請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95671完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張秉純 | zh_TW |
| dc.contributor.advisor | Biing-Chwen Chang | en |
| dc.contributor.author | 陳旻彥 | zh_TW |
| dc.contributor.author | Min-Yen Chen | en |
| dc.date.accessioned | 2024-09-15T16:43:27Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] J. K. Startzell, D. A. Owens, L. M. Mulfinger, and P. R. Cavanagh, “Stair Negotiation in Older People: A Review,” J. Am. Geriatr. Soc., vol. 48, no. 5, pp. 567–580, 2000, doi: 10.1111/j.1532-5415.2000.tb05006.x.
[2] B. J. McFadyen and D. A. Winter, “An integrated biomechanical analysis of normal stair ascent and descent,” J. Biomech., vol. 21, no. 9, pp. 733–744, Jan. 1988, doi: 10.1016/0021-9290(88)90282-5. [3] J. E. Zachazewski, P. O. Riley, and D. E. Krebs, “Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects,” p. 11, 1993. [4] A. K. Silverman, R. R. Neptune, E. H. Sinitski, and J. M. Wilken, “Whole-body angular momentum during stair ascent and descent,” Gait Posture, vol. 39, no. 4, pp. 1109–1114, Apr. 2014, doi: 10.1016/j.gaitpost.2014.01.025. [5] T. Igawa and J. Katsuhira, “Biomechanical Analysis of Stair Descent in Patients with Knee Osteoarthritis,” J. Phys. Ther. Sci., vol. 26, no. 5, pp. 629–631, 2014, doi: 10.1589/jpts.26.629. [6] M. Hall, C. A. Stevermer, and J. C. Gillette, “Gait analysis post anterior cruciate ligament reconstruction: Knee osteoarthritis perspective,” Gait Posture, vol. 36, no. 1, pp. 56–60, May 2012, doi: 10.1016/j.gaitpost.2012.01.003. [7] M. E. Zabala, J. Favre, S. F. Scanlan, J. Donahue, and T. P. Andriacchi, “Three-dimensional knee moments of ACL reconstructed and control subjects during gait, stair ascent, and stair descent,” J. Biomech., vol. 46, no. 3, pp. 515–520, Feb. 2013, doi: 10.1016/j.jbiomech.2012.10.010. [8] A. L. Hof, M. G. J. Gazendam, and W. E. Sinke, “The condition for dynamic stability,” J. Biomech., vol. 38, no. 1, pp. 1–8, Jan. 2005, doi: 10.1016/j.jbiomech.2004.03.025. [9] I. Bosse, K. D. Oberländer, H. H. Savelberg, K. Meijer, G.-P. Brüggemann, and K. Karamanidis, “Dynamic stability control in younger and older adults during stair descent,” Hum. Mov. Sci., vol. 31, no. 6, pp. 1560–1570, Dec. 2012, doi: 10.1016/j.humov.2012.05.003. [10] H.-J. Lee and L.-S. Chou, “Balance control during stair negotiation in older adults,” J. Biomech., vol. 40, no. 11, pp. 2530–2536, Jan. 2007, doi: 10.1016/j.jbiomech.2006.11.001. [11] O. S. Mian, M. V. Narici, A. E. Minetti, and V. Baltzopoulos, “Centre of mass motion during stair negotiation in young and older men,” Gait Posture, vol. 26, no. 3, pp. 463–469, Sep. 2007, doi: 10.1016/j.gaitpost.2006.11.202. [12] R. J. Farris, H. A. Quintero, and M. Goldfarb, “Performance evaluation of a lower limb exoskeleton for stair ascent and descent with Paraplegia,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA: IEEE, Aug. 2012, pp. 1908–1911. doi: 10.1109/EMBC.2012.6346326. [13] F. Xu, X. Lin, H. Cheng, R. Huang, and Q. Chen, “Adaptive stair-ascending and stair-descending strategies for powered lower limb exoskeleton,” in 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Aug. 2017, pp. 1579–1584. doi: 10.1109/ICMA.2017.8016052. [14] A. T. Asbeck, S. M. M. De Rossi, K. G. Holt, and C. J. Walsh, “A biologically inspired soft exosuit for walking assistance,” Int. J. Robot. Res., vol. 34, no. 6, pp. 744–762, May 2015, doi: 10.1177/0278364914562476. [15] H. D. Lee, H. Park, B. Seongho, and T. H. Kang, “Development of a Soft Exosuit System for Walking Assistance During Stair Ascent and Descent,” Int. J. Control Autom. Syst., vol. 18, no. 10, pp. 2678–2686, Oct. 2020, doi: 10.1007/s12555-019-0584-5. [16] J. Yang, J. Park, J. Kim, S. Park, and G. Lee, “Reducing the energy cost of running using a lightweight, low-profile elastic exosuit,” J. NeuroEngineering Rehabil., vol. 18, no. 1, p. 129, Dec. 2021, doi: 10.1186/s12984-021-00928-x. [17] A. Masdar, B. S. K. K. Ibrahim, D. Hanafi, M. Mahadi Abdul Jamil, and K. A. A. Rahman, “Knee joint angle measurement system using gyroscope and flex-sensors for rehabilitation,” in The 6th 2013 Biomedical Engineering International Conference, Oct. 2013, pp. 1–4. doi: 10.1109/BMEiCon.2013.6687719. [18] A. Tognetti, F. Lorussi, N. Carbonaro, and D. De Rossi, “Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life,” Sensors, vol. 15, no. 11, Art. no. 11, Nov. 2015, doi: 10.3390/s151128435. [19] B. J. Stetter, F. C. Krafft, S. Ringhof, T. Stein, and S. Sell, “A Machine Learning and Wearable Sensor Based Approach to Estimate External Knee Flexion and Adduction Moments During Various Locomotion Tasks,” Front. Bioeng. Biotechnol., vol. 8, 2020, Accessed: Jul. 24, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fbioe.2020.00009 [20] H. Chan et al., “Assessing Gait Patterns of Healthy Adults Climbing Stairs Employing Machine Learning Techniques,” Int. J. Intell. Syst., vol. 28, no. 3, pp. 257–270, 2013, doi: 10.1002/int.21568. [21] T. Anwar, Y. M. Aung, and A. Al Jumaily, “The estimation of Knee Joint angle based on Generalized Regression Neural Network (GRNN),” in 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Oct. 2015, pp. 208–213. doi: 10.1109/IRIS.2015.7451613. [22] J. Coker, H. Chen, M. C. Schall, S. Gallagher, and M. Zabala, “EMG and Joint Angle-Based Machine Learning to Predict Future Joint Angles at the Knee,” Sensors, vol. 21, no. 11, Art. no. 11, Jan. 2021, doi: 10.3390/s21113622. [23] R. Mischianti, “ESP32 WeMos LOLIN32 high resolution pinout and specs,” Renzo Mischianti. Accessed: Jun. 25, 2024. [Online]. Available: https://mischianti.org/esp32-wemos-lolin32-high-resolution-pinout-and-specs/ [24] “Flex Sensor Hookup Guide - SparkFun Learn.” Accessed: Jun. 17, 2023. [Online]. Available: https://learn.sparkfun.com/tutorials/flex-sensor-hookup-guide [25] “Ligaments In The Knee,” Jacksonville Orthopaedic Institute. Accessed: Jul. 16, 2024. [Online]. Available: https://www.joionline.net/trending/content/ligament-in-the-knee [26] “FLEX SENSOR DATA SHEET 2014.pdf.” [27] “Differences between TCP and UDP,” GeeksforGeeks. Accessed: Apr. 01, 2024. [Online]. Available: https://www.geeksforgeeks.org/differences-between-tcp-and-udp/ [28] A. Nair, “Long Short Term Memory Networks,” Multi-Agent Reinforcement Learning. Accessed: Aug. 06, 2024. [Online]. Available: https://marl-ieee-nitk.github.io/deep-learning/2018/12/13/LSTM.html [29] A. Shenfield and M. Howarth, “A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults,” Sensors, vol. 20, no. 18, Art. no. 18, Jan. 2020, doi: 10.3390/s20185112. [30] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons, 1999. [31] “Rectus Femoris Muscle,” Innerbody. Accessed: Jul. 08, 2024. [Online]. Available: https://www.innerbody.com/image_musfov/musc65-new.html [32] “The Long Head of the Biceps Brachii: 3D Anatomy Model,” Innerbody. Accessed: Jul. 08, 2024. [Online]. Available: https://www.innerbody.com/image_musc05/musc56.html [33] “Tibialis Anterior Muscle - Anatomy Pictures and Information,” Innerbody. Accessed: Jul. 08, 2024. [Online]. Available: https://www.innerbody.com/image_musc09/skel28.html [34] “Gastrocnemius Muscle (Medial Head),” Innerbody. Accessed: Jul. 08, 2024. [Online]. Available: https://www.innerbody.com/anatomy/muscular/gastrocnemius-muscle-medial-head | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95671 | - |
| dc.description.abstract | 走樓梯是生活中常見的功能性活動,相對於平地行走是相當劇烈的活動。而跌倒為年長者十大死因之一,其中下樓梯因重心前傾,跌倒風險甚高,且下樓梯現有對策難以實時監控樓梯行走狀況。
本研究旨在開發一種膝關節角度監測穿戴式裝置,並透過增加彈力帶來分析此外力如何影響下樓梯時的動態平衡。我們將慣性感測元件與彎曲感測器結合於軟性膝蓋穿戴輔具中,使其能夠在下樓梯的過程中實時感測使用者的動作,實驗結果顯示,增加彈力帶於該裝置能增加質心移動速度,進而降低使用者在步態循環中處在動態穩定的時期。為了增強裝置的功能,我們結合機器學習模型來預測使用者的膝關節角度,以提供較準確的角度評估,在調整模型參數後的驗證結果顯示,角度預測誤差值為最低可達10.8度。 | zh_TW |
| dc.description.abstract | Stair negotiation is a common functional activity in daily life, and it’s also an intense exercise compared to level-walking. Falling is one of the top ten causes of death among the elderly. The risk of falling during stair descent is very high due to forward tilt of body weight.
This study aims to develop a wearable device for monitoring knee joint angles and to analyze how the addition of elastic bands influences dynamic stability during stair descent. We integrated inertial measurement units (IMUs) and flex sensors into a soft wearable knee brace, enabling real-time monitoring of the user's movements while descending stairs. Experimental results indicate that adding elastic bands to the device increases the speed of the center of mass movement, thereby reducing the time spent in dynamically stable phases of the gait cycle. To enhance the functionality of the device, we incorporated machine learning models to predict the user's knee joint angles, providing more accurate angle assessments. After adjusting the model parameters, the validation results showed that the angle prediction error could be reduced to as low as 10.8 degrees. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:43:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:43:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii ABSTRACT iii 目次 iv 圖次 vii 表次 ix 符號彙編 x 縮寫對照表 xi 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 1.2.1 下樓梯之生物力學分析 1 1.2.2 動態穩定性 4 1.2.3 現有外骨骼與穿戴式輔具 6 1.2.4 機器學習在人體動作分析上的應用 9 1.3 研究目的 10 第2章 穿戴裝置系統設計 12 2.1 裝置硬體設計 12 2.1.1 微控制器 13 2.1.2 感測器 14 2.1.3 電路與元件配置 17 2.2 輔助機構設計 19 2.3 資料傳輸 20 2.4 性能測試 21 2.4.1 彎曲感測器測試 21 2.4.2 彈力帶測試 23 第3章 機器學習 26 3.1 機器學習簡介 26 3.2 演算法類型 26 3.2.1 長短期記憶網路 26 3.2.2 卷積神經網路 27 3.3 建立資料集:人體實驗一 29 3.3.1 實驗目的與對象 29 3.3.2 實驗器材 29 3.3.3 實驗步驟 30 3.3.4 運動學分析 31 3.3.5 實驗結果 34 3.3.6 資料集建立 36 3.4 模型建立與運算設備 36 3.4.1 長短期記憶網路 37 3.4.2 卷積神經網路 37 3.5 模型驗證 38 3.5.1 長短期記憶網路 38 3.5.2 卷積神經網路 43 第4章 輔助裝置對於下樓梯動作之影響 45 4.1 人體實驗二 45 4.1.1 實驗目的與對象 45 4.1.2 實驗器材 45 4.1.3 實驗步驟 47 4.2 數據分析 47 4.2.1 感測器 48 4.2.2 肌電圖 48 4.2.3 動態穩定性 48 4.3 實驗結果與討論 49 4.3.1 運動學分析 49 4.3.2 肌肉激發程度 52 4.3.3 動態穩定性 54 4.4 實驗限制 56 第5章 結論 57 5.1 研究總結 57 5.2 未來展望 57 參考文獻 58 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 膝關節角度量測裝置開發與裝置阻力對下樓梯影響之探討 | zh_TW |
| dc.title | Developing a Knee Angle Measurement Device and Investigating Device Resistance Force on Stair Descent | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹魁元;徐瑋勵 | zh_TW |
| dc.contributor.oralexamcommittee | Kuei-Yuan Chan;Wei-Li Hsu | en |
| dc.subject.keyword | 膝關節穿戴裝置,動態穩定性,穿戴式科技,下樓梯, | zh_TW |
| dc.subject.keyword | Wearable knee brace,Dynamic stability,Wearable technology,Stair descent, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202404124 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
