, Y.-H. Lin, S.-C. Lin, and T.-D. Chiueh. Design of a low-complexity receiver for impulse-radio ultra-wideband communication systems. In 2004 IEEE International Symposium on Circuits and Systems (ISCAS), volume 4, pages IV–125, 2004. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95697 | - |
| dc.description.abstract | 在大規模物聯網(IoT)中,為了省電,許多設備處於不傳送數據的狀態,每段時間中僅有少數用戶處於活動狀態。為了保證可靠的數據傳輸,檢測這些物聯網設備中的活動用戶為哪些設備及其路徑延遲非常重要。為了應對這種情況,我們利用熱帶演算法來幫助我們以非常少的正交資源達成目標,這與系統中的總用戶數相比是非常少的。此外,為了減少延遲,我們採用長度有限的碼,可以使得接收端在不必等待所有碼到達的情況下知道活動用戶及其路徑延遲。我們還發現了接收碼的有限時間期限,以及其與碼和路徑延遲之間的數學關係。最後,即使物聯網系統中的總用戶數大幅增加,我們仍能輕鬆地推導出我們所要用到的碼字,同時保持數據傳輸的可靠性。根據我們在無噪聲通道下的模擬結果,隨著正交資源數量的二次方增長,我們的設計在每個總用戶數下均無檢測錯誤。 | zh_TW |
| dc.description.abstract | In large IOT devices, in order to reduce power, most devices are silent and only few users are active for each time frame. It is important to detect who are the active users in our IOT system and their path delays to guarantee reliable data transmission. We leverage tropical-arithmetic to help us reach our goal with very less orthogonal resources comparing to the number of total users in our system. Moreover, to reduce latency, the codeword we adopt is finite length and the receiver obtains message without having to wait for all codewords to arrive. We also found the relationship between finite receiving deadline and codewords’ length and path delay. Lastly, we are able to derive our codebook easily when the number of total users increase dramatically in our IOT system, while still remaining reliable data transmission. According to our simulation results for noiseless channel, our design has zero detection errors for every number of total users, as the number of total users increases quadratically according to the number of orthogonal resources. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:51:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:51:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 iii
摘要 v Abstract vii Contents ix List of Figures xi Chapter 1 Introduction 1 Chapter 2 Problem Formulation 5 2.1 Our Scheme: a Few Active Users in Massive MAC 5 2.2 Traditional MAC Scheme 6 2.2.1 Traditional TDMA Scheme 6 2.2.2 Traditional CDMA Scheme 7 2.3 Pre-shifts 9 Chapter 3 Tropical Arithmetic 11 3.1 System Model 11 3.2 One Active User 16 3.2.1 2 Orthogonal Resources 16 3.2.2 T Orthogonal Resources 20 Chapter 4 Two Active Users 27 4.1 Basic Building Block of Two Active Users 27 4.2 (T,K,2)-Tropical Code 33 4.2.1 Simple Example of (5,6,2)-Tropical Code 39 4.3 Simulation Results 44 Chapter 5 Conclusion 47 References 49 Appendix A — Decoder for (2, K, 1)-tropical code of (3.15) 53 Appendix B — Decoder for (T, K, 2)-tropical code of Lemma 5 55 | - |
| dc.language.iso | en | - |
| dc.subject | 熱帶演算法 | zh_TW |
| dc.subject | 低延遲 | zh_TW |
| dc.subject | 物聯網 | zh_TW |
| dc.subject | low latency | en |
| dc.subject | IOT | en |
| dc.subject | tropical arithmetic | en |
| dc.title | 大規模非同步多用戶之通道使用的延遲和活動偵測 | zh_TW |
| dc.title | Joint Delay and User Activity Detection in Asynchronous Massive MAC | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃昱智;蘇炫榮 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chih Huang;Hsuan-Jung Su | en |
| dc.subject.keyword | 物聯網,熱帶演算法,低延遲, | zh_TW |
| dc.subject.keyword | IOT,tropical arithmetic,low latency, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202402984 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 898.79 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
