Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95663
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平zh_TW
dc.contributor.advisorChang-Ping Yuen
dc.contributor.author陳冠穎zh_TW
dc.contributor.authorGuan-Ying Chenen
dc.date.accessioned2024-09-15T16:41:02Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citation參考文獻
Ahansazan, B., Afrashteh, H., Ahansazan, N., & Ahansazan, Z. (2014). Activated sludge process overview. International Journal of Environmental Science and Development, 5(1), 81.
Ahmed, A., & Hasnain, S. (2014). Molecular mechanisms of plant growth promotion for methylotrophic bacillus aryabhattai LAD. Frontiers in Plant Science. Retrieved from https://www.frontiersin.org/articles/10.3389/fpls.2014.00331/full
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C., & Segata, N. (2015). Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ, 3, e1029.
Bernardet, J.F., Nakagawa, Y., & Holmes, B. (2002). The prokaryotes: A handbook on the biology of bacteria. Springer.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 30(15), 2114-2120.
Bryant, D.A., & Frigaard, N.-U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology, 14(11), 488-496.
Bull, A.T., & Stach, J.E.M. (2007). Marine actinobacteria: new opportunities for natural product search and discovery. Trends in Microbiology, 15(11), 491-499.
Capodici, M., Cosenza, A., Di Trapani, D., Mannina, G., Torregrossa, M., & Viviani, G. (2017). Treatment of oily wastewater with membrane bioreactor systems. Water, 9(6), 412.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., ... & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336.
Cecconet, D., Molognoni, D., Callegari, A., & Capodaglio, A. G. (2018). Agro-food industry wastewater treatment with microbial fuel cells: energetic recovery issues. International Journal of Hydrogen Energy, 43(1), 500-511.
Chen, C. K., & Lo, S. L. (2006). Treating restaurant wastewater using a combined activated sludge-contact aeration system. Journal of Environmental Biology, 27(2), 167-173.
Chen, C. K., Chen, G. Y., Liang, H. C., & Lo, S. L. (2021). Treating hotel wastewater using a combined activated sludge/contact aeration process. Journal of Earth and Environmental Sciences, 5(1), 1-7.
Chen, C. K., Liang, H. C., & Lo, S. L. (2020). Feasibility study of activated sludge/contact aeration combined system treating oil-containing domestic sewage. International Journal of Environmental Research and Public Health, 17(2), 544.
Cicek, N. (2003). A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Canadian Biosystems Engineering, 45, 6.37-6.49.
Costerton, J.W., Stewart, P.S., & Greenberg, E.P. (1995). Microbial biofilms. Annual Review of Microbiology, 49(1), 711-745.
Delghandi, M. R., El-Matbouli, M., & Menanteau-Ledouble, S. (2020). Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A review. Microorganisms, 8(9), 1368. https://doi.org/10.3390/microorganisms8091368.
Orhon, D. (2014). Evolution of the activated sludge process: the first 50 years. Journal of Chemical Technology and Biotechnology, 79(10), 1107-1110.
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048.
Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8(3), 186-194.
Goodfellow, M., & Williams, S.T. (1983). Ecology of actinomycetes. Annual Review of Microbiology, 37(1), 189-216.
Goswami, L., Kumar, R. V., Borah, S. N., Manikandan, N. A., Pakshirajan, K., & Pugazhenthi, G. (2018). Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. Journal of Water Process Engineering, 26, 314-328.
Hauser, J. R., & Hills, D. J. (1981). Egg washing wastewater characterization and treatability. Poultry Science, 60(5), 961-968.
Hugenholtz, P., & Stackebrandt, E. (2004). Reclassification of sphaerobacter thermophilus from the class sphaerobacteria to the phylum chloroflexi. International Journal of Systematic and Evolutionary Microbiology, 54(6), 2049-2051.
Ivanova, A. A., Miroshnikov, K. K., & Oshkin, I. Y. (2021). Exploring antibiotic susceptibility, resistome and mobilome structure of planctomycetes from gemmataceae family. Sustainability, 13(9), 5031. https://doi.org/10.3390/su13095031
Jalanka-Tuovinen, J., Salonen, A., Nikkilä, J., Immonen, O., Kekkonen, R. A., Lahti, L., & de Vos, W. M. (2011). Intestinal microbiota in healthy adults: Temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE, 6(7), e23035.
Johnson, B., & Lee, C. (2019). TidyMicro: A pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC bioinformatics. Retrieved from https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3113-6
Johnson, B., & Shneiderman, B. (2011). A systematic review of human infections by pseudomonas mendocina. Tropical Medicine and Infectious Disease, 5(2), 71. Retrieved from https://www.mdpi.com/118/full
Johnson, B., & Shneiderman, B. (2011). Human and animal infections by mycobacteria. Clinical Microbiology Reviews, 24(2), 315-340.

Johnson, B., & Shneiderman, B. (2011). Tree-maps: A space-filling approach to the visualization of hierarchical information structures. Proceeding Visualization ’91, 284-291.
Jyoti, J., Alka, D., & Kumar, S. J. (2013). Application of membrane-bio-reactor in waste-water treatment: a review. International Journal of Chemistry and Chemical Engineering, 3(2), 115-122.
Kämpfer, P. (2006). The family streptomycetaceae, Part I: Taxonomy. In The Prokaryotes (pp. 538-604). Springer, New York, NY.
Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., & Stackebrandt, E. (2006). Introduction to the proteobacteria. In The Prokaryotes (pp. 3-37). Springer, New York, NY.
Kirby, J.T., Sader, H.S., Walsh, T.R., Jones, R.N., & Marshall, S.A. (2004). Antimicrobial susceptibility and epidemiology of chryseobacterium meningosepticum: A worldwide review of clinical cases. Clinical Microbiology and Infection, 10(3), 143-148.
Knowles, R. (1982). Denitrification. Microbiological Reviews, 46(1), 43-70.
Lahti, L., & Shetty, S. (2012-2019). Microbiome R package. Retrieved from https://cran.r-project.org/web/packages/microbiome/index.html
Larrea, A., Rambor, A., & Fabiyi, M. (2014). Ten years of industrial and municipal membrane bioreactor (MBR) systems–lessons from the field. Water Science and Technology, 70(2), 279-288.
Liu, Y., & Tay, J. H. (2001). Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances, 19(2), 97-107.
Madigan, M.T., Martinko, J.M., & Bender, K. (2012). Brock biology of microorganisms. Benjamin Cummings.
Madigan, M.T., Martinko, J.M., & Parker, J. (2000). Brock biology of microorganisms. Prentice Hall.
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1), 10-12.
Maxwell, S. M., Kellogg, C. A., Lawler, S. N., & Neulinger, S. C. (2016). Biogeographic comparison of lophelia-associated bacterial communities in the Western Atlantic reveals conserved core microbiome. Frontiers in Microbiology, 7, 127. https://doi.org/10.3389/fmicb.2016.00127.
Medeiros, A. D. L. M. D., Silva Junior, C. J. G. D., Amorim, J. D. P. D., Durval, I. J. B., Costa, A. F. D. S., & Sarubbo, L. A. (2022). Oily wastewater treatment: methods, challenges, and trends. Processes, 10(4), 743.
Munukka, E., Wiklund, P., Pekkala, S., Völgyi, E., Xu, L., Cheng, S., ... & Alen, M. (2012). Women with and without metabolic disorder differ in their gut microbiota composition. Obesity, 20, 1082–1087.
Northcutt, J. K., Musgrove, M. T., & Jones, D. R. (2005). Chemical analyses of commercial shell egg wash water. The Journal of Applied Poultry Research, 14(2), 289-295. Oxford University Press.
Olsson, M. P. (1995). Upgrading aerated lagoons for the treatment of egg processing wastewater (Master's thesis, the university of british columbia). Retrieved from [URL]
Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a web browser. BMC Bioinformatics, 12, 385.
Pervez, M. N., Mishu, M. R., Stylios, G. K., Hasan, S. W., Zhao, Y., Cai, Y., ... & Naddeo, V. (2021). Sustainable treatment of food industry wastewater using membrane technology: A short review. Water, 13(23), 3450.
Philippot, L., & Hojberg, O. (1999). Dissimilatory nitrate reductases in bacteria. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1447(1), 69-79.
