Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95670
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉zh_TW
dc.contributor.advisorHuei Wangen
dc.contributor.author馬唯傑zh_TW
dc.contributor.authorWei-Chieh Maen
dc.date.accessioned2024-09-15T16:43:10Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] J. Carpenter, D. Iono, F. Kemper, A. Wooten, "The ALMA Development Program, Roadmap 2030," 2020. [Online]. Available: arXiv: 2001.11076.
[2] Atacama Large Millimeter/Submillimeter Array. Receivers. https://www.almaobservatory.org/en/about-alma/how-alma-works/technologies/receivers/
[3] Y. Ghasempour, C. R. C. M. da Silva, C. Cordeiro and E. W. Knightly, "IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi," in IEEE Communications Magazine, vol. 55, no. 12, pp. 186-192, Dec. 2017.
[4] J. -H. Tsai, "Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 670-678.
[5] H. -Y. Yang et al., "Design and Analysis of a 0.8–77.5-GHz Ultra-Broadband Distributed Drain Mixer Using 0.13-μm CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 3, pp. 562-572.
[6] J. -H. Tsai, H. -Y. Yang, T. -W. Huang and H. Wang, "A 30–100 GHz Wideband Sub-Harmonic Active Mixer in 90 nm CMOS Technology," in IEEE Mi-crowave and Wireless Components Letters, vol. 18, no. 8, pp. 554-556.
[7] K. -C. Lin et al., "A 4.2-mW 6-dB Gain 5–65-GHz Gate-Pumped Down-Conversion Mixer Using Darlington Cell for 60-GHz CMOS Receiver," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1516-1522.
[8] H. -K. Chiou, H. -T. Chou and C. -J. Liang, "A 35-to-83 GHz Multicon-ductor-Lines Signal Combiner for High Linear and Wideband Mixer," in IEEE Mi-crowave and Wireless Components Letters, vol. 23, no. 10, pp. 548-550.
[9] Y. -C. Liu, Yi-Wei Chang, Ya-Che Yeh, S. -H. Weng, J. -H. Tsai and H. -Y. Chang, "A 2-to-67 GHz 0-dBm LO power broadband distributed NMOS-HBT Dar-lington mixer in 0.18 µm SiGe process," 2016 IEEE MTT-S International Micro-wave Symposium (IMS), San Francisco, CA, USA, 2016, pp. 1-4
[10] T. Kojima, et al., "Performance and Characterization of a Wide IF SIS-Mixer-Preamplifier Module Employing High-J c SIS Junctions," IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 6, pp. 694-703, Nov. 2017.
[11] S. P. Sah and Deukhyoun Heo, "A 12 GHz IF bandwidth low power 5–17 GHz V-band positive transformer-feedback down-conversion mixer," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 2014, pp. 1-4.
[12] Jian Zhang, Yu Ye and Xiao-Wei Sun, "A W-band high conversion gain, single-balanced subharmonically gate-pumped mixer with novel size-reduced marchand balun," 2015 IEEE MTT-S International Microwave Symposium, Phoe-nix, AZ, USA, 2015, pp. 1-3.
[13] D. Parveg, M. Varonen, M. Kärkkäinen, D. Karaca, A. Vahdati and K. A. I. Halonen, "Wideband millimeter-wave active and passive mixers in 28 nm bulk CMOS technology," 2015 10th European Microwave Integrated Circuits Confer-ence (EuMIC), Paris, France, 2015, pp. 116-119.
[14] Y. Li, W. L. Goh and Y. -Z. Xiong, "A Broadband Mixer Up to 110 GHz With I–Q Outputs," in IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 2, pp. 251-259.
[15] Y. -S. Lin, C. -L. Lu and Y. -H. Wang, "A 5 to 45 GHz Distributed Mixer With Cascoded Complementary Switching Pairs," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, pp. 495-497.
[16] Y.-A. Lai, C.-N. Chen, S.-H. Huang, and Y.-H. Huang, “Compact Double-balanced Star Mixers with Novel Dual 180° Hybrids,” in Proc. IEEE 11th Int. Conf. Solid-State Integr. Circuit Technol, Oct. 2012, pp.1-4.
[17] Z. Chen, X. Jiang, W. Homg, and J. Chen, “A Q-band doubly balanced mixer in 0.15um GaAs PHEMT technology,” in IEEE Int. Wireless Symp., Mar. 2014, pp. 1-4.
[18] Y.-J. Hwang, H. Wang, and T.-H. Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer,” IEEE Microw. Wireless Com-pon. Lett. vol. 14, no. 7, pp. 313–315, Jul. 2004.
[19] Z. -M. Tsai, J. -C. Kao, K. -Y. Lin and H. Wang, "A 24–48 GHz cascode HEMT mixer with DC to 15 GHz IF bandwidth for astronomy radio tele-scope," 2009 European Microwave Integrated Circuits Conference (EuMIC), 2009, pp. 5-8.
[20] J. -C. Kao, K. -Y. Lin, C. -C. Chiong, C. -Y. Peng and H. Wang, "A W-band High LO-to-RF Isolation Triple Cascode Mixer with Wide IF Bandwidth," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 7, pp. 1506-1514, July 2014.
[21] C. -N. Chen, Y. -H. Lin, Y. -C. Chen, C. -C. Chiong and H. Wang, "A High LO-to-RF Isolation 34–53 GHz Cascode Mixer for ALMA Observatory Applica-tions," 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 686-689.
[22] Y.-C. Wu, C. -C. Chiong and H. Wang, "A novel 30–90 GHz singly bal-anced mixer with broadband LO/IF," 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, pp. 1-4.
[23] Y. Ghasempour, C. R. C. M. da Silva, C. Cordeiro and E. W. Knightly, "IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi," in IEEE Communications Magazine, vol. 55, no. 12, pp. 186-192.
[24] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia and J. C. Widmer, "IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper]," in IEEE Communications Magazine, vol. 52, no. 12, pp. 132-141.
[25] M. Yaghoobi, M. Yavari, M. H. Kashani, H. Ghafoorifard and S. Mirabbasi, "A 55–64-GHz Low-Power Small-Area LNA in 65-nm CMOS With 3.8-dB Aver-age NF and ~12.8-dB Power Gain," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 128-130.
[26] B. -Z. Lu, Y. Wang, Y. -C. Wu, C. -C. Chiong and H. Wang, "A Submilli-watt K-Band Low-Noise Amplifier for Next Generation Radio Astronomical Re-ceivers in 65-nm CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 7, pp. 669-672, July 2020.
[27] S. Kong, H. D. Lee, M. -S. Lee and B. Park, "A V-Band Current-Reused LNA With a Double-Transformer-Coupling Technique," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 942-944, Nov. 2016.
[28] M. -H. Li, Y. Wang and H. Wang, "A 50–67-GHz Ultralow-Power LNA Using Double-Transformer-Coupling Technique and Self-Resonant Matching in 90-nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 1, pp. 68-71.
[29] D. K. Shaeffer and T. H. Lee, "A 1.5-V, 1.5-GHz CMOS low noise ampli-fier," in IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759.
[30] H. -C. Kuo and H. -R. Chuang, "A 60-GHz high-gain, low-power, 3.7-dB noise-figure low-noise amplifier in 90-nm CMOS," 2013 European Microwave Conference, Nuremberg, Germany, 2013, pp. 1555-1558.
[31] J. -H. Tsai, C. -C. Hung, J. -H. Cheng, C. -F. Lin and R. -A. Chang, "An E-Band Transformer-Based 90-nm CMOS LNA," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2018, pp. 660-662.
[32] S. Guo, T. Xi, P. Gui, D. Huang, Y. Fan and M. Morgan, "A Transformer Feedback Gm-Boosting Technique for Gain Improvement and Noise Reduction in mm-Wave Cascode LNAs," in IEEE Transactions on Microwave Theory and Tech-niques, vol. 64, no. 7, pp. 2080-2090, July 2016.
[33] H. -S. Chen, W. -C. Huang and J. Y. -C. Liu, "Design of V-Band CMOS Low-Noise Amplifier and Mixer with Integrated Transformers," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2018, pp. 762-764.
[34] E. Cohen, O. Degani and D. Ritter, "A wideband gain-boosting 8mW LNA with 23dB gain and 4dB NF in 65nm CMOS process for 60 GHz applications," 2012 IEEE Radio Frequency Integrated Circuits Symposium, Montreal, QC, Cana-da, 2012, pp. 207-210.
[35] J. Moody, S. Lepkowski and T. M. Forbes, "A Low Power V-Band LNA with Wide Supply Voltage Range Exploiting Complementary Current Reuse and Power Efficient Bias Point," 2023 IEEE/MTT-S International Microwave Symposi-um - IMS 2023, San Diego, CA, USA, 2023, pp. 135-138.
[36] W. -C. Ma, C. -C. Chiong, Y. -S. Wang and H. Wang, "A High LO-to-RF Isolation E-band Mixer with 30 GHz Instantaneous IF Bandwidth in 90nm CMOS," 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023, pp. 139-142.
[37] J.-S. G. Hong et al., Microstrip Filters for RF/Microwave Applications. New York, NY, USA: Wiley, 2001.
[38] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A Full Ka-Band Power Amplifier With 32.9% PAE and 15.3-dBm Power in 65-nm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[39] Markimicrowave, "GaAs MMIC Double Balanced Mixer," MM1-1850HSM datasheet, May. 2019 [Revised July. 2019].
[40] P. Kumari, J. Choi, N. González-Prelcic and R. W. Heath, "IEEE 802.11ad-Based Radar: An Approach to Joint Vehicular Communication-Radar System," in IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3012-3027, April 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95670-
dc.description.abstract本論文包含三個部份。第一部分是應用於天文觀測的E頻段超寬中頻降頻混頻器,第二部分是應用於天文觀測的W頻段超寬中頻降頻混頻器,第三部分是應用於短距離無線通訊的V頻段低功耗寬頻低雜訊放大器,以上皆使用90奈米金氧半場效電晶體製程設計。
第一部分提出操作在E頻段62-92 GHz的降頻混頻器,此電路將被動式電晶體使用在單端混頻器,達到超寬中頻,並使用兩對電容-電感共振電路提升本地振盪端到射頻端的隔離度表現。量測結果顯示,在輸入8 dBm的60 GHz本地振盪訊號時,此電路中頻頻寬可達30 GHz,射頻頻寬可覆蓋整個E頻段,全頻轉換損耗介於9到12 dB之間,並在本地震盪端到射頻端有高達40.8 dB的隔離度。
第二部分提出操作在W頻段72-110 GHz的降頻混頻器,此電路將被動式電晶體使用在雙平衡式混頻器架構,達到超寬中頻。量測結果顯示,在輸入0 dBm的70 GHz本地振盪訊號時,此電路中頻頻寬可達38 GHz,射頻頻寬可覆蓋整個W頻段,全頻轉換損耗介於7到12 dB之間,並在本地震盪端到射頻端有高達37.5 dB的隔離度。
第三部分提出操作在V頻段60 GHz的低雜訊放大器,此電路採用三級共源共柵架構,運用源級衰退、雜訊抑制及增益放大技術提升雜訊及增益表現。量測結果顯示,此電路最佳增益為在60 GHz的 18.1 dB,並有5.8 dB的最低雜訊指數,3-dB頻寬達10 GHz,且僅需7.8 mW的功耗。
zh_TW
dc.description.abstractThere are three parts to this thesis. The first part is an E-band down-conversion mix-er with wide IF bandwidth for astronomical observations. The second part is a W-band down-conversion mixer with wide IF bandwidth for astronomical observations. The third part is a V-band low-power broadband low-noise amplifier for short-distance wireless communication. The three circuits were fabricated in 90-nm CMOS.
The first part of the paper proposes a modified cascode mixer in E-band. This circuit achieves wide bandwidth by applying cold-biased mixing transistors in a single-ended topology. Two pairs of LC resonators are embedded to improve isolation from the LO port to the RF port. According to the measurements, when pumped by a 60-GHz 8-dBm LO power, the mixer exhibits 30 GHz IF bandwidth. Over the full E-band, the measured conversion loss is between 9 and 12 dB. The LO-to-RF isolation reaches 40.8 dB.
The second part of the paper proposes a modified Gilbert-cell mixer in W-band. This circuit achieves wide bandwidth by applying cold-biased mixing transistors in double-balanced topology. According to the measurement, when pumped by a 70-GHz 0-dBm LO power, the mixer exhibits 38 GHz IF bandwidth. Over the full W-band, the measured conversion loss is between 7 and 12 dB. And the LO-to-RF isolation reaches 37.5 dB.
The third part of the paper proposes a low-noise amplifier operating in V-band. A three-stage cascode structure is adopted in this circuit. This circuit employs source degen-eration, noise reduction, and gain boosting techniques to improve noise and gain perfor-mance. According to the measurements, this circuit has a gain of 18.1 dB at 60 GHz, a lowest noise factor of 5.8 dB, and a 10 GHz 3-dB bandwidth, with only 7.8 mW power consumption.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:43:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:43:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 iii
中文摘要 v
ABSTRACT vi
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 4
1.2.1 Wide Instantaneous IF Bandwidth Mixers 4
1.2.2 V-band Low Noise Amplifier in CMOS Technology 8
1.3 Contributions 11
1.4 Thesis Organization 12
Chapter 2 An E-band Down-conversion Mixer with a Wide IF Bandwidth 13
2.1 Design of the Mixer 14
2.1.1 Design Goals 14
2.1.2 Circuit Architecture 15
2.1.3 Biasing 16
2.1.4 Device Size Selection 18
2.1.5 Butterworth Low Pass Filter 21
2.1.6 LC Resonator 30
2.2 Simulation Results 38
2.3 Experiment Results 44
Chapter 3 A W-band Down-conversion Mixer with a Wide IF Bandwidth 52
3.1 Design of the Mixer 53
3.1.1 Design Goals 53
3.1.2 Circuit Architecture 54
3.1.3 Biasing 55
3.1.4 Device Size Selection 56
3.1.5 Isolation of Double-Balanced Mixer 58
3.1.6 Magnetically Coupled Resonator (MCR) 70
3.2 Simulation Results 73
3.3 Experiment Results 80
Chapter 4 A V-band Low Power LNA 85
4.1 Design of the LNA 86
4.1.1 Design Goals 86
4.1.2 Circuit Architecture 87
4.1.3 Biasing 88
4.1.4 Device Size Selection 92
4.1.5 Cascode CS Stage with Inductive Degeneration [29] 96
4.1.6 Inter-stage Noise Matching Inductor [30] 101
4.1.7 Gain-Boosting Inductor [32] 104
4.2 Simulation Results 108
4.3 Experiment Results 112
Chapter 5 Conclusions 116
References 118
-
dc.language.isoen-
dc.subject互補式金氧半導體zh_TW
dc.subject天文觀測zh_TW
dc.subject低雜訊放大器zh_TW
dc.subject混頻器zh_TW
dc.subjectCMOSen
dc.subjectMixeren
dc.subjectLow Noise Amplifieren
dc.subjectAstronomical Observationen
dc.titleE頻段及W頻段天文觀測用降頻混頻器及V頻段低雜訊放大器之設計zh_TW
dc.titleDesign of E-Band and W-band Down-conversion Mixers for Astronomical Observation and a V-Band Low Noise Amplifieren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee章朝盛;王雲杉;林坤佑;蔡作敏zh_TW
dc.contributor.oralexamcommitteeChau-Ching Chiong;Yun-Shan Wang;Kun-You Lin;Zuo-Min Tsaien
dc.subject.keyword混頻器,低雜訊放大器,天文觀測,互補式金氧半導體,zh_TW
dc.subject.keywordMixer,Low Noise Amplifier,Astronomical Observation,CMOS,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202403674-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-04-01-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved