請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95665
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏志平 | zh_TW |
dc.contributor.advisor | Chih-Ping Wei | en |
dc.contributor.author | 王心瑋 | zh_TW |
dc.contributor.author | Hsin-Wei Wang | en |
dc.date.accessioned | 2024-09-15T16:41:39Z | - |
dc.date.available | 2024-09-16 | - |
dc.date.copyright | 2024-09-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | Alkitbi, S. S., Alshurideh, M., Al Kurdi, B., & Salloum, S. A. (2020, September). Factors affect customer retention: A systematic review. In Proceedings of International Conference on Advanced Intelligent Systems and Informatics (pp. 656-667). Cham: Springer International Publishing.
Ascarza, E., Neslin, S. A., Netzer, O., Anderson, Z., Fader, P. S., Gupta, S., Hardie, B. G., Lemmens, A., Libai, B., & Neal, D. (2018). In pursuit of enhanced customer retention management: Review, key issues, and future directions. Customer Needs and Solutions, 5, 65-81. Aspinall, E., Nancarrow, C., & Stone, M. (2001). The meaning and measurement of customer retention. Journal of Targeting, Measurement and Analysis for Marketing, 10, 79-87. Cenni, I., & Goethals, P. (2021). Business responses to positive reviews online: Face-work on TripAdvisor. Journal of Pragmatics, 180, 38-50. Chen, Y. F., Law, R., & Yan, K. K. (2022). Negative eWOM management: How do hotels turn challenges into opportunities? Journal of Quality Assurance in Hospitality & Tourism, 23(3), 692-715. Coombs, W. T. (1999). Information and compassion in crisis responses: A test of their effects. Journal of Public Relations Research, 11(2), 125-142. De Caigny, A., Coussement, K., De Bock, K. W., & Lessmann, S. (2020). Incorporating textual information in customer churn prediction models based on a convolutional neural network. International Journal of Forecasting, 36(4), 1563-1578. Dens, N., De Pelsmacker, P., & Purnawirawan, N. (2015). “We(b)care” How review set balance moderates the appropriate response strategy to negative online reviews. Journal of Service Management, 26(3), 486-515. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Einwiller, S. A., & Steilen, S. (2015). Handling complaints on social network sites–An analysis of complaints and complaint responses on Facebook and Twitter pages of large US companies. Public Relations Review, 41(2), 195-204. Eslami, Z. R., & Yang, X. (2018). Chinese-English bilinguals’ online compliment response patterns in American (Facebook) and Chinese (Renren) social networking sites. Discourse, Context & Media, 26, 13-20. Fujo, S. W., Subramanian, S., & Khder, M. A. (2022). Customer churn prediction in telecommunication industry using deep learning. Information Sciences Letters, 11(1), 24. Gallo, A. (2014). The Value of Keeping the Right Customers. Harvard Business Review Digital Article. 2-5 Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467-483. Holmes, J. (1986). Compliments and compliment responses in New Zealand English. Anthropological Linguistics, 485-508. Euromonitor International (2023). Euromonitor International’s Report Reveals the World’s Top 100 City Destinations for 2023. https://www.euromonitor.com/press/press-releases/dec-2023/euromonitor-internationals-report-reveals-worlds-top-100-city-destinations-for-2023 Jung, H., & Lee, B. G. (2020). The impact of transforming unstructured data into structured data on a churn prediction model for loan customers. KSII Transactions on Internet and Information Systems (TIIS), 14(12), 4706-4724. Keiningham, T. L., Cooil, B., Aksoy, L., Andreassen, T. W., & Weiner, J. (2007). The value of different customer satisfaction and loyalty metrics in predicting customer retention, recommendation, and share‐of‐wallet. Managing Service Quality: An International Journal, 17(4), 361-384. Kim, J., Jang, Y., Bae, K., Oh, S., Jeong, N. J., Park, E., Han, J., & del Pobil, A. P. (2021). Between comments and repeat visit: capturing repeat visitors with a hybrid approach. Data Technologies and Applications, 55(4), 542-557. Kim, J., Ji, H., Oh, S., Hwang, S., Park, E., & del Pobil, A. P. (2021). A deep hybrid learning model for customer repurchase behavior. Journal of Retailing and Consumer Services, 59, 102381. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Kumar, A., & Kashyap, A. K. (2022). Understanding the factors influencing repurchase intention in online shopping: A meta-analytic review. Vision, 0(0). Lai, K. P., Yuen, Y. Y., & Chong, S. C. (2020). The effects of service quality and perceived price on revisit intention of patients: the Malaysian context. International Journal of Quality and Service Sciences, 12(4), 541-558. Lal, I. (2024). The Average Customer Retention Rate By Industry. https://surveysparrow.com/blog/heres-something-didnt-know-average-customer-retention-rate-industry/ Lau, G. T., & Lee, S. H. (1999). Consumers' trust in a brand and the link to brand loyalty. Journal of Market-focused Management, 4, 341-370. Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. Liu, S. Q., & Mattila, A. S. (2015). “I want to help” versus “I am just mad” how affective commitment influences customer feedback decisions. Cornell Hospitality Quarterly, 56(2), 213-222. Lopes, A. I., Dens, N., De Pelsmacker, P., & Malthouse, E. C. (2023). Managerial response strategies to eWOM: A framework and research agenda for webcare. Tourism Management, 98, 104739. Manzoor, A., Qureshi, M. A., Kidney, E., & Longo, L. (2024). A Review of Machine Learning Methods for Customer Churn Prediction and Recommendations for Business Practitioners. IEEE Access, 12, 70434-70463. Mate, M. J., Trupp, A., & Pratt, S. (2019). Managing negative online accommodation reviews: Evidence from the Cook Islands. Journal of Travel & Tourism Marketing, 36(5), 627-644. Meilatinova, N. (2021). Social commerce: Factors affecting customer repurchase and word-of-mouth intentions. International Journal of Information Management, 57, 102300. Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of Marketing, 58(3), 20-38. Narayandas, D. (1998). Measuring and managing the benefits of customer retention: An empirical investigation. Journal of Service Research, 1(2), 108-128. Naz, N. A., Shoaib, U., & Sarfraz, M. S. (2018). A review on customer churn prediction data mining modeling techniques. Indian Journal of Science and Technology, 11(27), 1-27. Nghiêm-Phú, B. (2018). Comment and comment response strategies-an analysis of gay hotel guests’ comments and managers’ responses. Tourism and Hospitality Management, 24(1), 133-149. Otim, S., & Grover, V. (2006). An empirical study on web-based services and customer loyalty. European Journal of Information Systems, 15(6), 527-541. Özköse, Y. E., Haznedaroğlu, A., & Arslan, L. M. (2021). Customer churn analysis with deep learning methods on unstructured data. In Proceedings of 2021 Innovations in Intelligent Systems and Applications Conference (ASYU), 1-5 Park, E. (2023). CRNet: a multimodal deep convolutional neural network for customer revisit prediction. Journal of Big Data, 10(1), 1. Park, E., Kang, J., Choi, D., & Han, J. (2020). Understanding customers' hotel revisiting behavior: A sentiment analysis of online feedback reviews. Current Issues in Tourism, 23(5), 605-611. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., & Antiga, L. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32. Ranaweera, C., & Neely, A. (2003). Some moderating effects on the service quality‐customer retention link. International Journal of Operations & Production Management, 23(2), 230-248. Reichheld, F. F., & Schefter, P. (2000). E-Loyalty: Your Secret Weapon on the Web. Harvard Business Review, 78(4), 105-113. Roozen, I., & Raedts, M. (2018). The effects of online customer reviews and managerial responses on travelers’ decision-making processes. Journal of Hospitality Marketing & Management, 27(8), 973-996. Roque, J. (2023). The Ultimate Guide to Customer Retention. https://blog.smile.io/ultimate-guide-customer-retention/ Sparks, B. (2001). Managing service failure through recovery. Service Quality Management in Hospitality, Tourism and Leisure, 193-219. Sparks, B. A., & Bradley, G. L. (2017). A “Triple A” typology of responding to negative consumer-generated online reviews. Journal of Hospitality & Tourism Research, 41(6), 719-745. Sreejesh, S., Anusree, M., & Abhilash Ponnam, A. P. (2019). Can online service recovery interventions benignly alter customers' negative review evaluations? Evidence from the hotel industry. Journal of Hospitality Marketing & Management, 28(6), 711-742. Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29(1), 24-54. TripAdvisor.com. (2024). About TripAdvisor. https://tripadvisor.mediaroom.com/us-about-us/ Van Noort, G., & Willemsen, L. M. (2012). Online damage control: The effects of proactive versus reactive webcare interventions in consumer-generated and brand-generated platforms. Journal of Interactive Marketing, 26(3), 131-140. Verhoef, P. C. (2003). Understanding the effect of customer relationship management efforts on customer retention and customer share development. Journal of Marketing, 67(4), 30-45. Vo, N. N., Liu, S., Li, X., & Xu, G. (2021). Leveraging unstructured call log data for customer churn prediction. Knowledge-Based Systems, 212, 106586. Wang, B., & Jia, T. (2024). Seize the favorable impression: How hosts should manage positive online reviews. International Journal of Contemporary Hospitality Management, 36(4), 1375-1392. Wangenheim, F. V., Wünderlich, N. V., & Schumann, J. H. (2017). Renew or cancel? Drivers of customer renewal decisions for IT-based service contracts. Journal of Business Research, 79, 181-188. Wu, J., Wu, T., & Schlegelmilch, B. B. (2020). Seize the day: How online retailers should respond to positive reviews. Journal of Interactive Marketing, 52(1), 52-60. Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality. Journal of Marketing, 60(2), 31-46. Zhang, M., Lu, J., Ma, N., Cheng, T. E., & Hua, G. (2022). A Feature Engineering and Ensemble Learning Based Approach for Repeated Buyers Prediction. International Journal of Computers Communications & Control, 17(6). Zhu, J. J., Chang, Y. C., Ku, C. H., Li, S. Y., & Chen, C. J. (2021). Online critical review classification in response strategy and service provider rating: Algorithms from heuristic processing, sentiment analysis to deep learning. Journal of Business Research, 129, 860-877. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95665 | - |
dc.description.abstract | 在競爭日益激烈的環境中,顧客保留對於維持市場份額和企業持續成功變得至關重要。除了顧客資料和交易記錄外,分析用戶生成內容(UGC)能更深入了解顧客的體驗。有效的網絡護理策略也顯著影響顧客保留。有效的護理策略包含企業透過積極回覆顧客問題,並與客戶進行更多交流來建立信任感。顧客對於不同的回應方式會有不同的感受,因此企業在回覆時,除了要回覆,更要考慮如何回覆才能讓客戶滿意。
本文著重於旅遊業中的客户保留,特别是重訪行為。在預測顧客重訪時,我們使用了來自顧客評論和企業回應的文本數據。傳統方法依賴基於詞典或詞嵌入來獲得文本表徵。隨著自然語言處理技術的進步,我們現在採用上下文嵌入來更深入地理解文本語境。以往的顧客保留預測研究通常集中於單一任務,忽視了相關資訊的影響。我們採用了多任務學習方法,結合顧客評論評分作為整體滿意度和企業的回應策略,以提高預測準確性。 通過實驗,我們提出的模型PROMO在預測顧客保留以增強客戶關係管理(CRM)策略方面表現出色。結合輔助任務能夠進一步提高了預測準確性。我們的研究提出了一個有效利用來自顧客和企業的文本資料的深度學習模型。利用上下文嵌入獲得文本表徵並結合輔助任務,我們實現了更精確的預測。這項研究的實際應用意義重大,為CRM策略提供了寶貴的見解,幫助管理層做適當的回應並培養顧客忠誠度。 | zh_TW |
dc.description.abstract | In a competitive landscape, customer retention is crucial for maintaining market share and sustained success. Analyzing user-generated content (UGC) provides deeper insights into consumer experiences beyond traditional consumer profiles and transaction records. Effective webcare strategies, including responding to customer inquiries and engaging in interactions, significantly impact retention, as customers react differently to various response strategies.
This paper focuses on customer retention in the tourism industry, namely revisit behavior. We used textual data from customer reviews and business responses for prediction. Traditional text representation methods relied on lexicon-based or word embeddings, but advancements in natural language processing now allow for contextual embeddings that offer a deeper understanding. Past research often focused on a single task, neglecting related information. Our multi-task learning approach incorporates review ratings and response strategies to enhance prediction accuracy. Through experiments, our proposed model, PROMO, demonstrated superior performance in predicting revisits. The practical implications of our research are significant, providing valuable insights for CRM strategies and aiding managerial decisions to deliver appropriate responses and foster customer loyalty. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:41:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-15T16:41:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Table of Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation and Objectives 5 Chapter 2 Literature Review 8 2.1 Existing Customer Retention Prediction Methods 8 2.1.1 Features Used 8 2.1.2 Text Representation Extraction Methods 10 2.1.3 Prediction Models 12 2.2 Managerial Response Strategy 13 2.3 Summary of Literature Review 14 Chapter 3 Design of Our Proposed PROMO Method 18 3.1 Problem Definition 18 3.2 Overview of Our Proposed Architecture 18 3.3 Review/Response Encoder 20 3.4 Review Rating Classification 21 3.5 Managerial Response Strategy Classification 23 3.6 Revisit Classification 25 3.7 Loss Functions 26 Chapter 4 Empirical Evaluation 28 4.1 Dataset Collection 28 4.2 Evaluation Metrics 30 4.3 Evaluation Procedure and Hyperparameters 31 4.4 Evaluation Results 31 4.5 Additional Evaluation Experiments 32 4.5.1 Ablation Experiments 32 4.5.2 Alternative Criterion Experiments 33 4.5.3 Alternative Feature Concatenation Experiment 35 Chapter 5 Conclusion 37 5.1 Conclusion 37 5.2 Limitations and Future Research Directions 39 Reference 41 Appendix: Codebook for response strategy 46 | - |
dc.language.iso | en | - |
dc.title | 重訪預測:透過多任務學習整合在線評論和管理回應 | zh_TW |
dc.title | Revisit Prediction: Integrating Online Reviews and Managerial Responses via Multi-Task Learning | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊錦生;胡雅涵 | zh_TW |
dc.contributor.oralexamcommittee | Chin-Sheng Yang;Ya-Han Hu | en |
dc.subject.keyword | 顧客保留,重訪預測,深度學習,多任務學習,網路護理,回應策略, | zh_TW |
dc.subject.keyword | Customer retention,Revisit prediction,Deep learning,Multi-task learning,Webcare,Response strategy, | en |
dc.relation.page | 49 | - |
dc.identifier.doi | 10.6342/NTU202403539 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 管理學院 | - |
dc.contributor.author-dept | 資訊管理學系 | - |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。