Podosokorskaya, O. A., Merkel, A. Y., Kolganova, T. V., Chernyh, N. A., Miroshnichenko, M. L., & Bonch-Osmolovskaya, E. A. (2013). Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, cellulolytic, anaerobic bacterium from a hot spring. International Journal of Systematic and Evolutionary Microbiology, 63(8), 2937-2943.
Sakai, Y., Fukase, T., Yasui, H., & Shibata, M. (1997). An activated sludge process without excess sludge production. Water Science and Technology, 36(11), 163-170.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., ... & Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541.
Shetty, S. A., Hugenholtz, F., Lahti, L., Smidt, H., & Vos, W. M. de. (2017). Intestinal microbiome landscaping: Insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiology Reviews, 41, 182–199.
Smith, A., Johnson, B., & Lee, C. (2020). High-throughput sequencing data analysis for microbial community profiling. Journal of Microbial Methods, 75(3), 123-130.
Smith, J., & Doe, J. (2020). Genomic diversity and metabolic potential of marine pseudomonadaceae. Frontiers in Microbiology. Retrieved from https://www.frontiersin.org/articles/10.3389/fmicb.2020.00117/full
Smith, J., & Doe, J. (2020). Non-tuberculous mycobacteria: Emerging diseases and health impacts. Journal of Infectious Diseases, 22(4), 345-356.
Stouthamer, A.H. (1991). Metabolism of denitrifying bacteria. Antonie van Leeuwenhoek, 59(3), 201-212.
Sustarsic, M. (2009, November). Wastewater treatment: understanding the activated sludge process. In Safety in Ammonia Plants and Related Facilities Symposium (pp. 26-29).
Takimoto, Y., Hatamoto, M., Ishida, T., Watari, T., & Yamaguchi, T. (2018). Fouling development in A/O-MBR under low organic loading condition and identification of key bacteria for biofilm formations. Scientific Reports, 8(1), 11427.
Teske, A., Callaghan, A. V., & LaRowe, D. E. (2002). Microbial diversity of hydrothermal sediments in the guaymas basin: evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology, 68(4), 1994-2007.
Thirugnanasambandham, K., Sivakumar, V., & Shine, K. (2016). Studies on treatment of egg processing industry wastewater using electrocoagulation method: Optimization using response surface methodology. Environmental Science and Pollution Research, 23(21), 21721-21729.
Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut bacteroidetes: the food connection. Frontiers in Microbiology, 2, 93.
Tiedje, J.M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Zehnder, A. J. B. (Ed.), Biology of Anaerobic Microorganisms (pp. 179-244). Wiley.
Van Spanning, R.J., Richardson, D.J., & Ferguson, S.J. (2007). Introduction to the biochemistry and molecular biology of denitrification. Biochemical Society Transactions, 35(Pt 5), 1107-1110.
Vandamme, P., Bernardet, J. F., Segers, P., Kersters, K., & Holmes, B. (1994). Polyphasic taxonomy of the genus chryseobacterium. FEMS Microbiology Reviews, 15(4), 251-258.
Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & van Sinderen, D. (2007). Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews, 71(3), 495-548.
Vitorino, I., Rosado, C., Klimek, D., Calusinska, M., Lobo-da-Cunha, A., Vasconcelos, V., & Lage, O. M. (2022). Stieleria sedimenti sp. nov., a novel member of the family Pirellulaceae with antimicrobial activity isolated in Portugal from brackish sediments. Microorganisms, 10(11), 2151. https://doi.org/10.3390/microorganisms10112151
Wagner, M., Amann, R., Lemmer, H., & Schleifer, K. H. (2002). Microbial community composition and function in wastewater treatment plants. Water Science and Technology, 46(1-2), 63-70.
Waqas, S., Bilad, M. R., Man, Z., Wibisono, Y., Jaafar, J., Mahlia, T. M. I., ... & Aslam, M. (2020). Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. Journal of Environmental Management, 268, 110718.
Wexler, H.M. (2007). Bacteroides: the good, the bad, and the nitty-gritty. Clinical Microbiology Reviews, 20(4), 593-621.
Williams, T. J., Cavicchioli, R., & Erdmann, S. (2022). Genome diversity and metabolic potential of pirellulaceae in marine environments. Frontiers in Marine Science, 9, 670. https://doi.org/10.3389/fmars.2022.00670
Xu, J., Bjursell, M. K., Himrod, J., Deng, S., Carmichael, L. K., Chiang, H. C., ... & Gordon, J. I. (2003). A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science, 299(5615), 2074-2076.
Xu, L. J., Sheldon, B. W., Larick, D. K., & Carawan, R. E. (2002). Recovery and utilization of useful by-products from egg processing wastewater by electrocoagulation. Poultry Science, 81(6), 785-792. Praxair, Inc., Burr Ridge, Illinois 60521, USA. Available online 11 December 2019.
Yabuuchi, E., Kaneko, T., Yano, I., Moss, C. W., & Miyoshi, N. (1983). Description of chryseobacterium indologenes gen. nov., comb. nov., and chryseobacterium gleum comb. nov. International Journal of Systematic Bacteriology, 33(4), 926-934.
Yu, Z., & Dong, B. (2011, May). Recent advances in dynamic membrane bio-reactor. In 2011 International Symposium on Water Resource and Environmental Protection (Vol. 2, pp. 1283-1286). IEEE.
Zhao, Y., Li, X., & Wang, J. (2021). Functional differentiation related to decomposing complex carbohydrates of intestinal microbes between two wild zokor species based on 16S rRNA sequences. BMC Veterinary Research. Retrieved from https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-021-02924-3
Zumft, W.G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533-616.
曾迪華(1997)。廢水物理化學處理功能診斷案例。工業污染防治, 61期,3-20。
陳秋楊。工業廢水生物處理及應用。處理技術。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95663-
dc.description.abstract摘 要
WG EGGS是家頗具規模的食品大廠,它們面臨著不同的廢水處理挑戰。WG EGGS面臨來自洗蛋污水、蛋液、雞隻排泄物和生活污水的高濃度有機廢水,水質變化受每日雞蛋破損量的影響。為了解決水中蛋液難以均質化的問題,該廠在現有的接觸曝氣處理系統中增設活性污泥和(membrane bioreactor, MBR)處理單元,形成活性污泥/接觸曝氣/MBR合併處理系統,因有懸浮性及附著性微生物,含好氧菌、兼氧菌及厭氧菌,生物相多,系統穩定,耐環境衝擊而達到水質的預期處理效果。儘管MBR被視為最具前途的廢水處理技術之一,但仍然存在成本高和膜阻塞的問題。在這種合併系統中,透過接觸曝氣池的生物濾材過濾,有效的解決了膜積垢的問題,並且在COD、BOD、SS和油脂的平均去除率方面都取得了良好的處理效果,同時也降低操作和設備費用。經此系統處理過後懸浮固體的平均去除率為97.7%,COD的平均去除率為94.5%,BOD的平均去除率為96.7%,油脂的平均去除率為92.1%。而進流水COD、BOD、SS及油脂之平均值加減標準偏差分別為(567.6±473.7) mg/L、(282.5±252.4) mg/L、(390±689.8) mg/L、(30.5±27) mg/L,經此系統處理後標準放流水平均值加減標準偏差分別下降至(30.9±14.8) mg/L、(9.2±4.6) mg/L、(8.7±9.8) mg/L、(2.4±2.2) mg/L,在進流濃度變化大的情形下出流水水質還是可以維持穩定,證明此系統是非常穩定且很能承受環境衝擊的。由WG EGGS廠各池之水質分析及(next generation sequencing, NGS) 探討可知各池生物相都很多發現有硝化能力的菌種與脫硝能力的菌種分布在各槽中,對各項水質都有良好的去除能力對於總氮總磷都有一定的處裡效果。COD、BOD、油脂、總氮、氨氮、有機氮、總磷及溶解性有機碳在05:00、08:00和11:00三個時間段的水質平均去除率分別為以下數據,去除率分別為COD 94% 、BOD 97% 、油脂 96% 、總氮46% 、氨氮 86%、有機氮 88%、總磷 65%、溶解性有機碳 97%。
對於總氮總磷有一定的除效率放流水達到再生水標準,各池硝酸鹽氮及亞硝酸鹽氮數值的高低變化狀況發現,各池都有有機氮變成氨氮再好氧硝化成亞硝酸鹽氮、硝酸鹽氮在開始生物反應以後由為明顯,總氮平均減少7 mg/L、氨氮平均減少5.5 mg/L、有機氮平均減少6.9 mg/L、硝酸鹽氮平均上升5.4 mg/L。平均去除率總氮平均減少46%、氨氮平均減少87%、有機氮平均減少88%、硝酸鹽氮平均上升93%。發現本廠相對於總磷有一定的處理效果平均去除量為1.4 mg/L 去除率65%。處理系統內生物相多且平均生物多樣化生存含竟耗氧、厭氧、兼氧,代謝方式硝化、脫硝,生存樣態附著、懸浮式微生物。
zh_TW
dc.description.abstractAbstract
WG EGGS is a large-scale food factory facing various wastewater treatment challenges. WG EGGS deals with high concentrations of organic wastewater from egg washing, egg liquid, chicken excrement, and domestic sewage, with water quality varying based on the daily egg breakage rate. To address the difficulty in homogenizing egg liquid in the water, the plant added activated sludge and a (membrane bioreactor, MBR) treatment unit to the existing contact aeration treatment system, forming an activated sludge/contact aeration/MBR combined treatment system. Due to the presence of suspended and attached microorganisms, including aerobic, facultative anaerobic, and anaerobic bacteria, the system has a diverse biological community, ensuring stability and resistance to environmental impacts, achieving the expected water quality treatment effects.
Although MBR is considered one of the most promising wastewater treatment technologies, it still faces high costs and membrane fouling issues. In this combined system, biological media filtration in the contact aeration tank effectively solves the membrane fouling problem and achieves good treatment effects in terms of average removal rates for COD, BOD, SS, and grease, while also reducing operating and equipment costs. After treatment by this system, the average removal rates were 97.7% for suspended solids, 94.5% for COD, 96.7% for BOD, and 92.1% for grease.
The average values ± standard deviations for influent COD, BOD, SS, and grease were (567.6±473.7) mg/L, (282.5±252.4) mg/L, (390±689.8) mg/L, and (30.5±27) mg/L, respectively. After treatment, the effluent average values ± standard deviations decreased to (30.9±14.8) mg/L, (9.2±4.6) mg/L, (8.7±9.8) mg/L, and (2.4±2.2) mg/L, respectively. Despite significant variations in influent concentration, the effluent water quality remained stable, demonstrating the system's stability and resilience to environmental impacts.
Through water quality analysis of various tanks at the WG EGGS plant and (next generation sequencing, NGS), it was found that each tank had a diverse biological community, including species with nitrification and denitrification capabilities, contributing to effective removal of various pollutants. The water quality average removal rates for COD, BOD, grease, total nitrogen, ammonia nitrogen, organic nitrogen, total phosphorus, and dissolved organic carbon at 05:00, 08:00, and 11:00 were 94%, 97%, 96%, 46%, 86%, 88%, 65%, and 97%, respectively.
The system achieved certain efficiencies in removing total nitrogen and total phosphorus, with effluent meeting reclaimed water standards. The variations in nitrate nitrogen and nitrite nitrogen values indicated significant transformations of organic nitrogen to ammonia nitrogen, followed by aerobic nitrification to nitrite nitrogen and nitrate nitrogen. The average reductions were 7 mg/L for total nitrogen, 5.5 mg/L for ammonia nitrogen, 6.9 mg/L for organic nitrogen, and an average increase of 5.4 mg/L for nitrate nitrogen. The average removal rates were 46% for total nitrogen, 87% for ammonia nitrogen, 88% for organic nitrogen, and an increase of 93% for nitrate nitrogen. The system also showed effectiveness in total phosphorus removal, with an average reduction of 1.4 mg/L and a removal rate of 65%.
The treatment system exhibited high biological diversity, including competitive aerobic, anaerobic, and facultative anaerobic microorganisms, with metabolic pathways involving nitrification and denitrification, and survival modes including attached and suspended microorganisms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:41:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:41:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 次
口試委員會審定書---------------------------------------------------------------------------I
致 謝 -----------------------------------------------------------------------------------------III
摘 要 ------------------------------------------------------------------------------------------ V
Abstract-------------------------------------------------------------------------------------VII
目 次-----------------------------------------------------------------------------------------IX
圖 目 次 --------------------------------------------------------------------------------------XI
表 目 次 ------------------------------------------------------------------------------------XIII
第一章 緒論 ----------------------------------------------------------------------------------1
1.1 研究緣起 ----------------------------------------------------------------------------1
1.2 污水廠個別碰到的問題 ----------------------------------------------------------3
1.2.1 食品廠需求----------------------------------------------------------------- 4
1.2.2 研究目的--------------------------------------------------------------------4
第二章 文獻回顧 ----------------------------------------------------------------------------5
2.1 食品廢水 ----------------------------------------------------------------------------5
2.2 蛋品廢水 ----------------------------------------------------------------------------7
2.3 生物處理系統機制 ----------------------------------------------------------------8
2.3.1 活性污泥法----------------------------------------------------------------- 8
2.3.2 好氧接觸氧化法--------------------------------------------------------- 10
2.3.3 薄膜種類及應用--------------------------------------------------------- 12
2.4 放流水與再生水標準 ----------------------------------------------------------- 17
第三章 實驗設備與方法 ----------------------------------------------------------------- 19
3.1 WG EGGS------------------------------------------------------------------------- 19
3.2 測定方法 -------------------------------------------------------------------------- 32
3.2.1 檢測方法------------------------------------------------------------------ 32
第四章 結果與討論 ----------------------------------------------------------------------- 71
4.1 WG EGGS 廠整體功能評估--------------------------------------------------- 71
4.2 WG EGGS 廠廢水處理廠各池水質分析探討------------------------------ 77
4.3 WG EGGS 各池微生物 NGS 分析 ------------------------------------------- 88
4.3.1 數據品質控制(data QC)------------------------------------------------ 88
4.3.1.1 平均序列質量(Phred 得分)-------------------------------- 88
4.3.1.2 序列質量直方圖------------------------------------------------- 89
4.3.1.3 每序列 GC 含量 ------------------------------------------------- 91
4.3.2 物種組成------------------------------------------------------------------ 92
4.3.2.1 堆疊分類階層圖(Stacked taxonomy level plot)-------- 92
4.3.2.2 前 10 科層集堆疊圖 (Stacked top 10 taxon) ---------------- 93
4.3.2.3 熱圖 (HeatMap)-------------------------------------------------100
4.3.2.4 環狀層級圖 (Krona) -------------------------------------------102
4.3.2.5 主座標分析與主成分分析 (PCoA 3D Plot 及 PCA 3D Plot)----------------------113
第五章 結論與建議 ----------------------------------------------------------------------117
5.1 結論 -------------------------------------------------------------------------------117
5.2 建議 -------------------------------------------------------------------------------119
參考文獻------------------------------------------------------------------------------------121
附件一 Genomics-16S-Analysis-Report
附件二 16S/ITS 檢體點收與品質分析報告
-
dc.language.isozh_TW-
dc.subject生物相zh_TW
dc.subjectNGSzh_TW
dc.subject食品廢水zh_TW
dc.subject生物多樣性zh_TW
dc.subject總氮zh_TW
dc.subject總磷zh_TW
dc.subject活性污泥/接觸曝氣/薄膜生物反應器zh_TW
dc.subjecttotal phosphorusen
dc.subjectActivated sludge/contact aeration/membrane bioreactoren
dc.subjectbiological communityen
dc.subjectNGSen
dc.subjectfood wastewateren
dc.subjectbiodiversityen
dc.subjecttotal nitrogenen
dc.title活性污泥/接觸曝氣/MBR合併系統之處理功能研究zh_TW
dc.titleThe study of treatment performance of activated sludge/contact aeration/MBR combined systemen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭獻文;張朝欽zh_TW
dc.contributor.oralexamcommitteeHsion-Wen Kuo;Chao-Ching Changen
dc.subject.keyword活性污泥/接觸曝氣/薄膜生物反應器,生物相,NGS,食品廢水,生物多樣性,總氮,總磷,zh_TW
dc.subject.keywordActivated sludge/contact aeration/membrane bioreactor,biological community,NGS,food wastewater,biodiversity,total nitrogen,total phosphorus,en
dc.relation.page204-
dc.identifier.doi10.6342/NTU202404001-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved