請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95686
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃美嬌 | zh_TW |
dc.contributor.advisor | Mei-Jiau Huang | en |
dc.contributor.author | 紀博祥 | zh_TW |
dc.contributor.author | Po-Hsiang Chi | en |
dc.date.accessioned | 2024-09-15T16:48:04Z | - |
dc.date.available | 2024-09-16 | - |
dc.date.copyright | 2024-09-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | [1] R. J. Warzoha, A. A. Wilson, B. F. Donovan, N. Donmezer, A. Giri, P. E. Hopkins, S. Choi, D. Pahinkar, J. Shi, S. Graham, Z. Tian and L. Ruppalt, “Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging.” ASME. J. Electron. Packag. 143, 020804. (2021).
[2] A. L. Moore and L. Shi “Emerging challenges and materials for thermal management of electronics” Mater. Today 17, 163-174 (2014). [3] J. del Alamo “Nanometre-scale electronics with III–V compound semiconductors.” Nature 479, 317–323 (2011). [4] L. Lindsay, D. A. Broido, and T. L. Reinecke “Ab initio thermal transport in compound semiconductors” Phys. Rev. B 87, 165201 (2013) [5] C. Starr “The Copper Oxide Rectifier,” Physics 7, 15 (1936). [6] B. Li, L. Wang and G. Casati “Negative differential thermal resistance and thermal transistor” Appl. Phys. Lett. 88, 143501 (2006) [7] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond” Rev. Mod. Phys. 84, 1045 (2012) [8] M. G. Vachhani, T. K. Patel and P. N. Gajjar “Thermal characteristics of a microscopic model of thermal transistor” Int. J. Therm. Sci. 108, 159-164 (2016) [9] S. Pal, I. K. Puri “Thermal AND Gate Using a Monolayer Graphene Nanoribbon.” Small. 11, 2910-7. (2015) [10] X. K. Chen, J. Liu, Z. H. Peng, D. Du and K. Q. Chen “A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures” Appl. Phys. Lett. 110, 091907 (2017) [11] B. Q. Ai, M. An and W. R. Zhong “Nonlinear thermal conductance in single-wall carbon nanotubes: Negative differential thermal resistance” J. Chem. Phys. 138, 034708 (2013) [12] G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande “The intrinsic thermal conductivity of AlN” J. Phys. Chem. Solids 48, 641–647 (1987). [13] A. V. Inyushkin, A. N. Taldenkov, D. A. Chernodubov, E. N. Mokhov, S. S. Nagalyuk, V. G. Ralchenko, A. A. Khomich “On the thermal conductivity of single crystal AlN” J. Appl. Phys. 127, 205109 (2020) [14] Z. Cheng, Y. R. Koh, A. Mamun, J. Shi, T. Bai, K. Huynh, L. Yates, Z. Liu, R. Li, E. Lee, M. E. Liao, Y. Wang, H. M. Yu, M. Kushimoto, T. Luo, M. S. Goorsky, P. E. Hopkins, H. Amano, A. Khan, and S. Graham “Experimental observation of high intrinsic thermal conductivity of AlN” Phys. Rev. Materials 4, 044602 (2020) [15] R. L. Xu, M. M. Rojo, S. M. Islam, A. Sood, B. Vareskic, A. Katre, N. Mingo, K. E. Goodson, H. G. Xing, D. Jena and E. Pop “Thermal conductivity of crystalline AlN and the influence of atomic-scale defects.” J. Appl. Phys. 126, 185105 (2019) [16] R. Rounds, B. Sarkar, A. Klump, C. Hartmann, T. Nagashima, R. Kirste, A. Franke, M. Bickermann, Y. Kumagai and Z. Sitar “Thermal conductivity of single-crystalline AlN” Appl. Phys. Express 11, 071001 (2018) [17] T. S. Pan, Y. Zhang, J. Huang, B. Zeng, D. H. Hong, S. L. Wang, H. Z. Zeng, M. Gao, W. Huang and Y. Lin “Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure” J. Appl. Phys. 112, 044905 (2012) [18] B. E. Belkerk, S. Bensalem, A. Soussou, M. Carette, H. Al Brithen, M. A. Djouadi and Y. Scudeller “Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature.” Appl. Phys. Lett. Appl. Phys. Lett. 105, 221905 (2014) [19] G. Alvarez-Escalante, R. Page, R. Hu, H. G. Xing, D. Jena and Z. Tian “High thermal conductivity and ultrahigh thermal boundary conductance of homoepitaxial AlN thin films” APL Mater. 10, 011115 (2022) [20] M. S. B. Hoque, Y. R. Koh, J. L. Braun, A. Mamun, Z. Liu, K. Huynh, M. E. Liao, K. Hussain, Z. Cheng, E. R. Hoglund, D. H. Olson, J. A. Tomko, K. Aryana, R. Galib, J. T. Gaskins, M. M. M. Elahi, Z. C. Leseman, J. M. Howe, T. Luo, S. Graham, M. S. Goorsky, A. Khan and P. E. Hopkins “High In-Plane Thermal Conductivity of Aluminum Nitride Thin Films” ACS Nano 15, 9588−9599 (2021) [21] W. Zhang, J. Li, J. Fang, L. Hui, L. Qin, T. Gong, F. Sunc and H. Feng “Atomic layer deposited high quality AlN thin films for efficient thermal management” J. Mater. Chem. A 11, 21846-21856 (2023) [22] Y. Karaaslan, H. Yapicioglu and C. Sevik “Assessment of Thermal Transport Properties of Group-III Nitrides: A Classical Molecular Dynamics Study with Transferable Tersoff-Type Interatomic Potentials” Phys. Rev. Applied 13, 034027 (2020) [23] G. Yang, Y. B. Liu, L. Yang and B. Y. Cao “Machine-learned atomic cluster expansion potentials for fast and quantum-accurate thermal simulations of wurtzite AlN” J. Appl. Phys. 135, 085105 (2024) [24] X. Zhang, X. Gong, Y. Zhou and M. Hu “Tailoring thermal conductivity of AlN films by periodically aligned surface nano-grooves” Appl. Phys. Lett. 109, 133107 (2016) [25] Y. Karaaslan “Thermal Conductivity and Thermal Rectification in Various Sequences of Monolayer Hexagonal Boron Nitride/Aluminum Nitride Superlattice Nanoribbons” Türk Doğa Ve Fen Dergisi, 11, 44-50. (2022) [26] Q. Wang, X. Wang, X. Liu and J. Zhang “Interfacial engineering for the enhancement of interfacial thermal conductance in GaN/AlN heterostructure” J. Appl. Phys. 129, 235102 (2021) [27] Z. Qi, W. Shen, R. Li, X. Sun, L. Li, Q. Wang, G. Wu and K. Liang “AlN/diamond interface nanoengineering for reducing thermal boundary resistance by molecular dynamics simulations”, Appl. Surf. Sci. 615, 156419 (2023) [28] S. Tian, T. Wu, S. Hu, D. Ma and L. Zhang, “Boosting phonon transport across AlN/SiC interface by fast annealing amorphous layers” Appl. Phys. Lett. 124, 042202 (2024) [29] H. Wang, S. Hu, K. Takahashi, X. Zhang, H. Takamatsu and J. Chen “Experimental study of thermal rectification in suspended monolayer graphene” Nat Commun 8, 15843 (2017) [30] K.R. Hahn, C. Melis and L. Colombo “Thermal conduction and rectification phenomena in nanoporous silicon membranes” Phys. Chem. Chem. Phys. 24, 13625-13632 (2022) [31] Y. Feng and X. Liang “Thermal Rectification of Silicene Nanosheets With Triangular Cavities by Molecular Dynamics Simulations” ASME. J. Heat Transfer. 139, 052402 (2017) [32] W. R. Zhong, W. H. Huang, X. R. Deng and B. Q. Ai “Thermal rectification in thickness-asymmetric graphene nanoribbons” Appl. Phys. Lett. 99, 193104 (2011) [33] Z. Zhang, Y. Chen, Y. Xie and S. Zhang “Transition of thermal rectification in silicon nanocones” Appl. Therm. Eng. 102, 1075-1080 (2016) [34] G. Zhang and H. Zhang “Thermal conduction and rectification in few layer graphene Y Junctions” Nanoscale, 3, 4604 (2011) [35] F. Yousefi, M. Shavikloo and M. Mohammadi “Non-equilibrium molecular dynamics study on radial thermal conductivity and thermal rectification of graphene” Mol. Simul. 45, 646-651 (2019) [36] P. Jiang, S. Hu, Y. Ouyang, W. Ren, C. Yu, Z. Zhang and J. Chen “Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact.” J. Appl. Phys. 127, 235101 (2020) [37] K. G. S. H. Gunawardana, K. Mullen, J. Hu, Y. P. Chen and X. Ruan “Tunable thermal transport and thermal rectification in strained graphene nanoribbons” Phys. Rev. B 85, 245417 (2012) [38] G. Chen, W. Bao, J. Chen and Z. Wang “Thermal rectification effect of pristine graphene induced by vdW heterojunction substrate” Carbon 190, 170-182 (2022) [39] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott and S. J. Plimpton “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales” Comput. Phys. Commun. 271, 108171 (2022) [40] W. M. Brown, P. Wamg, S. J. Plimpton and A. N. Tharrington “Implementing molecular dynamics on hybrid high performance computers – short range forces” Comput. Phys. Commun. 182, 898-911 (2011) [41] H. Xiang, H. Li and X. Peng “Comparison of different interatomic potentials for MD simulations of AlN.” Comput. Mater. Sci. 140, 113-120 (2017) [42] S. Saib and N. Bouarissa “Structural properties of AlN from first principles calculations.” Eur. Phys. J. B. 47, 379-383 (2005) [43] L. Zhao, S. Xu, M. Wang and S. Lin “Probing the Thermodynamic Stability and Phonon Transport in Two- Dimensional Hexagonal Aluminum Nitride Monolayer” J. Phys. Chem. C 120, 27675−27681 (2016) [44] Z. Wang, S. Safarkhani, G. Lin and X. Ruan “Uncertainty quantification of thermal conductivities from equilibrium molecular dynamics simulations.” Int. J. Heat Mass Transf. 112, 267–278 (2017). [45] M. Tungare, Y. Shi, N. Tripathi, P. Suvarna and F. (S.) Shahedipour-Sandvik “A Tersoff-based interatomic potential for wurtzite AlN” Phys. Status Solidi A 208, 1569–1572 (2011) [46] W. Bao, Z. Wang and D. Tang, “Phonon transport across GaN/AlN interface: Interfacial phonon modes and phonon local non-equilibrium analysis” Int. J. Heat Mass Transf. 183, 122090 (2022). [47] J. Tersoff, “New empirical approach for the structure and energy of covalent systems” Phys. Rev. B 37, 6991 (1988) [48] M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford university press, 2017. [49] L.V. Woodcock, “ISOTHERMAL MOLECULAR DYNAMICS CALCULATIONS FOR LIQUID SALTS” Chem. Phys. Lett. 10, 257-261 (1971) [50] G. Bussi, D. Donadio and M. Parrinello, “Canonical sampling through velocity rescaling” J. Chem. Phys. 126, 014101 (2007) [51] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, “Molecular dynamics with coupling to an external bath” J. Chem. Phys. 81, 3684–3690 (1984) [52] S. Nosé “A unified formulation of the constant temperature molecular dynamics methods.” J. Chem. Phys. 81, 511–519 (1984) [53] S. Nosé “A molecular dynamics method for simulations in the canonical ensemble.” Mol. Phys. 52, 255–268. (1984) [54] W.G. Hoover “Canonical dynamics: Equilibrium phase-space distributions.” Phys. Rev. A 31, 1695 (1985) [55] T. Schneider and E. Stoll “Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions” Phys. Rev. B 17, 1302 (1978) [56] G. J. Martyna, D. J. Tobias, and M. L. Klein "Constant pressure molecular dynamics algorithms," J. Chem. Phys. 101, 4177 (1994). [57] B. Dünweg and W. Paul “Brownian Dynamics Simulations Without Gaussian Random Numbers” Int. J. Mod. Phys. B 2, 817-827 (1991) [58] Z. Fan, L. F. C. Pereira, H. Q. Wang, J. C. Zheng, D. Donadio and A. Harju “Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations” Phys. Rev. B 92, 094301 (2015) [59] D. Surblys, H. Matsubara, G. Kikugawa and T. Ohara “Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions” Phys. Rev. E 99, 051301(R) (2019) [60] P. Boone, H. Babaei and C. E. Wilmer “Heat Flux for Many-Body Interactions: Corrections to LAMMPS” J. Chem. Theory Comput. 15, 5579−5587 (2019) [61] Z. Fan, H. Dong, A. H and T. Ala-Nissila “Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials” Phys. Rev. B 99, 064308 (2019) [62] Z. Li, S. Xiong, C. Sievers, Y. Hu, Z. Fan, N. Wei, H. Bao, S. Chen, D. Donadio and T. Ala-Nissila” Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids” J. Chem. Phys. 151, 234105 (2019) [63] K. Zheng, L. Wang, S. Bai, J. Yu, Z. Tang and Z. Huang “An anomalous wave-like kinetic energy transport in graphene nanoribbons at high heat flux” Physica B 434, 64–68 (2014) [64] F. Müller-Plathe “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity” J. Chem. Phys. 106, 6082–6085 (1997) [65] T. Ikeshoji and B. Hafskjold “Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface” Mol. Phys. 81, 251–261. (1994) [66] P. Wirnsberger, D. Frenkel and C. Dellago “An enhanced version of the heat exchange algorithm with excellent energy conservation properties” J. Chem. Phys. 143, 124104 (2015) [67] J. Chen, G. Zhang, B. Li “How to improve the accuracy of equilibrium molecular dynamics for computation of thermal conductivity?” Phys. lett. A 374, 2392–2396 (2010) [68] J. Che, T. Çağın, W. Deng and W. A. Goddard “Thermal conductivity of diamond and related materials from molecular dynamics simulations.” J. Chem. Phys. 113, 6888 (2000) [69] 侯君儒, “以平衡分子動力學法模擬研究氮化鋁奈米薄膜有無氧雜質缺陷之熱傳性質”, 碩士, 國立台灣大學機械工程學研究所學位論文, 台灣大學, 2016 [70] S. Fernbach, E. Kraker, E. Zojer and N. Bedoya-Martínez “Reliable force field potential for modelling thermal transport in AlN” 2022 28th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), pages 1–4, (2022) [71] J. Dunn, E. Antillon, J. Maassen, M. Lundstrom and A. Strachan “Role of energy distribution in contacts on thermal transport in Si: A molecular dynamics study” J. Appl. Phys. 120, 225112 (2016) [72] P. K. Schelling, S. R. Phillpot and P. Keblinski “Comparison of atomic-level simulation methods for computing thermal conductivity” Phys. Rev. B, 65, 144306 (2002). [73] 張泰鳴, "矽鍺低維度材料熱傳性質之非平衡分子動力學模擬研究", 博士, 國立台灣大學機械工程研究所學位論文, 台灣大學, 2010 [74] M. J. Huang, H. Y Liao “An investigation into the thermal rectification in one-dimensional asymmetric systems” Appl. Therm. Eng. 245, 122856 (2024) [75] X. Yang, D. Yu, B. Cao and A. C. To “Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube–Graphene Intramolecular Junctions” ACS Appl. Mater. Interfaces 9, 29–35 (2017) [76] J. Lee, V. Varshney, A. K. Roy, J. B. Ferguson and B. L. Farmer “Thermal Rectification in Three-Dimensional Asymmetric Nanostructure” Nano Lett. 12, 3491–3496 (2012) | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95686 | - |
dc.description.abstract | 本論文使用平衡分子動力學(EMD)方法來研究纖鋅礦氮化鋁塊材以及薄膜之熱傳導係數,亦使用非平衡分子動力學(NEMD)方法來研究厚度不對稱氮化鋁薄膜結構之熱整流性質,並與熱擴散方程式之結果進行比較。模擬使用Tersoff勢能函數來描述原子之間的作用力。
透過EMD模擬得到的室溫氮化鋁塊材熱傳導係數會大於實驗及第一原理結果,且在溫度介於100 K到500 K間時,熱傳導係數會隨著溫度上升而下降,非等向性落在1.9%至 6.8%之間,可視為等向性材料。而透過EMD模擬得到的氮化鋁薄膜平面及垂直平面熱傳導係數在溫度介於100 K到500 K間時,也都會隨著溫度上升而下降。隨著薄膜厚度增加,平面熱傳導係數會略微上升,而垂直平面熱傳導係數則會明顯的增加。 在透過EMD模擬得到的薄膜熱傳導係數的溫度相依性後,可將其用於求解熱擴散方程式,以初步探討厚度不對稱氮化鋁薄膜結構的熱整流現象。結果顯示,由於二維熱擴散方程式有考慮到截面積變化所造成的擴散熱阻,因此熱傳量略小於一維之結果,且熱偏好從面積小流向面積大的地方。相較於熱擴散方程式,由於NEMD模擬包含了尺寸效應以及微觀介面熱阻等現象,因此熱傳量小了一個數量級,熱整流方向也與二維熱擴散方程式之結果相反。 | zh_TW |
dc.description.abstract | In this study, we use equilibrium molecular dynamics (EMD) simulation to study the thermal conductivity of bulk and thin film wurtzite aluminum nitride (AlN). In addition, we also use nonequilibrium molecular dynamics (NEMD) simulation to investigate the thermal rectification phenomenon of thickness-asymmetric AlN thin film structure and compare the result with those from the heat diffusion equation.
The thermal conductivity of bulk AlN at room temperature obtained through EMD simulations is slightly higher than experimental and first-principles results. When the temperature is between 100 K and 500 K, the thermal conductivity decreases as the temperature rises, with anisotropy ranging from 1.9% to 6.8%, indicating that it can be considered as an isotropic material. For AlN thin films, the in-plane and out-plane thermal conductivity also decrease as the temperature increases between 100 K and 500 K. As the film thickness increases, the in-plane thermal conductivity slightly increases, while the out-plane thermal conductivity significantly increases. After obtaining the temperature-dependent thermal conductivity of the thin film through EMD simulations, it can be used to solve the heat diffusion equation to explore the thermal properties of thickness-asymmetric AlN thin film structure. The results show that, due to the interface thermal resistance caused by the change in cross-sectional area considered in the 2D heat diffusion equation, the heat is slightly smaller than the 1D result, and heat tends to flow from the smaller to the larger area. Compared to the heat diffusion equation, the NEMD simulations, which consider size effects and microscopic effect, result in a much smaller heat with the thermal rectification direction opposite to that of the 2D heat diffusion equation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:48:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-15T16:48:04Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目次 iv 圖次 vii 表次 ix 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 實驗研究 2 1.2.2 模擬研究 4 1.2.3 熱整流現象 5 1.3 研究動機 6 1.4 分子動力學模擬軟體介紹 7 1.5 論文架構 7 第二章 分子動力學 9 2.1 氮化鋁晶格結構 9 2.2 勢能函數 10 2.2.1 Tersoff 勢能函數 10 2.3 初始條件與邊界條件 12 2.3.1 初始條件 12 2.3.2 週期性邊界條件 12 2.4 運動方程式 13 2.5 控溫控壓方法 13 2.5.1 Nose-Hoover控溫法 14 2.5.2 Langevin控溫法 14 2.5.3 Nose-Hoover控溫控壓法 15 2.6 熱傳導係數計算方法 16 2.6.1 平衡分子動力學 16 2.6.2 非平衡分子動力學 17 第三章 纖鋅礦氮化鋁塊材熱傳導係數 20 3.1 模擬時步大小測試 20 3.1.1 原子振動特徵時間分析 20 3.1.2 時步大小測試 21 3.2 穩態判斷 22 3.3 Green-Kubo公式的積分上限 22 3.4 誤差分析 24 3.5 計算精度的影響 25 3.6 有限尺寸效應 26 3.7 溫度相依性 26 第四章 纖鋅礦氮化鋁薄膜熱導係數 28 4.1 模擬時步大小測試 28 4.2 穩態判斷 29 4.3 Green-Kubo公式的積分上限 29 4.4 誤差分析 30 4.5 有限尺寸效應 30 4.6 薄膜厚度相依性 30 4.7 溫度相依性 32 第五章 熱整流效應 33 5.1 模擬系統與模擬設置 33 5.2 穩態判斷 34 5.3 計算精度的影響 35 5.4 熱擴散方程式 35 5.4.1 一維熱擴散方程式之求解 35 5.4.2 二維熱擴散方程式之模擬設置 37 5.5 熱整流係數 37 5.5.1 平均溫度及溫差的影響 38 5.5.2 NEMD與熱擴散方程式之比較 38 第六章 結論與未來展望 41 6.1 結論 41 6.1.1 纖鋅礦氮化鋁塊材 41 6.1.2 纖鋅礦氮化鋁薄膜 41 6.1.3 厚度不對稱氮化鋁結構 42 6.2 未來展望 42 附錄A 控溫法測試 44 A.1 模擬系統與設置 44 A.2 穩態判斷 44 A.3 控溫參數對溫度分布的影響 45 A.4 控溫參數對熱傳量的影響 46 A.5 熱傳導係數計算方法 46 A.6 控溫參數對熱傳導係數的影響 47 A.7 熱浴長度的影響 48 A.8 結論 48 參考文獻 50 圖表 59 | - |
dc.language.iso | zh_TW | - |
dc.title | 以分子動力學模擬研究氮化鋁薄膜之熱傳性質 | zh_TW |
dc.title | An Investigation of the Thermal Properties of Aluminum Nitride in use of Molecular Dynamics Simulation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王大銘;張怡玲 | zh_TW |
dc.contributor.oralexamcommittee | Da-Ming Wang;I-Ling Chang | en |
dc.subject.keyword | 分子動力學,熱傳導係數,氮化鋁,熱整流現象,厚度不對稱結構, | zh_TW |
dc.subject.keyword | Molecular Dynamics,Thermal Conductivity,Aluminum Nitride,Thermal Rectification,Thickness-asymmetric Structure, | en |
dc.relation.page | 117 | - |
dc.identifier.doi | 10.6342/NTU202403761 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 5.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。