請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95669
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭友晉 | zh_TW |
dc.contributor.advisor | Yo-Jin Shiau | en |
dc.contributor.author | 陳詣璿 | zh_TW |
dc.contributor.author | Yi-Shiuan Chen | en |
dc.date.accessioned | 2024-09-15T16:42:51Z | - |
dc.date.available | 2024-09-16 | - |
dc.date.copyright | 2024-09-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-13 | - |
dc.identifier.citation | Adams, S. M., Kimmel, B. L., & Ploskey, G. R. (1983). Sources of Organic-Matter for Reservoir Fish Production -a Trophic-Dynamics Analysis. Canadian Journal of Fisheries and Aquatic Sciences, 40(9), 1480-1495. https://doi.org/10.1139/f83-170
Bai, J., Zhao, J., Zhang, Z. Y., & Tian, Z. Q. (2022). Assessment and a review of research on surface water quality modeling. Ecological Modelling, 466. https://doi.org/10.1016/j.ecolmodel.2022.109888 Benke, A. C. (2018). River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position. Ecology, 99(6), 1370-1381. https://doi.org/10.1002/ecy.2228 Blake, W. H., Boeckx, P., Stock, B. C., Smith, H. G., Bodé, S., Upadhayay, H. R., Gaspar, L., Goddard, R., Lennard, A. T., Lizaga, I., Lobb, D. A., Owens, P. N., Petticrew, E. L., Kuzyk, Z. Z. A., Gari, B. D., Munishi, L., Mtei, K., Nebiyu, A., Mabit, L., . . . Semmens, B. X. (2018). A deconvolutional Bayesian mixing model approach for river basin sediment source apportionment. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-30905-9 Brett, M. T., Bunn, S. E., Chandra, S., Galloway, A. W. E., Guo, F., Kainz, M. J., Kankaala, P., Lau, D. C. P., Moulton, T. P., Power, M. E., Rasmussen, J. B., Taipale, S. J., Thorp, J. H., & Wehr, J. D. (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology, 62(5), 833-853. https://doi.org/10.1111/fwb.12909 Bunn, S. E., Davies, P. M., & Winning, M. (2003). Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology, 48(4), 619-635. https://doi.org/10.1046/j.1365-2427.2003.01031.x Cabana, G., & Rasmussen, J. B. (1994). Modeling Food-Chain Structure and Contaminant Bioaccumulation Using Stable Nitrogen Isotopes. Nature, 372(6503), 255-257. https://doi.org/10.1038/372255a0 Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater Biology, 51(8), 1389-1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x Cerná, K. (2010). Small-scale spatial variation of benthic algal assemblages in a peat bog. Limnologica, 40(4), 315-321. https://doi.org/10.1016/j.limno.2009.11.015 Chalcraft, D. R., & Resetarits, W. J. (2003). Predator identity and ecological impacts: Functional redundancy or functional diversity? Ecology, 84(9), 2407-2418. https://doi.org/10.1890/02-0550 Chessman, B. C., & McEvoy, P. K. (2012). Insights into Human Impacts on Streams from Tolerance Profiles of Macroinvertebrate Assemblages. Water Air and Soil Pollution, 223(3), 1343-1352. https://doi.org/10.1007/s11270-011-0949-8 Cohen, J. E., Pimm, S. L., Yodzis, P., & Saldana, J. (1993). Body Sizes of Animal Predators and Animal Prey in Food Webs. Journal of Animal Ecology, 62(1), 67-78. https://doi.org/10.2307/5483 de Carvalho, D. R., Sparks, J. P., Flecker, A. S., Alves, C. B. M., Moreira, M. Z., & Pompeu, P. S. (2021). Nitrogen pollution promotes changes in the niche space of fish communities. Oecologia, 197(2), 485-500. https://doi.org/10.1007/s00442-021-05029-z Delong, M. D., & Thorp, J. H. (2006). Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia, 147(1), 76-85. https://doi.org/10.1007/s00442-005-0241-y Doi, H., Kikuchi, E., Mizota, C., Satoh, N., Shikano, S., Yurlova, N., Yadrenkina, E., & Zuykova, E. (2004). Carbon, nitrogen, and sulfur isotope changes and hydro-geological processes in a saline lake chain. Hydrobiologia, 529(1), 225-235. https://doi.org/10.1007/s10750-004-6418-2 Doi, H., Zuykova, E. I., Kikuchi, E., Shikano, S., Kanou, K., Yurlova, N., & Yadrenkina, E. (2006). Spatial changes in carbon and nitrogen stable isotopes of the plankton food web in a saline lake ecosystem. Hydrobiologia, 571, 395-400. https://doi.org/10.1007/s10750-006-0205-1 Doucett, R. R., Barton, D. R., Guiguer, K. R. A., Power, G., & Drimmie, R. J. (1996). Comment: Critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 53(8), 1913-1915. https://doi.org/10.1139/f96-114 Flaherty, E. A., & Ben-David, M. (2010). Overlap and partitioning of the ecological and isotopic niches. Oikos, 119(9), 1409-1416. https://doi.org/10.1111/j.1600-0706.2010.18259.x Folsom, T. C., & Collins, N. C. (1984). The Diet and Foraging Behavior of the Larval Dragonfly Anax-Junius (Aeshnidae), with an Assessment of the Role of Refuges and Prey Activity. Oikos, 42(1), 105-113. https://doi.org/10.2307/3544615 Gorokhova, E. (2018). Individual growth as a non-dietary determinant of the isotopic niche metrics. Methods in Ecology and Evolution, 9(2), 269-277. https://doi.org/10.1111/2041-210X.12887 Greenwood, M. J., Harding, J. S., Niyogi, D. K., & McIntosh, A. R. (2012). Improving the effectiveness of riparian management for aquatic invertebrates in a degraded agricultural landscape: stream size and land-use legacies. Journal of Applied Ecology, 49(1), 213-222. https://doi.org/10.1111/j.1365-2664.2011.02092.x Hanratty, M. P., & Liber, K. (1996). Evaluation of model predictions of the persistence and ecological effects of diflubenzuron in a littoral ecosystem. Ecological Modelling, 90(1), 79-95. https://doi.org/10.1016/0304-3800(95)00149-2 Harding, J. N., Harding, J. M. S., & Reynolds, J. D. (2014). Movers and shakers: nutrient subsidies and benthic disturbance predict biofilm biomass and stable isotope signatures in coastal streams. Freshwater Biology, 59(7), 1361-1377. https://doi.org/10.1111/fwb.12351 Hill, W. R., & Middleton, R. G. (2006). Changes in carbon stable isotope ratios during periphyton development. Limnology and Oceanography, 51(5), 2360-2369. https://doi.org/10.4319/lo.2006.51.5.2360 Hogsden, K. L., & Harding, J. S. (2012). Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs. Environmental Pollution, 162, 466-474. https://doi.org/10.1016/j.envpol.2011.10.024 Holanda, P. D., Blanco, C. J. C., Cruz, D. O. D., Lopes, D. F., Barp, A. R. B., & Secretan, Y. (2011). Hydrodynamic Modeling and Morphological Analysis of Lake Agua Preta: One of the Water Sources of Belem-PA-Brazil. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 33(2), 117-124. Holland, A., Duivenvoorden, L. J., & Kinnear, S. H. W. (2012). Naturally acidic waterways: conceptual food webs for better management and understanding of ecological functioning. Aquatic Conservation-Marine and Freshwater Ecosystems, 22(6), 836-847. https://doi.org/10.1002/aqc.2267 Hyndes, G. A., Platell, M. E., & Potter, I. C. (1997). Relationships between diet and body size, mouth morphology, habitat and movements of six sillaginid species in coastal waters: Implications for resource partitioning. Marine Biology, 128(4), 585-598. https://doi.org/10.1007/s002270050125 Ishikawa, N. F., Doi, H., & Finlay, J. C. (2012). Global meta-analysis for controlling factors on carbon stable isotope ratios of lotic periphyton. Oecologia, 170(2), 541-549. https://doi.org/10.1007/s00442-012-2308-x Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER -Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595-602. https://doi.org/10.1111/j.1365-2656.2011.01806.x Jenkins, E., Gulka, J., Yurkowski, D. J., Le François, N. R., Wong, E. M., & Davoren, G. K. (2020). Isotopic Discrimination (δ15N, δ13C) in Captive and Wild Common Murres (Uria aalge) and Atlantic Puffins (Fratercula arctica). Physiological and Biochemical Zoology, 93(4), 296-309. https://doi.org/10.1086/709460 Jones, D. S., Barnthouse, L. W., Suter, G. W., Efroymson, R. A., Field, J. M., & Beauchamp, J. J. (1999). Ecological risk assessment in a large river-reservoir: 3. Benthic invertebrates. Environmental Toxicology and Chemistry, 18(4), 599-609. https://doi.org/10.1002/etc.5620180404 Kang, H. Y., Shin, J. K., Park, H. J., Lee, B. G., & Kang, C. K. (2022). Dominance of autochthonous trophic base in northeast Asian stream food webs pre-and post-monsoon. Ecological Indicators, 142. https://doi.org/10.1016/j.ecolind.2022.109268 Karlson, A. M. L., Reutgard, M., Garbaras, A., & Gorokhova, E. (2018). Isotopic niche reflects stress-induced variability in physiological status. Royal Society Open Science, 5(2). https://doi.org/10.1098/rsos.171398 Kaushal, S. S., Likens, G. E., Jaworski, N. A., Pace, M. L., Sides, A. M., Seekell, D., Belt, K. T., Secor, D. H., & Wingate, R. L. (2010). Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment, 8(9), 461-466. https://doi.org/10.1890/090037 Keast, A., & Webb, D. (1966). Mouth and Body Form Relative to Feeding Ecology in Fish Fauna of a Small Lake Lake Opinicon Ontario. Journal of the Fisheries Research Board of Canada, 23(12), 1845-&. https://doi.org/10.1139/f66-175 Keller, K., Allsop, Q., Box, J. B., Buckle, D., Crook, D. A., Douglas, M. M., Jackson, S., Kennard, M. J., Luiz, O. J., Pusey, B. J., Townsend, S. A., & King, A. J. (2019). Dry season habitat use of fishes in an Australian tropical river. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-41287-x Kendall, C., Silva, S. R., & Kelly, V. J. (2001). Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes, 15(7), 1301-1346. https://doi.org/10.1002/hyp.216 Kobayashi, S. (2012). -Dietary preference of the potamid crab Geothelphusa dehaani in a mountain stream in Fukuoka, northern Kyushu, Japan. -7(-4), -166. Krahn, M. M., Hanson, M. B., Baird, R. W., Burrows, D. G., Emmons, C. K., Ford, J. K. B., Jones, L. L., Noren, D. P., Ross, P. S., Schorr, G. S., Collier, T. K., & Boyer, R. H. (2007). Persistent organic pollutants and stable isotopes in biopsy samples (2004/2006) from Southern Resident killer whales. Marine Pollution Bulletin, 54(12), 1903-1911. https://doi.org/10.1016/j.marpolbul.2007.08.015 Kresic, N., & Stevanovic, Z. (2010). Groundwater Hydrology of Springs Engineering, Theory, Management, and Sustainability Preface. In Groundwater Hydrology of Springs: Engineering, Theory, Management, and Sustainability (pp. XIII-XIII). Krynak, E. M., & Yates, A. G. (2018). Benthic invertebrate taxonomic and trait associations with land use in an intensively managed watershed: Implications for indicator identification. Ecological Indicators, 93, 1050-1059. https://doi.org/10.1016/j.ecolind.2018.06.002 Lau, D. C. P., Leung, K. M. Y., & Dudgeon, D. (2009). Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society, 28(2), 426-439. https://doi.org/10.1899/07-079.1 Layman, C. A., Araujo, M. S., Boucek, R., Hammerschlag-Peyer, C. M., Harrison, E., Jud, Z. R., Matich, P., Rosenblatt, A. E., Vaudo, J. J., Yeager, L. A., Post, D. M., & Bearhop, S. (2012). Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews, 87(3), 545-562. https://doi.org/10.1111/j.1469-185X.2011.00208.x Levine, S. (1980). Several Measures of Trophic Structure Applicable to Complex Food Webs. Journal of Theoretical Biology, 83(2), 195-207. https://doi.org/10.1016/0022-5193(80)90288-X Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23(4), 399-418. https://doi.org/10.2307/1930126 Lombardo, A., Franco, A., Pivato, A., & Barausse, A. (2015). Food web modeling of a river ecosystem for risk assessment of down-the-drain chemicals: A case study with AQUATOX. Science of the Total Environment, 508, 214-227. https://doi.org/10.1016/j.scitotenv.2014.11.038 Loomer, H. A., Oakes, K. D., Schiff, S. L., Taylor, W. D., & Servos, M. R. (2015). Use of Stable Isotopes to Trace Municipal Wastewater Effluents into Food Webs within a Highly Developed River System. River Research and Applications, 31(9), 1093-1100. https://doi.org/10.1002/rra.2826 Lu, H. Y., Axe, L., & Tyson, T. A. (2003). Development and application of computer simulation tools for ecological risk assessment. Environmental Modeling & Assessment, 8(4), 311-322. https://doi.org/10.1023/B:ENMO.0000004585.85305.3d Marshall, K. N., Kaplan, I. C., Hodgson, E. E., Hermann, A., Busch, D. S., McElhany, P., Essington, T. E., Harvey, C. J., & Fulton, E. A. (2017). Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections. Global Change Biology, 23(4), 1525-1539. https://doi.org/10.1111/gcb.13594 McShaffrey, D., & McCafferty, W. P. (1990). Feeding-Behavior and Related Functional-Morphology of the Mayfly Ephemerella-Needhami (Ephemeroptera, Ephemerellidae). Journal of Insect Behavior, 3(5), 673-688. https://doi.org/10.1007/BF01052336 Méndez-Fernandez, P., Bustamante, P., Bode, A., Chouvelon, T., Ferreira, M., López, A., Pierce, G. J., Santos, M. B., Spitz, J., Vingada, J. V., & Caurant, F. (2012). Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. Journal of Experimental Marine Biology and Ecology, 413, 150-158. https://doi.org/10.1016/j.jembe.2011.12.007 Meng, J. N., Fang, H. W., Huang, L., He, G. J., Liu, X. B., Xu, C. Y., Wu, X. H., & Scavia, D. (2022). Multidimensional ecosystem assessment of Poyang Lake under anthropogenic influences. Ecological Modelling, 473. https://doi.org/10.1016/j.ecolmodel.2022.110134 Merilä, J., & Eloranta, A. P. (2017). Cannibalism facilitates gigantism in a nine-spined stickleback ( Pungitius pungitius ) population. Ecology of Freshwater Fish, 26(4), 686-694. https://doi.org/10.1111/eff.12316 Miranda, N. A. F., & Perissinotto, R. (2012). Stable Isotope Evidence for Dietary Overlap between Alien and Native Gastropods in Coastal Lakes of Northern KwaZulu-Natal, South Africa. Plos One, 7(2). https://doi.org/10.1371/journal.pone.0031897 Moe, S. J., Schartau, A. K., Bækken, T., & McFarland, B. (2010). Assessing macroinvertebrate metrics for classifying acidified rivers across northern Europe. Freshwater Biology, 55(7), 1382-1404. https://doi.org/10.1111/j.1365-2427.2010.02413.x Moisan, J. R., Moisan, T. A., & Abbott, M. R. (2002). Modelling the effect of temperature on the maximum growth rates of phytoplankton populations. Ecological Modelling, 153(3), 197-215. https://doi.org/10.1016/S0304-3800(02)00008-X Newsome, S. D., del Rio, C. M., Bearhop, S., & Phillips, D. L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5(8), 429-436. https://doi.org/10.1890/060150.1 Norton, S. F. (1991). Capture Success and Diet of Cottid Fishes -the Role of Predator Morphology and Attack Kinematics. Ecology, 72(5), 1807-1819. https://doi.org/10.2307/1940980 Park, R. A., Clough, J. S., & Wellman, M. C. (2008). AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems. Ecological Modelling, 213(1), 1-15. https://doi.org/10.1016/j.ecolmodel.2008.01.015 Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. Plos One, 5(3). https://doi.org/10.1371/journal.pone.0009672 Pastor, A., Peipoch, M., Cañas, L., Chappuis, E., Ribot, M., Gacia, E., Riera, J. L., Martí, E., & Sabater, F. (2013). Nitrogen Stable Isotopes in Primary Uptake Compartments Across Streams Differing in Nutrient Availability. Environmental Science & Technology, 47(18), 10155-10162. https://doi.org/10.1021/es460726e Pauly, D., Christensen, V., & Walters, C. (2000). Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. Ices Journal of Marine Science, 57(3), 697-706. https://doi.org/10.1006/jmsc.2000.0726 Peterson, C. C., Keppeler, F. W., Saenz, D. E., Bower, L. M., & Winemiller, K. O. (2017). Seasonal variation in fish trophic networks in two clear-water streams in the Central Llanos region, Venezuela. Neotropical Ichthyology, 15(2). https://doi.org/10.1590/1982-0224-20160125 Phillips, D. L., & Gregg, J. W. (2001). Uncertainty in source partitioning using stable isotopes. Oecologia, 127(2), 171-179. https://doi.org/10.1007/s004420000578 Phuge, S., & Phuge, A. (2019). Predator-prey interactions of tadpoles in different layers of the water column. Journal of Ethology, 37(2), 197-202. https://doi.org/10.1007/s10164-019-00588-4 Plummer, M. (2023). Simulation-Based Bayesian Analysis. Annual Review of Statistics and Its Application, 10, 401-425. https://doi.org/10.1146/annurev-statistics-122121-040905 Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83(3), 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 Reszko, A. E., Yang, D., David, F., Potter, J. F., & Brunengraber, H. (1997). Assay of low concentrations and stable isotopic enrichments of formaldehyde by mass isotopomer distribution (MID) analysis. Faseb Journal, 11(3), 2227-2227. Rodrigues, V., Estrany, J., Ranzini, M., de Cicco, V., Martín-Benito, J. M. T., Hedo, J., & Lucas-Borja, M. E. (2018). Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Corrego Agua Limpa, Sao Paulo (Brazil). Science of the Total Environment, 622, 1553-1561. https://doi.org/10.1016/j.scitotenv.2017.10.028 Sadak, D., Ayvaz, M. T., & Elçi, A. (2020). Allocation of unequally-weighted wastewater discharge loads using a simulation-optimization approach. Journal of Hydrology, 589. https://doi.org/10.1016/j.jhydrol.2020.125158 Sado, T., & Kimura, S. (2002). Developmental morphology of the cyprinid fish, Candidia barbatus . Ichthyological Research, 49(4), 350-354. https://doi.org/10.1007/s102280200052 Semmens, B. X., Ward, E. J., Moore, J. W., & Darimont, C. T. (2009). Quantifying Inter-and Intra-Population Niche Variability Using Hierarchical Bayesian Stable Isotope Mixing Models. Plos One, 4(7). https://doi.org/10.1371/journal.pone.0006187 Silva, F. L. d., Ruiz, S., Bochini, G. L., & Moreira, D. C. (2008). Functional feeding habits of Chironomidae larvae (Insecta, Diptera) in a lotic system from Midwestern region of São Paulo State, Brazil. Pan-American Journal of Aquatic Sciences, 135-141. Smith, M. E., & Kaster, J. L. (1986). Feeding-Habits and Dietary Overlap of Naididae (Oligochaeta) from a Bog Stream. Hydrobiologia, 137(3), 193-201. https://doi.org/10.1007/BF00004233 Sourisseau, S., Bassères, A., Périé, F., & Caquet, T. (2008). Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams. Water Research, 42(4-5), 1167-1181. https://doi.org/10.1016/j.watres.2007.08.039 Spitzer, K., & Danks, H. V. (2006). Insect biodiversity of boreal peat bogs. Annual Review of Entomology, 51, 137-161. https://doi.org/10.1146/annurev.ento.51.110104.151036 Stephens, R. B., Ouimette, A. P., Hobbie, E. A., & Rowe, R. J. (2022). Reevaluating trophic discrimination factors (Δδ13C and Δδ15N) for diet reconstruction. Ecological Monographs, 92(3). https://doi.org/10.1002/ecm.1525 Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., & Semmens, B. X. (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. Peerj, 6. https://doi.org/10.7717/peerj.5096 Stock, B. C., & Semmens, B. X. (2016). Unifying error structures in commonly used biotracer mixing models. Ecology, 97(10), 2562-2569. https://doi.org/10.1002/ecy.1517 Suter, G. W., Barnthouse, L. W., Efroymson, R. A., & Jager, H. (1999). Ecological risk assessment in a large river-reservoir: 2. Fish community. Environmental Toxicology and Chemistry, 18(4), 589-598. https://doi.org/10.1002/etc.5620180403 Talukdar, P., Kumar, B., & Kulkarni, V. V. (2023). A review of water quality models and monitoring methods for capabilities of pollutant source identification, classification, and transport simulation. Reviews in Environmental Science and Bio-Technology, 22(3), 653-677. https://doi.org/10.1007/s11157-023-09658-z Tixier, G., Felten, V., & Guérold, F. (2012). Population characteristics and feeding habits of Siphonoperla torrentium subject to varying prey, predator, and competitor abundance across an acidification gradient. Freshwater Science, 31(1), 191-204. https://doi.org/10.1899/11-006.1 Trujillo-Jiménez, P. (1998). Trophic spectrum of the cichlids Cichlasoma (Parapetenia) istlanum and Cichlasoma (Arconcentrus) nigrofasciatum in the Amacuzac River, Morelos, Mexico. Journal of Freshwater Ecology, 13(4), 465-473. https://doi.org/10.1080/02705060.1998.9663643 Tylianakis, J. M., Laliberté, E., Nielsen, A., & Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation, 143(10), 2270-2279. https://doi.org/10.1016/j.biocon.2009.12.004 van Ravenzwaaij, D., & Etz, A. (2021). Simulation Studies as a Tool to Understand Bayes Factors (Mar, 10.1177/2515245920972624, 2021). Advances in Methods and Practices in Psychological Science, 4(1). https://doi.org/10.1177/2515245920972624 Voelz, N. J., & Ward, J. V. (1992). Feeding-Habits and Food Resources of Filter-Feeding Trichoptera in a Regulated Mountain Stream. Hydrobiologia, 231(3), 187-196. https://doi.org/10.1007/BF00018202 Wang, J. T., Liu, M. C., & Fang, L. S. (1995). The Reproductive-Biology of an Endemic Cyprinid, Zacco-Pachycephalus, in Taiwan. Environmental Biology of Fishes, 43(2), 135-143. https://doi.org/10.1007/BF00002481 Wang, Y., Jia, Y. T., Li, Z. F., Tao, J., Lin, L. Q., Chen, K., Liu, Z. Y., Tan, X., & Zhang, Q. F. (2021). Trophic structure in response to land use in subtropical streams. Ecological Indicators, 127. https://doi.org/10.1016/j.ecolind.2021.107746 Wang, Y. Y., Yu, X. B., Li, W. H., Xu, J., Chen, Y. W., & Fan, N. (2011). Potential influence of water level changes on energy flows in a lake food web. Chinese Science Bulletin, 56(26), 2794-2802. https://doi.org/10.1007/s11434-011-4649-y Ward, E. J., Semmens, B. X., & Schindler, D. E. (2010). Including Source Uncertainty and Prior Information in the Analysis of Stable Isotope Mixing Models. Environmental Science & Technology, 44(12), 4645-4650. https://doi.org/10.1021/es100053v Werner, E. E., & Hall, D. J. (1979). Foraging Efficiency and Habitat Switching in Competing Sunfishes. Ecology, 60(2), 256-264. https://doi.org/10.2307/1937653 White, J. P., Schwert, D. P., Ondrako, J. P., & Morgan, L. L. (1977). Factors Affecting Nitrification in Situ in a Heated Stream. Applied and Environmental Microbiology, 33(4), 918-925. https://doi.org/10.1128/AEM.33.4.918-925.1977 Wootton, K. L. (2017). Omnivory and stability in freshwater habitats: Does theory match reality? Freshwater Biology, 62(5), 821-832. https://doi.org/10.1111/fwb.12908 Yam, R. S. W., & Dudgeon, D. (2005). Stable isotope investigation of food use by Caridina spp. (Decapoda:Atyidae) in Hong Kong streams. Journal of the North American Benthological Society, 24(1), 68-81. https://doi.org/10.1899/0887-3593(2005)024<0068:SIIOFU>2.0.CO;2 Yamadaa, M., Shoji, J., Ohsawa, S., Mishima, T., Hata, M., Honda, H., Fujii, M., & Taniguchi, M. (2017). Hot spring drainage impact on fish communities around temperate estuaries in southwestern Japan. Journal of Hydrology-Regional Studies, 11, 69-83. https://doi.org/10.1016/j.ejrh.2015.12.060 Yan, K. H., Guo, F., Kainz, M. J., Bunn, S. E., Li, F. L., Gao, W., Ouyang, X. G., & Zhang, Y. (2024). Increasing water nutrient reduces the availability of high-quality food resources for aquatic consumers and consequently simplifies river food webs. Science of the Total Environment, 929. https://doi.org/10.1016/j.scitotenv.2024.172706 Yi, Y. J., Zhao, F. X., Liu, Q., & Song, J. (2023). Runoff from upstream changes the structure and energy flow of food web in estuary. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1103502 Young, T., Pincin, J., Neubauer, P., Ortega-García, S., & Jensen, O. P. (2018). Investigating diet patterns of highly mobile marine predators using stomach contents, stable isotope, and fatty acid analyses. Ices Journal of Marine Science, 75(5), 1583-1590. https://doi.org/10.1093/icesjms/fsy025 Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Audet, J., Kleeberg, A., McInnes, R., Kristiansen, S. M., Petersen, R. J., Liu, H. J., & Goldhammer, T. (2021). Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Science Reviews, 212. https://doi.org/10.1016/j.earscirev.2020.103446 Elton, C.S. (1927) Animal Ecology. University of Chicago Press, Chicago. Groundwater Hydrology of Springs: Engineering, Theory, Management, and Sustainability. (2010). In Groundwater Hydrology of Springs: Engineering, Theory, Management, and Sustainability (pp. 1-573). 翁雄隆(2001)。陽明山國家公園全區溫泉水資源利用調查與管理規劃-以龍鳳谷地區為整建示範報告書。內政部營建署陽明山國家公園管理處委託研究報告。 (GPN:1009005532)。臺北市:陽明山國家公園管理處。 陽明山溫泉, 地熱資源與利用調查. (2005). 內政部營建署陽明山國家公園管理處. https://books.google.com.tw/books?id=quUjHQAACAAJ 宋聖榮(2005)。陽明山溫泉、地熱資源與利用調查。內政部營建署陽明山國家公園 管理處委託研究報告。(GRB 編號:PG9403-0412)。臺北市:陽明山國家公園管理處。 李重義(2009)。陽明山國家公園酸性溫泉物種調查及生存機制之研究。陽明山國家公園管理處委託研究報告。(GRB 編號:PG9803-0667)。臺北市:陽明山國家公園管理處。 臺北市政府(2019)。臺北市溫泉區管理計畫(修訂版)。臺北市:臺北市政府 潘述元、張尊國 (2019)。溫泉廢水排放對水利會灌溉用水之影響評估,財團法人台北市七星農田水利研究發展基金會,期末報告。 蕭友晉、黃國文(2024)。北投溫泉區水資源之水文水理水質及生態監測整合研究計畫,農業部農田水利署七星管理處,期末報告。 徐正勳(2013)。石門水庫集水區淡水螺川蜷年齡決定與生殖生物學研究。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 吳旻燕、許蓓怡、張世倉 (2010) 。清水溪臺灣特有種明潭吻鰕虎(Rhinogobius Candidianus)攝食生態。台灣生物多樣性研究,367-380。 潘聖文(2021)。酸性硫酸鹽排水對溪流生態之影響,碩士論文,國立臺灣大學生物環境系統工程研究所,台北。 黃譯萱(2012)。評估翡翠水庫集水區營養鹽負荷對水質與藻類生態之影響,碩士論文,國立臺北科技大學土木與防災研究所,臺北。 陳麒文(2018)。水庫集水區營養鹽負荷與水生昆蟲生態模擬之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北。 陳勁瑋(2018)。水庫集水區水質與魚類生態系統模擬之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北。 黃楷翔(2010)。淡水粗糙沼蝦繁殖生物學之研究 (Publication Number 2010年) 國立臺灣大學. AiritiLibrary. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95669 | - |
dc.description.abstract | 溫泉污水的直接排放對溪流生態造成多樣性的影響,包含水溫上升、植物光合作用的降低、水棲物種死亡等,並進一步改變溪流之生態系。如今水體的模式建模已成為水資源管理的有效工具,合理的模擬可以輔助監測資料之不足,作為評判水域環境之依據。然而對於生態的模擬,釐清物種間的交互作用十分重要,結合穩定同位素分析或許是可行的方法。
故本研究以臺北陽明山的磺港溪進行生態與水質調查,分析溪流上、中、下游河段,受到不同程度之硫酸鹽溫泉排水影響,其對溪流生態系之改變。研究採集溪流河床生物膜、顆粒有機物、動物和植物樣本,分析其樣品之δ13C 及δ15N,並透過MIXSIAR (Bayesian Mixing Models in R)及SIBER(Stable Isotope Bayesian Ellipses in R)的分析方法,建立完整食物網,具體探討硫酸鹽污水對於溪流食物網結構之影響,並輸入AQUATOX模式進行模擬。 同位素研究結果顯示,在溪流受到硫酸鹽污染與pH改變之下,溪流中的物種食物來源隨河段越趨下游而越漸縮小,且各物種的食物貢獻率改變,食物網發生由下至上的影響,隨著污染程度加劇,多數消費者的同位素棲位(Isotopic Niche)變窄。 AQUATOX模式檢定與驗證的結果顯示,在多河段模擬中硝酸鹽和氨氮效率係數皆大於0.7,表示可以很合理的模擬水中的傳輸。藻類模擬中雖然下游稍有高估,其結果仍可以被接受。生物之模擬由於多河段模擬的限制,導致同位素建立的食物網無法輸入每個河段,使模擬結果欠佳。但在改成分段模擬後,使模擬的偏差降低,除中游魚類外,其餘物種實測與模擬之資料分布平均值與變異數均無顯著差異。證明將同位素建立的食物網輸入,能夠提升生態模型的模擬效果。 這些研究結果量化酸性廢水排放對水生生態造成的影響,並提供模擬方法,可作為酸性廢水的管制或改善措施的參考。 | zh_TW |
dc.description.abstract | The direct discharge of hot spring wastewater has various impacts on stream ecosystems, including rising water temperatures, reduced plant photosynthesis, and the death of aquatic species, which further alter the stream ecosystem. Nowadays, water body modeling has become an effective tool for water resource management. Reasonable simulations can supplement insufficient monitoring data and serve as a basis for evaluating water environments. However, for ecological simulations, it is crucial to clarify the interactions between species. Combining stable isotope analysis may be a feasible method.
This study conducts an ecological and water quality investigation on Huanggang Stream in Yangmingshan, Taipei. It analyzes the upstream, midstream, and downstream sections of the stream, which are affected by varying degrees of sulfate hot spring discharge and its impact on the stream ecosystem. The study collects samples of streambed biofilm, particulate organic matter, animals, and plants, and analyzes their δ13C and δ15N values. Using MIXSIAR (Bayesian Mixing Models in R) and SIBER (Stable Isotope Bayesian Ellipses in R) analysis methods, a complete food web is established to specifically explore the impact of sulfate wastewater on the stream food web structure. The data is then input into the AQUATOX model. The results of the study indicate that under sulfate pollution and pH changes, the food sources for species in the stream progressively diminish from upstream to downstream sections. Additionally, the food contribution rates for various species change, leading to a bottom-up effect on the food web. As the pollution level intensifies, the isotopic niche of most consumers narrows. This highlights how increased sulfate pollution constrains the diversity of available food sources and alters the ecological interactions within the stream ecosystem. The AQUATOX model calibration and validation results indicate that the efficiency coefficients for nitrate and ammonia nitrogen exceed 0.7 in multi-reach simulations, indicating a reasonable simulation of in-stream transport. While algal simulations slightly overestimated downstream values, the results remain acceptable. Due to the limitations of multi-reach simulations, the isotopically constructed food web could not be input for each reach, resulting in suboptimal outcomes. However, segment-based simulations reduced biases, showing no significant differences in the mean and variance of observed and simulated data for most species except midstream fish. This demonstrates that incorporating isotopically constructed food webs can effectively enhance the ecological model's simulation accuracy. These research results quantify the impact of acidic wastewater discharge on aquatic ecosystems and provide a simulation method that can serve as a reference for the regulation or improvement of acidic wastewater. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:42:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-15T16:42:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 x 第一章 緒論 1 第二章 文獻回顧 3 2.1酸性硫酸鹽溫泉 3 2.1.1溫泉定義 3 2.1.2酸性溫泉水對生態之影響 4 2.2食物網與營養關係 6 2.3食性分析 8 2.3.1 行為觀察法 8 2.3.2胃內容物分析 9 2.3.3 穩定同位素技術 10 2.4穩定同位素分析 12 2.4.1 營養位置估算 12 2.4.2同位素棲位 13 2.4.3同位素混合模型 14 2.5 生態風險評估模式 18 2.5.1模式比較 18 2.5.2 AQUATOX 20 3.1 研究流程圖 23 3.2 研究區域 24 3.2.1磺港溪現況 24 3.2.2泡腳池園區 25 3.3採樣點選定 26 3.4穩定同位素樣品採集、處理與分析 28 3.4.1器具前處理 28 3.4.2樣本採集及處理 28 3.4.3樣本分析 30 3.5同位素數據分析 31 3.6 AQUATOX 模式 33 3.6.1模式變數 33 3.6.2模式參數 34 3.7模式資料收集 35 3.8模式模擬與架構 37 3.8.2食物網設置 39 3.9適配度指標 40 第四章 結果與討論 42 4.1環境特徵 42 4.1.1水質 42 4.1.2營養鹽 45 4.1.3 葉綠素a 47 4.2碳、氮穩定同位素分析結果 49 4.2.1基礎食物源 50 4.2.2消費者 52 4.2.3營養位置 54 4.3食物貢獻率與食物網 56 4.3.1上游食物貢獻率 56 4.3.2中游食物貢獻率 58 4.3.3下游食物貢獻率 60 4.3.4 AQUATOX食物網設置 61 4.4模式參數檢定 64 4.5模擬結果 69 4.5.1多河段水質模擬結果 69 4.5.2多河段藻類模擬結果 73 4.5.3多河段水生生物量模擬結果 76 4.5.4分段水生生物量模擬結果 79 第五章 結論與建議 84 5.1結論 84 5.2建議 86 參考資料 87 附錄 101 | - |
dc.language.iso | zh_TW | - |
dc.title | AQUATOX輔以穩定同位素技術評估溪流生態受溫泉之影響 | zh_TW |
dc.title | AQUATOX Model Combined with Stable Isotope Techniques to Assess Stream Ecology Impacted by Hot Spring Discharge | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 范致豪;朱子偉;黃國文;潘述元 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Hao Fan;Tzyy-Woei Chu;Gwo-Wen Hwang;Shu-Yuan Pan | en |
dc.subject.keyword | 溫泉排水,碳和氮穩定同位素,食物網,溪流生態系,AQUATOX 模式, | zh_TW |
dc.subject.keyword | Hot spring discharge,Carbon and nitrogen stable isotopes,Food web,Stream ecosystem,AQUATOX model, | en |
dc.relation.page | 110 | - |
dc.identifier.doi | 10.6342/NTU202404234 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-14 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物環境系統工程學系 | - |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 4.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。