Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張俊哲zh_TW
dc.contributor.advisorChun-Che Changen
dc.contributor.author區嘉曦zh_TW
dc.contributor.authorKa-Hei Simon Auen
dc.date.accessioned2024-09-15T16:51:06Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-15-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation蕭逸旻 (2018)。孤雌胎生蚜蟲之體軸形成與內共生調控對生殖細胞發育影響之研究。國立臺灣大學生物科技研究所博士論文,台北市。取自https://hdl.handle.net/11296/2ugn33
Abdelkader, T. S., Chang, S. N., Kim, T. H., Song, J., Kim, D. S. and Park, J. H. (2013). Exposure time to caffeine affects heartbeat and cell damage‐related gene expression of zebrafish Danio rerio embryos at early developmental stages. Journal of Applied Toxicology 33, 1277-1283.
Akey, D. H. and Beck, S. D. (1971). Continuous rearing of the pea aphid, Acyrthosiphon pisum, on a holidic diet. Annals of the Entomological Society of America 64, 353-356.
Aristizábal, L. F., Cardona, L. V., Henao, E. R., Salgado, M. and Arthurs, S. P. (2013). Insects associated with tropical foliage produced in the coffee growing region of Colombia. Revista Brasileira de Entomologia 57, 313-318.
Ashihara, H., Sano, H. and Crozier, A. (2008). Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69, 841-856.
Auclair, J. L. (1965). Feeding and nutrition of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphidae), on chemically defined diets of various pH and nutrient levels. Annals of the Entomological Society of America 58, 855-875.
Auclair, J. L. and Cartier, J. J. (1963). Pea aphid: rearing on a chemically defined diet. Science 142, 1068-1069.
Authority, E. F. S. (2021). Outcome of the consultation with Member States and EFSA on the basic substance application for approval of caffeine to be used in plant protection as insecticide in cabbage, potatoes and buxus and as molluscicide in all edible and non‐edible crops. Wiley Online Library.
Bass, C., Puinean, A. M., Zimmer, C. T., Denholm, I., Field, L. M., Foster, S. P., Gutbrod, O., Nauen, R., Slater, R. and Williamson, M. S. (2014). The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect biochemistry and molecular biology 51, 41-51.
Bass, C., Zimmer, C. T., Riveron, J. M., Wilding, C. S., Wondji, C. S., Kaussmann, M., Field, L. M., Williamson, M. S. and Nauen, R. (2013). Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proceedings of the National Academy of Sciences 110, 19460-19465.
Basu, A. and Haldar, S. (1998). The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Molecular human reproduction 4, 1099-1109.
Bermingham, J. and Wilkinson, T. L. (2009). Embryo nutrition in parthenogenetic viviparous aphids. Physiological Entomology 34, 103-109.
Billington, C. K., Ojo, O. O., Penn, R. B. and Ito, S. (2013). cAMP regulation of airway smooth muscle function. Pulmonary pharmacology & therapeutics 26, 112-120.
Blackman, R. (1974). Life-cycle variation of Myzus persicae (Sulz.)(Hom., Aphididae) in different parts of the world, in relation to genotype and environment. Bulletin of Entomological Research 63, 595-607.
Brisson, J. A. and Stern, D. L. (2006). The pea aphid, Acyrthosiphon pisum: an emerging genomic model system for ecological, developmental and evolutionary studies. Bioessays 28, 747-755.
Buerge, I. J., Poiger, T., Müller, M. D. and Buser, H.-R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental science & technology 37, 691-700.
Capinera, J. L. (2001). Green peach aphid, Myzus persicae (Sulzer)(Insecta: Hemiptera: Aphididae): Citeseer.
Carver, M. (1978). The black citrus aphids, Toxoptera citricidus (Kirkaldy) and T. aurantii (Boyer de Fonscolombe)(Homoptera: Aphididae). Australian Journal of Entomology 17, 263-270.
Catalán, R., Castillón, M. and Municio, A. (1975). Adenosine 3′, 5′-monophosphate phosphodiesterase activity during development of the insect Ceratitis capitata. Biochemical and biophysical research communications 65, 385-391.
Ceja-Navarro, J. A., Vega, F. E., Karaoz, U., Hao, Z., Jenkins, S., Lim, H. C., Kosina, P., Infante, F., Northen, T. R. and Brodie, E. L. (2015). Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nature communications 6, 7618.
Chang, C.-C., Lee, W.-C., Cook, C. E., Lin, G.-W. and Chang, T. (2006). Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: Vasa and Nanos as markers. International Journal of Developmental Biology 50.
Coelho, A., Fraichard, S., Le Goff, G., Faure, P., Artur, Y., Ferveur, J.-F. and Heydel, J.-M. (2015). Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster. PLoS One 10, e0117328.
Couty, A., Down, R., Gatehouse, A., Kaiser, L., Pham-Delegue, M.-H. and Poppy, G. (2001). Effects of artificial diet containing GNA and GNA-expressing potatoes on the development of the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Aphidiidae). Journal of Insect Physiology 47, 1357-1366.
Dadd, R. (1961). The nutritional requirements of locusts—IV. Requirements for vitamins of the B complex. Journal of Insect Physiology 6, 1-12.
Dadd, R., Krieger, D. and Mittler, T. (1967). Studies on the artificial feeding of the aphid Myzus persicae (Sulzer)—IV. Requirements for water-soluble vitamins and ascorbic acid. Journal of Insect Physiology 13, 249-272.
Dedryver, C.-A., Le Ralec, A. and Fabre, F. (2010). The conflicting relationships between aphids and men: a review of aphid damage and control strategies. Comptes rendus biologies 333, 539-553.
Diogo, J. S., Silva, L. S., Pena, A. and Lino, C. M. (2013). Risk assessment of additives through soft drinks and nectars consumption on Portuguese population: A 2010 survey. Food and chemical toxicology 62, 548-553.
Douglas, A. (1993). The nutritional quality of phloem sap utilized by natural aphid populations. Ecological Entomology 18, 31-38.
---- (1998). Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual review of entomology 43, 17-37.
Down, R. E., Gatehouse, A. M. R., Hamilton, W. D. O. and Gatehouse, J. A. (1996). Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. Journal of Insect Physiology 42, 1035-1045.
Eastop, V. F. (1971). Keys for the identification of Acyrthosiphon (Hemiptera: Aphididae).
Ebert, T. A. and Cartwright, B. (1997). Biology and ecology of Aphis gossypii Glover (Homoptera: aphididae). Southwestern Entomologist 22, 116-153.
Emden, H. v. and Harrington, R. (2017). Aphids as crop pests: Cabi.
Ephrussi, A. and Lehmann, R. (1992). Induction of germ cell formation by oskar. Nature 358, 387-392.
Febvay, G., Delobel, B. and Rahbé, Y. (1988). Influence of the amino acid balance on the improvement of an artificial diet for a biotype of Acyrthosiphon pisum (Homoptera: Aphididae). Canadian Journal of Zoology 66, 2449-2453.
Field, L. M. and Blackman, R. L. (2003). Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages. Biological Journal of the Linnean Society 79, 107-113.
Ford, J. M. (2005). Regulation of DNA damage recognition and nucleotide excision repair: another role for p53. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 577, 195-202.
Frary, C. D., Johnson, R. K. and Wang, M. Q. (2005). Food sources and intakes of caffeine in the diets of persons in the United States. Journal of the american dietetic association 105, 110-113.
Fulgoni III, V. L., Keast, D. R. and Lieberman, H. R. (2015). Trends in intake and sources of caffeine in the diets of US adults: 2001–2010. The American journal of clinical nutrition 101, 1081-1087.
Goławska, S. (2010). Effect of various host-plants on the population growth and development of the pea aphid. Journal of Plant Protection Research.
Guerrieri, E. and Digilio, M. C. (2008). Aphid-plant interactions: a review. Journal of Plant Interactions 3, 223-232.
Hamilton, M. (1935). Further Experiments on the Artificial Feeding of Myzus persicae (Sulz.).
Hamilton, M. A. (1930). Notes on the Culturing of Insects for Virus Work.
Harelimana, A., Le Goff, G., Rukazambuga, D. and Hance, T. (2024). Coffee trees intercropped with common beans: An opportunity to regulate the aphid Toxoptera aurantii (Boyer de Fonscolombe)(Hemiptera: Aphididae) in coffee agroecosystems. Arthropod-Plant Interactions 18, 307-316.
Hay, B., Jan, L. Y. and Jan, Y. N. (1988). A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577-587.
Hollingsworth, R. G., Armstrong, J. W. and Campbell, E. (2002). Caffeine as a repellent for slugs and snails. Nature 417, 915-916.
Hussein, H., Abouamer, W., Ali, H., Elkhadragy, M., Yehia, H. and Farouk, A. (2022). The valorization of spent coffee ground extract as a prospective insecticidal agent against some main key pests of Phaseolus vulgaris in the laboratory and field. Plants 11, 1124.
Jahan, H., Khudr, M. S., Arafeh, A. and Hager, R. (2023). Exposure to heat stress leads to striking clone-specific nymph deformity in pea aphid. Plos one 18, e0282449.
Jean, P. and JEAN‐CHRISTOPHE, S. (2010). The pea aphid complex as a model of ecological speciation. Ecological Entomology 35, 119-130.
Kim, Y.-S., Lim, S., Kang, K.-K., Jung, Y.-J., Lee, Y.-H., Choi, Y.-E. and Sano, H. (2011). Resistance against beet armyworms and cotton aphids in caffeine-producing transgenic chrysanthemum. Plant biotechnology 28, 393-395.
Kim, Y.-S., Uefuji, H., Ogita, S. and Sano, H. (2006). Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control. Transgenic research 15, 667-672.
Kirfel, P., Skaljac, M., Grotmann, J., Kessel, T., Seip, M., Michaelis, K. and Vilcinskas, A. (2020). Inhibition of histone acetylation and deacetylation enzymes affects longevity, development, and fecundity in the pea aphid (Acyrthosiphon pisum). Archives of insect biochemistry and physiology 103, e21614.
Laranja, A. T., Manzato, A. J. and Bicudo, H. E. M. d. C. (2006). Caffeine effect on mortality and oviposition in successive generations of Aedes aegypti. Revista de Saúde Pública 40, 1112-1117.
Laranja, A. T., Manzatto, A. J. and Campos Bicudo, H. E. M. d. (2003). Effects of caffeine and used coffee grounds on biological features of Aedes aegypti (Diptera, Culicidae) and their possible use in alternative control. Genetics and molecular biology 26, 419-429.
Lasko, P. F. and Ashburner, M. (1988). The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335, 611-617.
Lin, G.-W. and Chang, C.-c. (2016). Identification of critical conditions for immunostaining in the pea aphid embryos: increasing tissue permeability and decreasing background staining. JoVE (Journal of Visualized Experiments), e53883.
M Garcia, A., Martinez, A. and Gil, C. (2016). Enhancing cAMP levels as strategy for the treatment of neuropsychiatric disorders. Current topics in medicinal chemistry 16, 3527-3535.
Ma, Z.-l., Qin, Y., Wang, G., Li, X.-d., He, R.-r., Chuai, M., Kurihara, H. and Yang, X. (2012). Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo. Plos one 7, e34278.
Ma, Z. l., Wang, G., Cheng, X., Chuai, M., Kurihara, H., Lee, K. K. H. and Yang, X. (2014). Excess caffeine exposure impairs eye development during chick embryogenesis. Journal of cellular and molecular medicine 18, 1134-1143.
Macel, M., Bruinsma, M., Dijkstra, S. M., Ooijendijk, T., Niemeyer, H. M. and Klinkhamer, P. G. (2005). Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. Journal of chemical ecology 31, 1493-1508.
Markussen, F.-H., Breitwieser, W. and Ephrussi, A. (1997). Efficient translation and phosphorylation of Oskar require Oskar protein and the RNA helicase Vasa. In Cold Spring Harbor symposia on quantitative biology, pp. 13-17: Cold Spring Harbor Laboratory Press.
McLean, D. (1971). Probing behavior of the pea aphid, Acyrthosiphon pisum. V. Comparison of Vicia faba, Pisum sativum, and a chemically defined diet as food sources. Annals of the Entomological Society of America 64, 499-503.
Mittler, T. (1967). Gustation of dietary amino acids by the aphid Myzus persicae. Entomologia Experimentalis et Applicata 10, 87-96.
Mittler, T. and Dadd, R. (1962). Artificial feeding and rearing of the aphid, Myzus persicae (Sulzer), on a completely defined synthetic diet. Nature 195, 404-404.
Miura, T., Braendle, C., Shingleton, A., Sisk, G., Kambhampati, S. and Stern, D. L. (2003). A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 295, 59-81.
Narain, R. B. and Kamble, S. T. (2015). Effects of ibuprofen and caffeine concentrations on the common bed bug (Cimex lectularius L.) feeding and fecundity.
Nathanson, J. A. (1984). Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226, 184-187.
Odesser, D., Hayes, D. and Schechter, M. (1972). Phosphodiesterase activity in pupae and diapausing and non-diapausing larvae of the European corn borer, Ostrinia nubilalis. Journal of Insect Physiology 18, 1097-1105.
Qian, J., Zhang, Y., Qu, Y., Zhang, L., Shi, J., Zhang, X., Liu, S., Kim, B. H., Hwang, S. J. and Zhou, T. (2018). Caffeine consumption during early pregnancy impairs oviductal embryo transport, embryonic development and uterine receptivity in mice. Biology of reproduction 99, 1266-1275.
Rahbé, Y., Delobel, B., Febvay, G. and Chantegrel, B. (1994). Aphid-specific triglycerides in symbiotic and aposymbiotic Acyrthosiphon pisum. Insect Biochemistry and Molecular Biology 24, 95-101.
Ramsey, J. S., Rider, D. S., Walsh, T. K., De Vos, M., Gordon, K., Ponnala, L., Macmil, S., Roe, B. and Jander, G. (2010). Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect molecular biology 19, 155-164.
Sanders, B. (2018). Stress proteins: potential as multitiered biomarkers. In Biomarkers of environmental contamination, pp. 165-191: CRC Press.
Sandström, J. (1994). Performance of pea aphid (Acyrthosiphon pisum) clones on host plants and synthetic diets mimicking the same plants phloem amino acid composition. Journal of Insect Physiology 40, 1051-1057.
Sasaki, T., Hayashi, H. and Ishikawa, H. (1991). Growth and reproduction of the symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisum maintained on artificial diets. Journal of Insect Physiology 37, 749-756.
Sassone-Corsi, P. (2012). The cyclic AMP pathway. Cold Spring Harbor perspectives in biology 4, a011148.
Sehgal, S., Simöes, L. and Jurand, A. (1977). Effects of caffeine on growth and metamorphosis of moth fly telmatoscopus albipunctatus (diptera, psychodidae. Entomologia experimentalis et Applicata 21, 174-181.
Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. and Ishikawa, H. (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81-86.
Simonet, P., Gaget, K., Parisot, N., Duport, G., Rey, M., Febvay, G., Charles, H., Callaerts, P., Colella, S. and Calevro, F. (2016). Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids. Scientific reports 6, 34321.
Srinivasan, A. and Kesavan, P. (1979). Reproductive toxicity of caffeine in Musca domestica.
Srivastava, P. and Auclair, J. (1971). An improved chemically defined diet for the pea aphid, Acyrthosiphon pisum. Annals of the Entomological Society of America 64, 474-478.
Tougeron, K. and Hance, T. (2022). Cascading effects of caffeine intake by primary consumers to the upper trophic level. Bulletin of Entomological Research 112, 197-203.
Uefuji, H., Tatsumi, Y., Morimoto, M., Kaothien-Nakayama, P., Ogita, S. and Sano, H. (2005). Caffeine production in tobacco plants by simultaneous expression of three coffee N-methyltrasferases and its potential as a pest repellant. Plant molecular biology 59, 221-227.
Waller, J., Bigger, M. and Hillocks, R. (2007). Insects that feed on buds, leaves, green shoots and flowers. In Coffee pests, Diseases and their Management, pp. 91-144: CABI Wallingford UK.
Will, T., Schmidtberg, H., Skaljac, M. and Vilcinskas, A. (2017). Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity, and fecundity of the pea aphid Acyrthosiphon pisum. Development genes and evolution 227, 1-9.
Wojciechowicz‐Zytko, E. and Van Emden, H. (1995). Are aphid mean relative growth rate and intrinsic rate of increase likely to show a correlation in plant resistance studies? Journal of Applied Entomology 119, 405-409.
Wu, C. and Rajagopalan, S. (2016). Phosphodiesterase‐4 inhibition as a therapeutic strategy for metabolic disorders. obesity reviews 17, 429-441.
Yamamizu, K. and Yamashita, J. K. (2011). Roles of cyclic adenosine monophosphate signaling in endothelial cell differentiation and arterial-venous specification during vascular development. Circulation Journal 75, 253-260.
Ye, C., Xiao, X., Sui, H., Yang, D., Yong, L. and Song, Y. (2023). Trends of caffeine intake from food and beverage among Chinese adults: 2004–2018. Food and Chemical Toxicology 173, 113629.
Yeh, C.-H., Liao, Y.-F., Chang, C.-Y., Tsai, J.-N., Wang, Y.-H., Cheng, C.-C., Wen, C.-C. and Chen, Y.-H. (2012). Caffeine treatment disturbs the angiogenesis of zebrafish embryos. Drug and chemical toxicology 35, 361-365.
Zaccolo, M., Zerio, A. and Lobo, M. J. (2021). Subcellular organization of the cAMP signaling pathway. Pharmacological reviews 73, 278-309.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95696-
dc.description.abstract以咖啡樹 (咖啡屬,Coffea 之植物) 為食的昆蟲種類繁多,超過850種昆蟲被記錄為咖啡樹的害蟲。其中,已記錄的蚜蟲有三種,分別是桃蚜 (Myzus persicae)、棉蚜 (Aphis gossypii) 和小桔蚜 (Toxoptera aurantii)。然而,有關蚜蟲代謝咖啡因的機制,以及咖啡因對蚜蟲發育和生殖能力影響的研究仍非常匱乏。僅有的研究顯示,在人工飼料中添加0.1 mg/ml 咖啡因,能使桃蚜成蟲的產子數量減少42%,壽命縮短30%。因此,探討咖啡因如何影響蚜蟲的生殖發育,是一個重要的研究議題。 本研究旨在通過人工飼料餵食蚜蟲不同濃度的咖啡因,了解其對蚜蟲各項生理指標及卵巢發育狀況的影響,以填補目前咖啡因與蚜蟲之間研究的空白。我們選取豌豆蚜 (Acyrthosiphon pisum) 作為研究對象,在其人工飼料中添加0.00、0.10、0.12、0.14、0.16、0.18及0.20 mg/ml 咖啡因進行飼養實驗。結果發現,隨著咖啡因濃度的增加,蚜蟲的成蟲率顯著下降,發育時間顯著延長,成蟲體重和體型顯著減輕。在生殖能力方面,咖啡因導致蚜蟲繁殖能力顯著下降,甚至出現不育個體 (成蟲在未產下若蟲的情況下死亡)。解剖實驗進一步顯示,咖啡因減緩了蚜蟲卵巢的發育速度,使卵巢顯著縮小。然而,咖啡因並未減少蚜蟲卵巢中的蛋腔數量,卵巢縮小的主要原因是胚胎發育遲緩。在0.20 mg/ml 咖啡因處理下,最成熟的胚胎僅達到第15期。此外,咖啡因還導致蚜蟲卵巢出現畸形結構,胚胎無法發育甚至缺乏生殖細胞。 另外,我們對蚜蟲進行抗生素處理,探討咖啡因對去共生及正常蚜蟲的影響。即使在最低劑量的咖啡因處理下,幾乎所有去共生蚜蟲均出現不育狀況。本研究結果為咖啡因對蚜蟲的生理及生殖影響提供了重要數據,並為進一步的研究奠定了基礎。了解咖啡因對蚜蟲的生理和生殖影響,可為發展新的生物農藥提供理論依據。咖啡因作為一種天然植物殺蟲劑,具有潛力成為控制蚜蟲的重要工具。zh_TW
dc.description.abstractCoffee plants (genus Coffea) host over 850 species of insect pests, including three documented aphid species: green peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), and black citrus aphid (Toxoptera aurantii). Despite this, research on aphid caffeine metabolism and the effects of caffeine on aphid development and reproduction remains scarce. Existing studies show that adding 0.1 mg/ml of caffeine to artificial diets reduces adult M. persicae offspring by 42% and shortens lifespan by 30%. This study aims to investigate how caffeine affects aphid reproductive development to fill this research gap. We selected the pea aphid (Acyrthosiphon pisum) and conducted feeding experiments with artificial diets containing 0.00, 0.10, 0.12, 0.14, 0.16, 0.18, and 0.20 mg/ml of caffeine. Results indicate that higher caffeine concentrations significantly decrease adult aphid rates, increase development time, and reduce adult weight and size. Caffeine also significantly lowers reproductive capacity, with some individuals becoming infertile (dying without producing nymphs). Dissection revealed that caffeine slows ovarian development, causing significant size reduction without reducing oocyte numbers. The primary cause of reduced ovarian size was delayed embryonic development, with the most mature embryos reaching only the 15th stage at 0.20 mg/ml caffeine. Additionally, caffeine induced ovarian structural deformities, preventing proper embryo development and resulting in a lack of germ cells. Furthermore, antibiotic treatments showed that nearly all aposymbiotic aphids became infertile even at the lowest caffeine concentrations. This study provides essential data on caffeine's physiological and reproductive effects on aphids, laying a foundation for further research. Understanding these effects can support the development of new biopesticides, positioning caffeine as a potential natural insecticide for aphid control.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:51:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:51:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
表次 vii
圖次 viii
附錄 ix
第一章 前言 1-6
(一) 咖啡因的應用與功能 1-2
(二) 蚜蟲的研究獨特與重要性 2-3
(三) 蚜蟲人工飼料的發展及應用 3-5
(四) 蚜蟲與內共生菌 5-6
(五) 研究動機及目的 6
第二章 材料與方法 7-13
(一) 豌豆蚜飼養 7
(二) 豌豆蚜人工飼料及餵食儀器設置 7
(三) 咖啡因濃度測試 8
(四) 人工飼料中添加咖啡因 (caffeine treatment, 實驗簡稱CAF) 對蚜蟲發育及生殖之影響 8
(五) 去共生後咖啡因 (aposymbiotic aphids caffeine treatment, 實驗簡稱APO-CAF) 對蚜蟲發育及生殖之影響 8-9
(六) 去共生同時加入咖啡因 (rifampicin and caffeine treatment, 實驗簡稱RF-CAF) 對蚜蟲發育及生殖之影響 9
(七) 蚜蟲成蟲卵巢解剖及影像處理 9-10
(八) 蚜蟲成蟲體長、微卵管長度及蛋腔數量測量 10
(九) 微卵管封片及影像處理 10
(十) 蚜蟲胚胎細胞骨架 (纖維狀肌動蛋白,F-actin) 及細胞核 (去氧核糖核酸,deoxyribonucleic acid,DNA) 螢光染色及影像處理 10-11
(十一) ApVas1 抗體染色 11-12
(十二) 統計及分析 12-13
第三章 結果 14-24
(一) 咖啡因對蚜蟲成蟲率及若蟲發育至成蟲所需時間影響之比較 14
(二) 咖啡因對蚜蟲成蟲體長及體重影響之比較 14-15
(三) 咖啡因對成蟲繁殖能力 (產下子代數量) 影響之比較 15
(四) 咖啡因對蚜蟲成蟲卵巢發育狀況與大小影響之比較 15-16
(五) 咖啡因對蚜蟲成蟲之微卵管長度及蛋腔數量影響之比較 16-17
(六) 咖啡因飲食下不同咖啡因濃度對胚胎發育時期影響之比較 17-18
(七) 咖啡因飲食造成蚜蟲卵巢畸形結構的影響 18-19
(八) APO-CAF 處理對蚜蟲成蟲率及若蟲發育至成蟲所需時間影響之比較 19-20
(九) APO-CAF 對蚜蟲成蟲體長及體重影響之比較 20
(十) APO-CAF 對成蟲繁殖能力 (產下子代數量) 影響之比較 20-21
(十一) RF-CAF 對蚜蟲成蟲率及若蟲發育至成蟲所需時間影響之比較 21-22
(十二) RF-CAF 對蚜蟲成蟲體長、體重影響之比較 22
(十三) RF-CAF 處理對成蟲生殖能力 (產下子代數量) 影響之比較 22-23
(十四) 咖啡因對成蟲卵巢之ApVas1 抗體染色影響之比較 23-24
(十五) 咖啡因對成蟲卵巢畸形胚胎結構之ApVas1 抗體染色影響之比較 24
(十六) 成蟲卵巢中畸形胚胎結構之細胞骨架及細胞核螢光染色結果 24
第四章 討論 25-36
(一) 咖啡因飲食對豌豆蚜生長發育及繁殖能力之影響 25-29
(二) 咖啡因飲食對豌豆蚜卵巢及胚胎發育之影響 29-30
(三) 咖啡因飲食對去共生豌豆蚜生長發育及繁殖之影響 30-31
(四) 咖啡因飲食對蚜蟲造成不育及卵巢致畸作用 31-33
(五) 咖啡因飲食與生殖細胞消失之關係 33-34
(六) 本研究成果及未來可進行實驗方向 34-36
參考文獻 37-46
附表 47-56
附圖 57-68
附錄 69-80
口試提問與建議 81-96
-
dc.language.isozh_TW-
dc.subject人工飼料zh_TW
dc.subject咖啡因zh_TW
dc.subject豌豆蚜zh_TW
dc.subject胚胎發育zh_TW
dc.subject內共生菌zh_TW
dc.subject生殖能力zh_TW
dc.subjectendosymbionten
dc.subjectPea aphidsen
dc.subjectAcyrthosiphon pisumen
dc.subjectartificial dietsen
dc.subjectcaffeineen
dc.subjectfecundityen
dc.subjectembryogenesisen
dc.title咖啡因對孤雌胎生豌豆蚜之生殖發育影響zh_TW
dc.titleIntake of Caffeine Alters Reproduction and Development in Parthenogenetic Pea Aphid Acyrthosiphon pisumen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李士傑;潘敏雄;洪挺軒;劉啟德zh_TW
dc.contributor.oralexamcommitteeShyh-Jye Lee;Min-Hsiung Pan;Ting-Hsuan Hung;Chi-Te Liuen
dc.subject.keyword豌豆蚜,人工飼料,咖啡因,生殖能力,胚胎發育,內共生菌,zh_TW
dc.subject.keywordPea aphids,Acyrthosiphon pisum,artificial diets,caffeine,fecundity,embryogenesis,endosymbiont,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202403275-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept昆蟲學系-
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
19.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved